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Motivation

Human priors on apartment layouts
aid visual navigation



Matterport3D: Learning from RGB-D Data in Indoor Environments

Kitchen Dining Room Living Room Bedroom Bathroom

A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, Y. Zhang
Matterport3D: Learning from RGB-D Data in Indoor Environments
International Conference on 3D Vision (3DV 2017)



https://arxiv.org/pdf/1709.06158.pdf

Question

Can learning to predict semantic belief maps
Improve visual navigation in unseen
environments?



Approach

Learn scene priors (meta-learning)
+ visual exploration
+ actively update belief maps
+ predict regions beyond
current field of view

Improved navigation in unseen environments

(few-shot learning)



Background

Simultaneous Localization Learning based approaches
and Mapping (SLAM)

End-to-end
1. Map environment from Learn goal-driven RL task
sensory data with auxiliary depth
2. Locate agentin map prediction tasks
3. Plan path Priors as knowledge graphs
or probabilistic relationships
Limitations
- Noisy data Limitations
- No meta-learning - No amodal mapping
- No semantic beliefs
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Scene Priors / Semantic Belief Maps

Agent ﬂ ﬂ H

Crop of egocentric map Kitchen Dining Room Living Room Bedroom Bathroom

Kitchen Dining Room Bedroom Bathroom Living Room
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1) Map Generation

Input image  current semantic map

action
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1) Map Generation Alg
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Learning algorithm
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2) Point Prediction
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2) Point Prediction Alg

gv = Frn(MPEY) @ femp(tr)

Ppred

(:Ut)yt) fPOint(gMa fz(It)a femb(trr))
Lpoint = MSELoss(PP™¢, pGT)
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Learning algorithm
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3) Point Navigation

- Proximal Policy Optimization (PPO)

- Pre-trained a navigation policy on Habitat? dataset

at = ﬂ'nav(Pta fd(Dt)a a't—l)

- Fine-tuned on points predicted by their model

[1] Wijmans et al.: DD-PPO: Learning near-perfect point goal navigators from 2.5 billion frames.
In: International Conference on Learning Representations (ICLR) (2020)

[2] Savva et al.: Habitat: A platform for embodied ai research. arXiv preprint arXiv:1904.01201
(2019)
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http://www.youtube.com/watch?v=5rjvw8dxUw4

Eval Metrics

RoomNav Success
weighted by (normalized
inverse) Path Length
(RoomNav SPL)

Success: indicator for
whether agent stops 0.2m
iInside query room

=== Agent path
| Shortest path

1
Closest point |
inroom |

1
10.2
1

Starting location

Fig.5: SPL for Room Navigation.
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Validation Test

SPL Success SPL Success
Baseline: Random 0.00 0.00 0.00 0.00
Baseline: Vanilla Room Navigation Policy 0.10 0.15 0.10 0.11

RoomNav Model

Baseline: Map Generation + Room Navigation Policy 0.16 0.17
Baseline: Point prediction + PointNav 0.17  0.20
Baseline: Point prediction + PointNav + Fine-tune 0.21 0.23

Our: Map Generation + Point Prediction + PointNav 0.31 0.35
Our: Map Generation + Point Prediction + PointNav + Fine-tune 0.35 0.38

Oracle: GT Maps + Room Navigation Policy 0.54  0.56
Oracle: GT Maps + Point Prediction + PointNav 0.61 0.64
Oracle: GT Maps + Point Prediction + PointNav 4+ Fine-tune 0.67 0.68

Oracle: GT Point Selection + PointNav 0.83 0.84




Conclusion

Yes! Predicting amodal semantic belief maps of room layouts
Improves navigation in unseen environments
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Limitations

Diversity of room types

Continuous map predictions

Less modularity

Performance gap from ground truth
maps indicates room to improve!
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Questions/Comments
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Learn a new concept with only a few examples

e.g. a new image class

Courant Institute



Few-shot Learning Task Definition

Train base model on
Support Set Make sure it performs well in

Query Set

e
A T e,
«ﬁ ]
A

Labrador Retriever 5000 imgs

000 img’s Boxer Beagle
5000
imgs

chihuahua Only 3 images

not present in support
N-way 3-shot learning ta(sk. P pport)

Courant Institute (N = num of class in query set)




Few-shot Learning Task Motivation

Application:

