
Seeing the Un-Scene: Learning Amodal 
Semantic Maps for Room Navigation

Medhini Narasimhan1,2* Erik Wijmans3,1 Xinlei Chen1 Trevor Darrell2 
Dhruv Batra1,3 Devi Parikh1,3 Amanpreet Singh1

1Facebook AI Research 2University of California, Berkeley 3Georgia Institute of Technology

Presented by Ellen Su     April 14, 2025



2



3



Human priors on apartment layouts 
aid visual navigation

Motivation
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A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, Y. Zhang
Matterport3D: Learning from RGB-D Data in Indoor Environments
International Conference on 3D Vision (3DV 2017)
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https://arxiv.org/pdf/1709.06158.pdf


Can learning to predict semantic belief maps 
improve visual navigation in unseen 

environments?

Question
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Approach

Learn scene priors 
+ visual exploration 

+ actively update belief maps 
+ predict regions beyond 

current field of view

Improved navigation in unseen environments

(meta-learning)

(few-shot learning)
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Background

Simultaneous Localization 
and Mapping (SLAM)

1. Map environment from 
sensory data

2. Locate agent in map
3. Plan path

Limitations
- Noisy data
- No meta-learning

Learning based approaches

- End-to-end
- Learn goal-driven RL task 

with auxiliary depth 
prediction tasks

- Priors as knowledge graphs 
or probabilistic relationships

Limitations
- No amodal mapping
- No semantic beliefs
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Room navigation

Task
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Learning algorithm

time 10



Scene Priors / Semantic Belief Maps 
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1) Map Generation
Input image    current semantic map action

f_i f_m f_af_seq

f_dec

f_map
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1) Map Generation Alg
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Learning algorithm

time 14



2) Point Prediction

f_i

f_m
f_emb

f_point
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2) Point Prediction Alg
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Learning algorithm

time 17



- Proximal Policy Optimization (PPO) 1

- Pre-trained a navigation policy on Habitat2 dataset

- Fine-tuned on points predicted by their model

3) Point Navigation

[1] Wijmans et al.: DD-PPO: Learning near-perfect point goal navigators from 2.5 billion frames. 
In: International Conference on Learning Representations (ICLR) (2020) 
[2] Savva et al.: Habitat: A platform for embodied ai research. arXiv preprint arXiv:1904.01201 
(2019) 18
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In action

http://www.youtube.com/watch?v=5rjvw8dxUw4


RoomNav Success 
weighted by (normalized 
inverse) Path Length 
(RoomNav SPL)

Success: indicator for 
whether agent stops 0.2m 
inside query room

Eval Metrics
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Results
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Yes! Predicting amodal semantic belief maps of room layouts 
improves navigation in unseen environments
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Conclusion



- Diversity of room types
- Continuous map predictions
- Less modularity
- Performance gap from ground truth 

maps indicates room to improve! 
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Limitations



Questions/Comments
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Few-shot Learning from 
Representation to Problem-solving: 
A Conversation
(Few-shot Learning + Diffusion) 

Xu Zhang (xz4863)      栩
        NYU
 
Courant Institute



Learn a new concept with only a few examples

e.g. a new image class

Few-shot Learning Task Definition



Few-shot Learning Task Definition

5000 imgs 
BeagleBoxer 

5000 
imgs

Labrador Retriever
5000 img’s

chihuahua Only 3 images
(not present in support)

Train base model on 
Support Set Make sure it performs well in 

Query Set

N-way 3-shot learning task.
(N = num of class in query set)



Scene 1: Cancer doctor 

detecting rare cancer

Application:

Few-shot Learning Task Motivation

Scene 2: Solar panel Factory defect



Human Don’t learn from tons of example >> Few-

shot learning ability is critical characteristic of human 

intelligence

The Chinese room argument

Few-shot Learning as a test to machine’s intelligence

Few-shot Learning Task Motivation:



Few-shot Learning Task Definition

Wrong with old models

Correct with new models:

Credit: Mengye Lifelong and human-like learning in foundation models. Columbia University. New York, NY, USA. 2024/09. 