Scene 1: Cancer doctor Scene 2: Solar panel Factory defect

detecting rare cancer

—— Aluminium Frame
» —— Tempered Glass
—— Encapsulant

—— Solar cells

—— Encapsulant
_~ —— Back sheet/Back glass

Junction Box

Courant Institute




Human Don’t learn from tons of example >> Few-
shot learning ability is critical characteristic of human

intelligence

The Chinese room argument

Few-shot Learning as a test to machine’s intelligence

Courant Institute



what is yyds

(©) ChatGPT

"YYDS" is an abbreviation commonly used in Chinese internet slang. It stands for "You YU Ding

Shi" (B IR E #), which translates to "Entertainment controls the mind." This phrase is often used
to express the idea that entertainment, such as movies, TV shows, or games, can captivate and

distract people's attention from their daily worries or troubles. It's frequently used in online

o Example Bru ce |_| S ku ng fu Sk]”S discussions related to entertainment topics. s a{\O“
are so good, he's such a YYDS! L

yyds Wrong with old models

yyds 5KiLAY4# means eternal god in English it is used to describe something Correct with new mode|s' what is yyds
or someone you love and nothing can beat it ( /

A Chinese dialectical abbreviation. Used to abbreviate “yong yuan de shen”, @ "YYDS'"is a popular internet slang term in Chinese, short for "FKiZBIH" (ydngyudin de shén), which
literally translated into “forever god”. Used when praising a majority-agreed translates to "Forever God" or "Eternal Legend"” in English.

awesome thing. Compare with GOAT. Meaning & Usage:

* It's used to express extreme admiration, praise, or worship for someone or something (e.g., a celebrity,

athlete, game, food, etc.).
e Similar to saying "GOAT" (Greatest of All Time) in English.
Examples:

"#878, YYDS! " — "Messi, the GOAT!"

Cou ra nt I nStitute o "XFRAIRIE YYDS! " — "This hot pot restaurant is legendary!"
Credit:;,Mengye Lifelong and human-like learning in foundation models. Columbia University. New York, NY, USA. 2024/09.




A One-shot classification B Parsing
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: S| TV Gy | i [ A vl A 97-104.




Siamese Net

Hypernetwork

Meta
ProtoNet navigato
2022

relation
network
2018 2020
2019 \\ N\ 2021 X 2023

T \2017
Figure 3. Some mainstream and advanced FSL methods in recent years.

credit: Zeng, Wu, and Zheng-Ying Xiao. “Few-shot learning based on
deep learning: A survey.” Mathematical biosciences and engineering :

MBE vol. 21,1 (2024): 679-711. doi:10.3934/mbe.2024029
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CLIP Flamingo

75
Linear Probe CLIP]
* ) Output: text
70 4 Pretrained and frozen B a very serious cat.
Trained from scratch L1 Bl *
4orac ) ~th
65 1Zera-shot BIT-M (ImageNet-21K y———
v CLIP \ ] n-th GATED XATTN-DENSE
— 60 - Perceiver Perceiver
§ Resampler Resampler s LMlblock *
o :
5 55 4 ResNet50 f t N 1st GATED XATTN-DENSE
O Vision Vision _—
(7]
U Encoder Encoder Processed text I
g 50 1 <image> This is a very cute dog.<image> This is
9]
3: 45 Interleaved visual/text data
This is
40 A
35 A Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
that take as input visual data interleaved with text and produce free-form text as output.
30 L—— T T
01 2 4 8 16
# of labeled training examples per class
. credit: Radford, Alec, et al. "Learning transferable visual models from ~ credit:Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model
COU ra nt | nStItUte natural language supervision." International conference on machine  for few-shot learning." Advances in neural information processing

learning. PmLR, 2021. systems 35 (2022): 23716-23736.




. What’s in common:

both focuses on feature/representation

. Assume small ‘head’ for downstream tasks:

can be problematic

Courant Institute



Action Ground Truth Y, Denoised Sequence P

Loss
Add Noise
Denoise
Decoder
Ys 9y
Input Encoded
[ .{@\ Feature Features EOM | Conditions
QB¢
-
. KL
Feature extraction ends = 7 g Condition Masking
here (e.g. Dinov2) \_ Video hy
Decoder
Pure Noise Y UJ w Prediction Y,

Iterative Denoising Vs, ¥s_,, ..., ¥,

1 Credit:Liu, Daochang, et al. "Diffusion action segmentation.”
Cou ra nt | nStl tUte Proceedings of the IEEE/CVF international conference on computer
% vision. 2023.