Example of Benchmark: Omniglot

credit:Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. 
Tenenbaum. "The Omniglot challenge: a 3-year progress 
report." Current Opinion in Behavioral Sciences 29 (2019): 
97-104.



Classic Few-shot Learning Methods
Si

am
es

e 
N

et

Hypernetwork

MatchingNet

credit: Zeng, Wu, and Zheng-Ying Xiao. “Few-shot learning based on 
deep learning: A survey.” Mathematical biosciences and engineering : 
MBE vol. 21,1 (2024): 679-711. doi:10.3934/mbe.2024029



Learn a new concept with only a few examples

e.g. a new image class

Few-shot Learning with Foundation Models

CLIP Flamingo

credit:Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model 
for few-shot learning." Advances in neural information processing 
systems 35 (2022): 23716-23736.

credit: Radford, Alec, et al. "Learning transferable visual models from 
natural language supervision." International conference on machine 
learning. PmLR, 2021.



• What’s in common: 

    both focuses on feature/representation

• Assume small ‘head’ for downstream tasks: 

    can be problematic

Few-shot Learning Methods that
Focuses on Representation



Diffusion Action Segmentation
Few-shot Learning for Harder Task: an example on Video Segmentation

Feature extraction ends 
here (e.g. Dinov2)

Credit:Liu, Daochang, et al. "Diffusion action segmentation." 
Proceedings of the IEEE/CVF international conference on computer 
vision. 2023.



1. Case Study: 

Multi-Concept Customization of Text-to-Image Diffusion

2. Why Few-shot learning working well on Diffusion?

Few-Shot Diffusion Models Escape the Curse of Dimensionality

Few-shot Learning with Diffusion



Latent Diffusion:

Cedit: Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2022.



> Tuning a Small Set of Parameters



Diff Modules’ Weight Update Speed 
in Diffusion Model



Proposed Framework



Regularization to Mitigate Overfitting



Result: Visualization



Result: Quantitative

Top Right: Good



Diffusion models are large

Why tuning only a small set of parametters 

with a few examples can produce such good results?

Why diffusion, not other models?

How did Tuning Diffusion Work Out?





Conclusion from Paper 2:

• DreamBooth (fully fine-tuned) dont’ utilize the pre-
trained weights:

      suffers from curse of dimensionality and overfitting

• a



Decrease of Error Bound Visualization
No Few-shot Learning v.s. Few-shot Tuning

100,000 = dimensionality of data



We introduced common few-shot learning approaches and discussed how 

their focuses on representation is not enough for some demanding 

downstream tasks

> Diffusion + Few-shot learning as the solution

> Tuning subset of diffusion model: escapes the curse of dimensionality

> key to few-shot learning success:

   1. Utilize pretrained weight

   2. Larger latent presentation dimension d = less examples needed

Conclusion



Conclusion
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If you are an audience who wants to 

dig more:
Be careful with information in Zeng, Wu, and Zheng-Ying Xiao. 

“Few-shot learning based on deep learning: A survey.” 

Mathematical biosciences and engineering : MBE vol. 21,1 

(2024): 679-711. doi:10.3934/mbe.2024029

e.g. Their timeline figure is absurdly wrong! They put matching 

network after protonet in time, which is not true



Learn a new concept with only a few examples

e.g. a new image class

Few-shot Learning Task Definition



Slides template credit to Mengye...
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From Language to Action

● LLMs like Gemini 2.0 can reason, summarize, 
and generate — but remain digital

● Robots, on the other hand, often lack general 
reasoning and language understanding

● Gemini Robotics attempts to close this gap:
“Can a single model reason about space, 
objects, and actions — and then perform 
them?”

● This paper explores what happens when a large 
language model is taught to move, not just talk
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Gemini Robotics: A Generalist 
Vision-Language-Action System

● Built on Gemini 2.0: Google’s 
multimodal LLM (text + vision)

● Extends the model to reason and act in 
the physical world

● Introduces two core systems:
○ Gemini Robotics-ER
○ Gemini Robotics

● Enables zero-shot and few-shot 
performance on real-world robot tasks
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Research Team Overview

● Developed by a team of over 100 researchers at 
Google DeepMind

● Interdisciplinary expertise across:
○ Robotics and control systems
○ Vision-language modeling
○ Simulation and embodiment
○ Safety and alignment research

● Includes researchers with prior work on models 
like:
○ RT-1, RT-X, Flamingo, SayCan, and PaLM-E



5

Limitations of Previous VLA Models

● SayCan – Limited Adaptability in 
Multi-Step Tasks
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Limitations of Previous VLA Models

● SayCan – Limited Adaptability in 
Multi-Step Tasks

● RT-2 – Limited Dexterity and 
Physical Adaptation
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Limitations of Previous VLA Models

● SayCan – Limited Adaptability in 
Multi-Step Tasks

● RT-2 – Limited Dexterity and 
Physical Adaptation

● PaLM-E – High Latency, Low 
Reactivity

● GPT-4 / Claude – Disembodied 
Reasoning



Overview of the Gemini 
Robotics System

Integrating Multimodal Understanding with Real-World Execution
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HOW
GEMINI

ROBOTICS
WORKS

● Accepts natural instructions + visual 
input from the robot’s sensors

● Performs reasoning and planning
using Gemini 2.0 in the cloud

● Predicts actions in the form of code, 
trajectory, or semantic instructions

● Onboard controller executes actions in 
real time

● System adapts to task complexity and 
object/environment variation
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System Architecture



11

Embodied Reasoning with Gemini Robotics-ER

● Extends Gemini 2.0 for spatial, 
geometric, and action reasoning

● Evaluated using the new ERQA 
benchmark

● Supports tasks like object pointing, 
multi-view alignment, and 3D 
localization
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Gemini Robotics – Action Execution

● Translates reasoning into real-time robot 
control

● Uses an onboard action decoder at 50Hz
● Supports zero-shot and few-shot execution 

across tasks
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Real World Task Performance

● Handles both simple and complex 
real-world tasks

● Performs folding, pouring, spelling, 
and packing

● Supports zero-shot and few-shot task 
execution
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Real World Task Performance
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Real World Task Performance
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Long-Horizon Dexterity and Few-Shot Learning

● Performs multi-step tasks: 
origami, lunchbox packing, 
salad prep

● Learns from as few as 5–20 
demonstrations

● Adapts to task variation and 
object substitutions
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Real-Time API Interactions

● Instructions are processed via 
structured API inputs

● Model outputs can be points, 3D boxes, 
grasp poses, or code

● System supports both open-loop and 
closed-loop control
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Real-Time API Interactions
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Real-Time API Interactions



20

ERQA Benchmark and Reasoning Performance

● ERQA evaluates embodied 
reasoning through 400 tasks

● Tasks include: pointing, 3D spatial 
reasoning, affordance selection, 
multiview grounding

● Designed by the Gemini Robotics 
team for physical scene 
understanding

● Gemini outperforms GPT-4, 
Claude, and earlier Gemini 
models

● Supports zero-shot and few-shot 
reasoning

● Demonstrates deep integration of 
vision, language, and spatial 
planning
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ERQA Benchmark and Reasoning Performance
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ERQA Benchmark and Reasoning Performance

Gemini 2.0 outperforms other VLMs on ERQA, demonstrating strong spatial and embodied reasoning
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Comparison with Other VLA Agents

● Adaptability in Multi-Step Tasks
○ Overcomes SayCan by reasoning flexibly across changing task sequences and 

object states
● Dexterity and Physical Control

○ Surpasses RT-2 by enabling fine motor execution (e.g., origami, zipping, pouring)
● Low-Latency, Real-Time Execution

○ Improves over PaLM-E with 50Hz onboard decoding and <250ms end-to-end latency
● Embodied Reasoning Across Modalities

○ Goes beyond GPT-4 and Claude by grounding language in visual scenes and spatial 
relations
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Failure Cases and 
Limitations

● Struggles with thin, flexible, or deformable 
objects (e.g., soft wrappers, cloth)

● Ambiguous spatial instructions can lead to 
incorrect or inconsistent outcomes

● Reduced reliability in high-clutter or occluded 
environments

● Occasionally fails at fine-grained alignment 
and bimanual manipulation

● System internals (model architecture, training 
details) are not publicly released
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Semantic Safety and the
ASIMOV Benchmark

● ASIMOV Benchmark: Evaluates robots’ 
understanding of safety in real-world 
scenarios.