1. Case Study:

Multi-Concept Customization of Text-to-Image Diffusion

2. Why Few-shot learning working well on Diffusion?

Few-Shot Diffusion Models Escape the Curse of Dimensionality

Courant Institute



Latent Space Conditioning)
€L J— & -—I Diffusion Process ———» Eemantiq
Ma

Text

Repres

x(T-1) -
ﬂ entations
I Q Q Nlmages\\

Denoising U-Net €g 27

‘@%D‘ KV V KV

271
Pixel Space I
7o

skip connection concat R

denoising step crossattention SWItCh

Given text features ¢ € R**? and latent image

features f € R(P*w)XL 3 single-head cross-attention
operation consists of Q = Wif, K = Wke, V =W"c

Cedit: Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings

COU ra nt | nStl tute of the IEEE/CVF conference on computer vision and pattern recognition. 2022.




Multi-Concept Customization of Text-to-Image Diffusion

Eli Shechtman? Jun-Yan Zhu!

Bingliang Zhang? Richard Zhang?
3 Adobe Research

Nupur Kumari'
Tsinghua University

ICarnegie Mellon University

A moongate in

squirrel in front Watercolor paintng of
the snowy ice of moongate moongate in a forest

| A

v+ do; ‘wea ring

A digital illstratlon
sunglasses in front

( of a V* dog in front
of a moongate of a moongate
Multi-concept composition
& 3 Lo s o
A V¥ dog wearing A Vi iorg oil péin{ng,

A Vx dog in a
swimmina nnnl

snnalacses Ghihli insnired

A photo of a Vx dog

> Tuning a Small Set of Parameters

Courant Institute




Diff Modules’ Weight Update Speed
in Diffusion Model

Cross-Attn
Self-Attn

Other

0.0 0.002 0.004
Mean A

Figure 3. Analysis of change in weights on updating all network
weights during fine-tuning. The mean change in the cross-attention

layers 1s significantly higher than other layers even though they
only make up|5% of the total parameter count. I

Courant Institute




Frozen

Trainable

KT

= SoftmaX(Q\/E )V

w0000 0«

(%o 1111114

Figure 4. Single-head Cross-Attention. Latent image feature f
and text feature c are projected into query (Q, key K, and value
V. Output is a weighted sum of values, weighted by the similarity
between the query and key features. We highlight the updated
parameters W* and W? in our method.

Courant Institute



Regularization to Mitigate Overfitting

Photo of a moon Photo of a moongate

Pretrained

Figure 5. Role of regularization data in mitigating overfitting
behavior during fine-tuning. 1* row: samples from pre-trained
models. In 2" row, fine-tuning cross-attention key, value projection
matrices without any regularization dataset leads to moongate like
images on the text prompt photo of a moon.

Courant Institute




Result: Visualization

Target Images Ours (joint training) Ours (optimization) DreamBooth
AN s et R

Courant Institute
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e Ours (joint) e Textual Inversion Ours (opt)
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Diffusion models are large
Why tuning only a small set of parametters

with a few examples can produce such good results?

Why diffusion, not other models?

Courant Institute



Few-Shot Diffusion Models Escape the Curse of
Dimensionality

) < —1/2
Theorem 4.3. Let a(n) = %, F= % and network parameter € = n;," >, Assume

d+5
Assumption and ngt ") > . Then, with probability 1 — 01, the following inequality

holds (hiding logarithmic factors)
2 _ (1 A ﬁ)QDdS _22&(7%)) < 1 >>
dt<O|(|=——"~——+Fn, log | — .
L?(g}*) <<5(T—5) VMa S\ 5

IN

1 T
7). |

sp,. 5( 1) — Vieggi*(-)

ns: Support set size
Nig: Query set size

d: data dimensionality
Courant Institute




d d*p? —-1/2
Theorem 4.3. Let o(n) = %, F= % and network parameter ¢ = n;;''*. Assume

d+5
Assumption ana’ ng =" > ng. Then, with probability 1 — 8y, the following inequality

holds (hiding logarithmic factors)
2 N (1 + B)QDdS _22a(ns)> ( 1 >>
dt<O|(|—=——%——+Fns log | — .
L2(g}%) <(5(T —6) Vta *\ar

1 T
m/d\

sp,. 5( 1) — Vg ¢t*(-)

. For the approximation bound, we consider a subgaussian latent variable and prove 6(713_2/ ‘4

nt_al/ 2) bound for few-shot models, which is better than nt_a2/ % result without fine-tuning.