● Robot Constitutions: Natural language 
rules guiding safe robot behavior.

● Auto-Amending Process: Enhances 
constitutions for better alignment with 
human values.

● Gemini 1.5 Pro Performance: Achieves up 
to 94.7% alignment with safety guidelines.



Conclusion

A Generalist LLM Agent for Embodied Reasoning, Real-World Action, and Safe Decision Making
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● Gemini Robotics is a LLM Agent: it perceives, 
reasons, and acts

● Combines Gemini 2.0 (language + vision) 
with real-time control

● Performs complex, long-horizon tasks across 
varied robots

● Outperforms prior systems on reasoning 
(ERQA) and execution

● Introduces new safety benchmark (ASIMOV) 
and API architecture



“
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Thank You



Magma
A Foundation Model for Multimodal AI Agents
Dan Zhao



What are LLM Agents?

What are Foundation Models?

Magma: A Foundation Model for Agents?

Preliminaries

Pretraining

Evaluation & Data

Performance/Results 

Potential Issues

Overview



LL(V)Ms that can solve meaningfully complex, multi-step tasks with minimal human input

What are LLM Agents?

● Backbone or “core” capable of reasoning, planning, and multi-modal perception/understanding
● Complex action and state spaces
● Recurrent loop (perception > reasoning/planning > action > evaluation > next state > perception…)
● Self-recognition of task termination

Digital World Physical World



LLM Agents: Examples

● GPT-X (e.g., Copilot-X, Navi, SeeAct)
● Operator (OpenAI)
● Computer Agent (Anthropic)
● Manus
● Agent S2



LLM Agents: Benchmark Examples

OS/Computing System

● OSWorld
● Windows Agent Arena
● Android World

Online Domains & Websites

● Mind2Web
● Visual Web Arena
● Video Web Arena

Embodied

● EmbodiedBench
● VLABench
● Habitat etc.



Examples:
● Image Segmentation: 

SAM, SAM2
● Text Generation: GPT-X
● Protein Structure: ESM, 

Alphafold-X

What are foundation models?



Magma: Goals & Contributions

● Develop multimodal foundation agentic model for physical and digital domains
● Curate large pre-training dataset (~39M) of VL, UI, robotics, human 

instructional videos, etc. 



Magma: Combining Physical & Digital Grounding



Data

● Compile and curate various datasets into pretraining data
○ Robotics manipulation data: Open-X-Embodiment.
○ UI navigation Data: SeeClick and Vision2UI
○ Instructional videos: Epic-Kitchen, Ego4d, Somethingv2, and some proprietary mix
○ Multimodal understanding: ShareGPT4V, some instruction tuning data from LLaVA-1.5, 

and data from ChartQA and infographicQA

 

● For data re: UI navigation (e.g., app/browser screenshots) and videos (e.g., instructional 
demos), generate Set-of-Marks (SoMs) and Trace-of-Marks (ToMs) on data (see next slide)



Set of Marks



Trace of Marks

1 Track motion (CoTracker) Find motion traces

2 Detect & correct global motion Stabilize frames

3 Classify into 
foreground/background

Separate moving objects

4 Select number of clusters randomly Limit complexity

5 Cluster traces (KMeans) Identify distinct motions

6 Generate SoM (Segmentation) Visualize segmentation

7 Output Provide segmented sequence & traces



● LLaMA3-8B as language backbone, ConvNext-XXlarge as vision encoder
● Problem formalism: 

Magma: Pre-Training



Results (0-shot overall)



Results: Digital (Web UI Navigation)



Results: Digital (Mobile UI Navigation)



Results (Spatial Reasoning)



Results (Video Understanding)



Conclusion

● Shows considerable improvements, especially in robotic/embodied/spatial 
tasks, suggesting meaningful grounding and integration of spatial intelligence 
with visual/text understanding

● For a foundation model, quite a significant amount of SFT (80% train data)
○ Unclear picture of “true” zero-shot agentic performance in some cases
○ No real zero-shot results on benchmarks/data where SFT was done

● Zero-shot performance done on benchmarks/data not really “agentic”, more 
static UI and GUI grounding (e.g., ScreenSpot)

○ Would be interesting to see zero-shot performance on OSWorld/Windows Agent Arena/etc (i.e. 
fuller, realistic agentic environments)



LEO : An Embodied 
Generalist Agent in a 3D World
Embodied AI & Vision 

PRESENTED BY 
Sunidhi Tandel
sdt9243
04/17/2025



2

Introduction & Background

● Embodied AI enables agents to interact with and learn from real-world environments through 
physical actions.

● Unlike traditional NLP or vision models, embodied agents operate in 3D, dynamic settings and it 
involves 3 key elements.

a. Perception: understanding surroundings through 2D/#D inputs.
b. Language: interpreting instructions and generating plans.
c. Action: executing tasks like navigation or manipulation.
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Why Do We Need Embodied Generalist Agents?

● Today’s agents are specialized for specific tasks.
● Goal: Develop generalists capable of performing diverse tasks, like:

a. Organizing a room.
b. Answering 3D spatial questions.
c. Planning multi-step actions.

● It should be more human like, which combines language, memory, and physical interaction.

How LLM Agents can be leveraged to build Generalist Embodied AI in an Open World?
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What’s Missing in Current LLM-based approach?

1. LLMs excel at reasoning and language but struggle in physical spaces:
a. Lack spatial and temporal memory.
b. No grounding in the real-world 3D context.

More specifically,

c. Reasoning about object permanence (where things are over time).
d. Performing long-horizon tasks (e.g., cleaning a messy room).
e. Handling unseen objects and instructions.
f. Generating multi-step physical plans grounded in perception.
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LEO: An Embodied Generalist Agent
LEO = Language + Environment + Object-centric memory
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Model

1. Tokenization

First step, Tokenizes all multimodal inputs: text, 2D images, 3D point clouds, and embodied actions into a unified sequence of discrete tokens 
using established methods and SentencePiece, enabling LEO to process diverse modalities in a consistent format.

2. Token Embedding & LLM

● Scene representation : The scene point cloud is 
partitioned into object-centric point clouds (either 
ground truth or predicted proposals), which are then 
processed by the 3D encoder to obtain object-centric 
features. They also incorporate an optional 2D branch, 
where a 2D encoder processes the agent's ego-view 
observation to obtain ego-centric features.

● Unified sequence and objective: The sequence begins 
with a system message that tells the agent its role and 
situation. Subsequent 2D image tokens and 3D object 
tokens provide the perceived scene information. Next 
an instruction specifies the task or context, and also 
prompts for the final response. The learning objective 
is a simple auto-regressive loss.

https://docs.google.com/file/d/1nTf7HA5B8Inb_R0WxlbXzA-vQKXmsLiC/preview
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Model

3.     Training and Inference 

LEO is trained  using a prefix language modeling objective, fine-tuning only select components while freezing the LLM 
and 3D encoder, and uses beam search during inference to generate responses or map them to action commands.



8

Dataset for training

1. Two-stage scheme: alignment & instruction tuning. 
2. They combine existing datasets and LLM-prompted data to create 

a. LEO-align 
that focuses on 3D vision language (VL) alignment to bridge the gap between 3D scene representation 
and natural language
● object-level captions
● object-in-the-scene captions
● scene-level captions

b. LEOinstruct 
that targets at 3D VLA instruction tuning to endow LEO with various capabilities.
● 3D captioning and question answering
● 3D dialogue and task planning
● navigation and manipulation 
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Dataset for training
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 LLM-assisted 3D-language Data Generation
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Results 

Quantitative comparison with state-of-the-art models 
on 3D VL understanding and embodied reasoning tasks
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Results 
Results on robot manipulation 

Results on object navigation
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Improvements 

1. Embodied Generalization: LEO marks a significant advancement in extending large language models from pure language 
tasks to 3D visual understanding and embodied action, demonstrating promising performance across navigation, 
manipulation, and dialogue tasks in simulated 3D environments.