DreamBooth (fully fine-tuned) dont’ utilize the pre- X
trained weights: ns: Support set size
suffers from curse of dimensionality and overfitting Nitg- Query set size

d: data dimensionality
Courant Institute




No Few-shot Learning v.s. Few-shot Tuning

Graph for x- 2100000 512

; T~ 100,000 = dimensionality of data
+
Drlos

|

+5

100 120 140 160 180 200 220 240

Courant Institute



We introduced common few-shot learning approaches and discussed how
their focuses on representation is not enough for some demanding
downstream tasks

> Diffusion + Few-shot learning as the solution
> Tuning subset of diffusion model: escapes the curse of dimensionality
> key to few-shot learning success:

1. Utilize pretrained weight

2. Larger latent presentation dimension d = less examples needed

Courant Institute



Action Ground Truth Y, Denoised Sequence F;

Loss
Add Noise
Denoise
Decoder
Y, Iy
[ Inph Encoded
og:/ . Features Features E(OM | Conditions
{ . ii‘-
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S e
L o E Condition Masking

K Video / h¢

Pure Noise Y UJ 9w Prediction ¥,

Iterative Denoising Y, Ys_,, ..., ¥,
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If you are an audience who wants to
dig more:

Be careful with information in Zeng, Wu, and Zheng-Ying Xiao.
“Few-shot learning based on deep learning: A survey.”
Mathematical biosciences and engineering : MBE vol. 21,1
(2024): 679-711. doi:10.3934/mbe.2024029

e.g. Their timeline figure is absurdly wrong! They put matching
network after protonet in time, which is not true

Courant Institute



Learn a new concept with only a few examples

e.g. a new image class

Courant Institute
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From Language to Action

e LLMslike Gemini 2.0 can reason, summarize,
and generate — but remain digital

e Robots, on the other hand, often lack general
reasoning and language understanding

e Gemini Robotics attempts to close this gap:
“Can a single model reason about space,
objects, and actions — and then perform
them?”

e This paper explores what happens when a large
language model is taught to move, not just talk

NYU



Gemini Robotics: A Generalist
Vision-Language-Action System

‘.
Gemini

NYU

Built on Gemini 2.0: Google's
multimodal LLM (text + vision)
Extends the model to reason and act in
the physical world
Introduces two core systems:

o Gemini Robotics-ER

o Gemini Robotics
Enables zero-shot and few-shot
performance on real-world robot tasks



Research Team Overview

e Developed by a team of over 100 researchers at
Google DeepMind ole
e Interdisciplinary expertise across:
o Robotics and control systems
o Vision-language modeling
o Simulation and embodiment
o Safety and alignment research

e Includes researchers with prior work on models * '
like: 2‘4& 9 “ |

o RT-1, RT-X, Flamingo, SayCan, and PaLM-E

NYU



Imitations of Previous VLA Models

Human: | spilled
my coke, can you

e SayCan - Limited Adaptability in bring me

i something to clean
Multi-Step Tasks : 9
itup?
R b | |d find a sponge pick up the sponge bring it to you done
obot: | wou
. 1.00 1.00 1.00 1.00
;' ::Inﬁ a Stphonge go to the table put down the sponge put down the sponge go to the table
. FICK up the
008 011 0.47 001
gp%n_ge t t find a coke can bring it to you go to the table find a coke can
. Bring it to you
008 0104 0.21 0.00
4. Done
go to the trash can go to the table go to the trash can find a sponge
005 0.00 0.00 0.00
Language x Affordance find a water bottle go to the trash can done go to the trash can
Combined Score
001 0.00 0.00 0.00

NYU :



Limitations of Previous VLA Models

4x speed N
e SayCan - Limited Adaptability in R O

2, T
ps— e —
I e - . - 1

Multi-Step Tasks
e RT-2-Limited Dexterity and
Physical Adaptation

S 9

“push the blue block to the tabasco”