2. Unified Multimodal Tokenization: It unifies diverse modalities : language, 2D vision, 3D point clouds, and actions into a 
common token space, enabling a consistent and scalable way to learn from rich embodied data.

3. Joint Learning Benefits: The framework shows that joint training on 3D vision-language tasks and embodied control tasks 
can boost performance across both, highlighting the synergy between perception and action.

4. Efficient Fine-tuning: By freezing the LLM and 3D encoder and only fine-tuning the image encoder and task-specific layers 
(~142M parameters), LEO achieves scalability while maintaining computational efficiency.
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Fallbacks 

1. Limited Generalization to Novel Scenes: Despite its performance on known datasets, LEO struggles with 
scene generalization, indicating that it may overfit to training environments and lack robust domain 
transfer.

2. Action Execution Gap: There remains a performance gap between visual-linguistic understanding and 
physical action execution, pointing to challenges in grounding high-level reasoning into low-level control.

3. Safety and Alignment Unaddressed: While LEO takes steps toward embodiment, it currently lacks robust 
mechanisms for safety, alignment, and interpretability, which are critical in real-world applications of 
embodied AI.
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Broader Thoughts 

1. Scaling 3D VL Data: Expand training datasets to include more diverse and complex 3D scenes, possibly incorporating 
synthetic and real-world scans, to improve robustness and generalization.

2. Tighter Perception-Action Coupling: Investigate architectures and learning paradigms that tightly couple 3D vision 
understanding with action generation, reducing latency and increasing task fidelity.

3. Continual and Lifelong Learning: Enable LEO to adapt over time to new tasks and environments without catastrophic 
forgetting, essential for deployment in dynamic real-world settings.

4. Safety and Alignment Research: Introduce formal mechanisms for ethical reasoning, value alignment, and safe 
exploration, especially as models are scaled up and deployed in embodied agents.

5. Unified Scaling Laws: Further explore how scaling model size and data affects multimodal performance, aiming for 
principled guidelines for building stronger embodied generalists.
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TEMPLATE 
NOTES

This template is part of the NYU Templates collection. 
Refer to our Usage Guidelines for help topics and quick 

tips on how to use this template.

Download the Grackle Slides add-on to automatically run 
accessibility checks on all aspects of your document and 

get advice on how to make things better.

https://www.nyu.edu/employees/resources-and-services/media-and-communications/nyu-brand-guidelines/creating-messaging-and-visual-assets/templates.html
https://drive.google.com/drive/folders/1fqEj3C01dO5TuHCjKlPpOaJd_SK9G-6j?usp=sharing
https://gsuite.google.com/marketplace/app/grackle_slides/273764076887


Leveraging Cognitive 
Science for Better Agent 
Design
Presenter: Solim LeGris



FU
TU

RE
AG

EN
T 

DE
SI

GN
CA

SE
 

ST
UD

IE
S

FR
AM
EW

OR
K

BA
CK

GR
OU
ND

IN
TR

O

2Agenda

INTRO
BACKGROUND

FRAMEWORK
CASE STUDIES

AGENT DESIGN
FUTURE

02

01

03

04

05

06



3The rise of language agents
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LLMs are powerful but have limitations: knowledge, reasoning, etc.
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Language agents: systems using LLMs to interact with the world



5The rise of language agents
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❖ Agents overcome LLM limits (grounding) 
and traditional agent limits 
(generalization via LLM priors).

❖ Direct selection or generation of actions 
is limited

❖ Need structures that integrate 
reasoning, long-term memory and 
planning with LLM



6A novel framework
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❖ Rapid development leads to custom terminology and architectures (e.g., "tool 
use", "grounding").

❖ Difficult to compare agents, understand evolution, or build new agents 
systematically.

❖ Need a conceptual framework to organize efforts.



Production systems and 
control flow
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❖ Production systems (Newell & Simon, 1972):
➢ Rules (precondition → action) applied iteratively. 
➢ Originated for string manipulation. 
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❖ Production systems were popularized in AI for understanding human problem 
solving (Newell, 1967; Newell and Simon, 1972)

Production systems and 
control flow

Adams et al., 2012; Sun, 2004; Newell, 1980; 1992; Anderson and Lebiere, 2003



9Cognitive architectures
Blueprints for intelligence, combining production systems with modules for memory, 
perception, decision-making, learning.

SOAR (Laird et al., 1987; 2022)
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❖ Formally: 
➢

❖ LLMs as production systems: LLMs define a probabilistic distribution over text 
continuations (string changes/additions).

Historical analogy: production 
systems



11

FU
TU

RE
AG

EN
T 

DE
SI

GN
CA

SE
 

ST
UD

IE
S

FR
AM
EW

OR
K

BA
CK

GR
OU
ND

IN
TR

O

❖ Prompt engineering as control flow: manipulating the input prompt (string) 
biases the LLM's production selection towards desired outputs.
➢ Simple concatenation, RAG, chain-of-thought, etc., structure the 

"algorithm".

Historical analogy: control flow 
& prompting



12CoALA framework

❖ A conceptual framework to characterize 
and design language agents using LLMs 
as a core component within a cognitive 
architecture.

❖ Organizes agents along three 
dimensions:
➢ Memory (information storage)
➢ Action space (internal & external)
➢ Decision-making (procedure)
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13CoALA Component: Memory 
Modules
❖ Working memory: Active, readily 

available info for the current decision 
cycle (inputs, goals, retrieved 
knowledge). Persists across LLM calls.
➢ Perceptual inputs, information 

carried over, etc
➢ More general than context
➢
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14CoALA Component: Memory 
Modules
❖ Long-Term memory

➢ Episodic: Past experiences, 
trajectories.

➢ Semantic: Facts about the 
world/self (knowledge).

➢ Procedural: How-to knowledge 
(LLM weights, agent's code/skills).

FU
TU

RE
AG

EN
T 

DE
SI

GN
CA

SE
 

ST
UD

IE
S

FR
AM
EW

OR
K

BA
CK

GR
OU
ND

IN
TR

O



15CoALA Component: Action 
Space

❖ Actions modify the agent's state or the environment.
❖ External Actions: Interact with the outside world.
❖ Internal Actions (Memory Access):
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16Grounding actions

❖ Connects the agent to the 
external world.

❖ Procedures execute external 
actions & process feedback into 
working memory (often as text).

❖ Examples: Robot commands, 
sending messages, navigating 
websites, API calls, etc

❖ Vision-Language Models (VLMs) 
can help translate perception to 
text.
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17Internal (Memory Ops)

❖ Retrieval: Read relevant info from LTM 
(Episodic, Semantic, Procedural) into 
WM to support 
reasoning/decision-making.
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18Internal (Memory Ops)

❖ Reasoning: Process working memory 
contents (e.g., summarize, reflect, plan 
steps) using the LLM. Writes back to 
working memory.
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19Internal (Memory Ops)

❖ Learning actions: Write information to 
LTM (new experiences, facts, 
skills/code).
➢ Episode storage
➢ Facts storage
➢ Direct weight updates
➢ Procedure / agent code 

updating
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20Decision Making

❖ The "main loop" selecting which action 
(Grounding or Learning) to execute.

❖ Decision Cycle:
a. Planning Stage: Use reasoning & retrieval 

actions to propose, evaluate, and select 
candidate actions. Can be simple (single 
LLM call) or complex (tree search, 
simulation).

b. Execution Stage: Execute the chosen 
Grounding/Learning action procedure.

c. Observe feedback, update working 
memory, loop.
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21Applying CoALA: Case Studies
❖ CoALA can characterize diverse existing agents.
❖ Helps understand their mechanisms, similarities, and differences structurally.
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22Case Study: ReAct
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(Yao et al., 2022)



23Case Study: ReAct
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❖ Memory: WM only (implicit via LLM 
context).