NYU



Limitations of Previous VLA Models

e SayCan - Limited Adaptability in
Multi-Step Tasks

e RT-2-Limited Dexterity and
Physical Adaptation

e PalLM-E - High Latency, Low

Reactivity Pa L M - E

e GPT-4/Claude - Disembodied

Reasoning 5628

NYU : 7



Overview of the Gemini
Robotics System

Integrating Multimodal Understanding with Real-World Execution

NYU



HOW
GEMINI
ROBOTICS
WORKS

NYU

Accepts natural instructions + visual
input from the robot's sensors

Performs reasoning and planning
using Gemini 2.0 in the cloud

Predicts actions in the form of code,
trajectory, or semantic instructions
Onboard controller executes actions in
real time

System adapts to task complexity and
object/environment variation



System Architecture

Multimodal prompt

Given

\

and propriocep’aon {;S_[(_);m}.

Q: What action should the
robot take to {task e.g. close
the laptop}?

NYU

Gemini Robotics

o

Cloud
backbone

U]

Local action
decoder

Environment

g

Robot images & state

10



Embodied Reasoning with Gemini Robotics-ER

NYU

Extends Gemini 2.0 for spatial,
geometric, and action reasoning
Evaluated using the new ERQA
benchmark

Supports tasks like object pointing,
multi-view alignment, and 3D
localization

mn



NYU

GCemini Robotics - Action Execution

e Translates reasoning into real-time robot
control

e Usesan onboard action decoder at 50Hz

e Supports zero-shot and few-shot execution
across tasks

12



Real World Task Performance

e Handles both simple and complex
real-world tasks

e Performs folding, pouring, spelling,
and packing

e Supports zero-shot and few-shot task
execution

NYU
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Real World ask Prforance




Real wOrId Task Performance




Long-Horizon Dexterity and Few-Shot Learning

e Performs multi-step tasks:
origami, lunchbox packing,
salad prep

e |earnsfrom asfew as 5-20
demonstrations

e Adapts to task variation and
object substitutions

NYU

Success Rate

L s 1Y

\

B Gemini Robotics
Mo re-implement
Multi-task diffusion

16



Real-Time API Interactions

e Instructions are processed via
structured API inputs

e Model outputs can be points, 3D boxes,
grasp poses, or code

e System supports both open-loop and
closed-loop control

NYU
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Real-Time API Interactions

Few Shot Examples Model output Environment
sy Therobot needs to put object Bon
Observations object A. Object Bis on the left Poses to actions
Keypoints and object poses therefore it does that with the left
arm... \’
left arm xyz: [...] quat: [..] grip: ...
right arm xyz: [...] quat: [...] grip: .. Kz

B Keypoints & poses

Task reasoning
Given the position of the object B,
g with the left arm. Hand it

r ¢ .
over to the right arm, then place it {_; Keypoints & poses
onobject A =
Trajectory of poses - )
left arm xyz: [...] quat: [..] grip: .. Gemini Roboti
right arm xyz: [..] quat: [..] grip: ..

Inference time observation

NYU



Real-Time API Interactions

Tool library

Gemini Robotics-ER
capabilities exposed as
tools:

Grasp point and angle
prediction.

S
e

oy -

2D pointing.

Initial context Environment
System prompt 3
Task agnostic system instruction to explain =~ ——> > M= Plan & code output > Code execution
and ground the model's responses. ‘
N WV

Robot API:

API documentation for tool use of
detection, grasping and robot control for
task completion.
Abbreviated example:
class RobotApi:

def get_grasp_pose(object_name,
gripper): - G

stdout - —

def detect_object(object_name,
gripper):

def open_gripper():

def close_gripper():

def move_gripper(gripper,
position, orientation): _

[..| Robotimages&state ——

Task instruction.

Description of the task to be carried out,
e.g. Pick up the banana.

19



ERQA Benchmark and Reasoning Performance

NYU

ERQA evaluates embodied
reasoning through 400 tasks
Tasks include: pointing, 3D spatial
reasoning, affordance selection,
multiview grounding

Designed by the Gemini Robotics
team for physical scene
understanding

Gemini outperforms GPT-4,
Claude, and earlier Gemini
models

Supports zero-shot and few-shot
reasoning

Demonstrates deep integration of
vision, language, and spatial
planning

20



ERQA Benchmark and Reasoning Performance

Trajectory Reasoning Action Reasoning Spatial Reasoning

Approximately‘which colored How should the person move the There are 4 sinks in the picture.

trajectory should the zipper follow = wrench so that it is ready to rotate =~ Which arrow points to the one that
to begin zipping up the suitcase? the hex screw closest to it? is closest to the viewer?