❖ Grounding: Digital (Web APIs, Text 
Games).

❖ Internal Actions: Reasoning (to 
analyze, plan). No Retrieval/Learning.

❖ Decision cycle: Reason (Thought) → 
Propose Action → Execute Action → 
Observe.

❖ Key Idea: Integrating reasoning and 
acting within a loop.

(Yao et al., 2022)



24Case Study: Voyager 
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(Wang et al., 2023)

https://docs.google.com/file/d/1jHDS9fHAwZgYkdoUCw9bd0sOoPApp_U8/preview


25Case Study: Voyager 
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❖ Memory: Working + Procedural LTM 
(Skill library).

❖ Grounding: Digital (Minecraft API).
❖ Internal Actions: Reasoning, Retrieval 

(skills), Learning (add new skills).
❖ Decision-cycle: Propose task → 

Retrieve/Generate code (skill) → 
Execute → Reason on feedback → 
Learn (if successful) or Refine.

❖ Key Idea:  Lifelong learning by 
building a procedural memory (code 
library).

(Wang et al., 2023)



26Case Study: Generative Agents

❖ Memory: Working + Episodic LTM (event 
stream) + Semantic LTM (reflections).

❖ Grounding: Digital (Sandbox Game) + 
Agent Dialogue.

❖ Internal Actions: Reasoning (reflect, 
plan), retrieval (events, reflections), 
learning (store events, reflections).

❖ Decision-Making: Retrieve → Reason 
(Plan daily schedule) → Execute actions 
→ Reason (update plan based on 
observations).

❖ Key Idea: Simulating believable human 
behavior via rich memory & reflection.

(Park et al., 2023)
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27Case Study: Tree of thoughts
(Yao et al., 2023)
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28Modular Agent Design

❖ Think beyond monoliths: 
➢ Structure agents using modules (Memory, Actions, Decision cycle).

❖ Benefits:
➢ Conceptual clarity, easier comparison 
➢ Code reuse, testing, maintenance 
➢ Standardized abstractions (like MDPs and Gym envs for RL).

❖ LLMs vs Code: Use code for stable algorithms (e.g., search) complementing 
LLM flexibility.
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29Beyond Simple 
Reasoning/Planning

FU
TU

RE
AG

EN
T 

DE
SI

GN
CA

SE
 

ST
UD

IE
S

FR
AM
EW

OR
K

BA
CK

GR
OU
ND

IN
TR

O

❖ Structured reasoning: Move beyond basic prompt engineering to structured 
updates of working memory (e.g., LangChain, Guidance).

❖ LTM: Leverage writable LTM for lifelong learning (not just retrieval augmentation). 
Combine human knowledge + agent experience.

❖ Learning: Explore diverse learning actions beyond fine-tuning (storing 
experiences/facts, generating code/skills, meta-learning).

❖ Decision Making: Move towards more deliberate planning (proposal, evaluation, 
selection) using LLMs.



30Future Directions & Open 
Questions

❖ LLMs vs VLMs: Language-only vs integrated multimodal reasoning?
❖ Learning vs Acting: How to autonomously decide when and what to learn?
❖ Advanced decision making: Scaling deliberative planning, metareasoning (value 

of computation), calibration, alignment.
❖ Co-evolution: How will agent design and LLM capabilities influence each other?

➢ Reasoning models are already a proof of agent design influencing LLM 
capabilities
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31 Conclusion
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❖ Language agents are evolving rapidly, incorporating complex internal processes.
❖ CoALA provides a framework inspired by cognitive science to:

➢ Organize existing work.
➢ Guide the design of new, more capable agents.
➢ Structure thinking around Memory, Actions, and decision making.
➢ Offers actionable insights for building modular, structured, and more 

intelligent agents.



32Q&A
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Thank YouThank You!
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