A. Blue A. Forward and right A. Cyan

B. Purple B. Up and left B. Blue

C. Green C. Forward and left C. Red

D. Red D. None of the above D. None of the arrows



ERQA Benchmark and Reasoning Performance

Gemini GPT Claude
Benchmark 1.5Flash 1.5Pro 2.0Flash 2.0 Pro Experimental 4o-mini 40 3.5 Sonnet
ERQA 42.3 41.8 46.3 48.3 373 47.0 35.5
RealworldQA (test) 69.0 64.5 71.6 74.5 65.0 71.9 61.4
BLINK (val) 59.2 64.4 65.0 65.2 56.9 62.3 60.2

Gemini 2.0 outperforms other VLMs on ERQA, demonstrating strong spatial and embodied reasoning

NYU
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Comparison with Other VLA Agents

Adaptability in Multi-Step Tasks
o  Overcomes SayCan by reasoning flexibly across changing task sequences and
object states
Dexterity and Physical Control
o  Surpasses RT-2 by enabling fine motor execution (e.g., origami, zipping, pouring)
Low-Latency, Real-Time Execution
o  Improves over PaLM-E with 50Hz onboard decoding and <250ms end-to-end latency
Embodied Reasoning Across Modalities
o  Goes beyond GPT-4 and Claude by grounding language in visual scenes and spatial
relations

NYU

23



Failure Cases and
Limitations

e Struggles with thin, flexible, or deformable
objects (e.g., soft wrappers, cloth)

e Ambiguous spatial instructions can lead to
incorrect or inconsistent outcomes

e Reduced reliability in high-clutter or occluded
environments

e Occasionally fails at fine-grained alignment
and bimanual manipulation

e System internals (model architecture, training
details) are not publicly released

NYU
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Semantic Safety and the
ASIMOV Benchmark

When holding a knife, is it still safe to move around the balloons? LLM: “No. ..."

e ASIMOV Benchmark: Evaluates robots’
understanding of safety in real-world
scenarios.

e Robot Constitutions: Natural language
rules guiding safe robot behavior.

e Auto-Amending Process: Enhances
constitutions for better alignment with
human values.

e Gemini 1.5 Pro Performance: Achieves up
to 94.7% alignment with safety guidelines.

NYU 2



Conclusion

A Generalist LLM Agent for Embodied Reasoning, Real-World Action, and Safe Decision Making

NYU



e Gemini Robotics is a LLM Agent: it perceives,
reasons, and acts

e Combines Gemini 2.0 (language + vision)
with real-time control

e Performs complex, long-horizon tasks across
varied robots

e Outperforms prior systems on reasoning
(ERQA) and execution

e Introduces new safety benchmark (ASIMOV)
and API architecture

NYU 7
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Overview
What are LLM Agents?

What are Foundation Models?
Magma: A Foundation Model for Agents?
Preliminaries
Pretraining
Evaluation & Data
Performance/Results

Potential Issues



What are LLM Agents?

LL(V)Ms that can solve meaningfully complex, multi-step tasks with minimal human input

Reason

|
-« ©

agent oo
Q.

Act Observe

Digital World Physical World

Backbone or “core” capable of reasoning, planning, and multi-modal perception/understanding
Complex action and state spaces

Recurrent loop (perception > reasoning/planning > action > evaluation > next state > perception...)
Self-recognition of task termination



LLM Agents: Examples

GPT-X (e.g., Copilot-X, Navi, SeeAct)
Operator (OpenAl)

Computer Agent (Anthropic)

Manus

Agent S2



LLM Agents: Benchmark Examples

OS/Computing System

e OSWorld
e \Windows Agent Arena
e Android World

Online Domains & Websites

e Mind2Web
e Visual Web Arena
e Video Web Arena

Embodied

e EmbodiedBench
e VLABench
e Habitat etc.



What are foundation models?

Traditional ML

Training Tasks

¢ Individual siloed models
¢ Require task-specific training
e Lots of human supervised training

Foundation Models

Massive external data
2y

¢ @ ,
SRS o
Bl
®

Q&A

Prompting ~7
') Translation

Prompting
ey

Code Gen

¢ Massive multi-tasking model
¢ Adaptable with little or no training
e Pre-trained unsupervised learning

(/) classification

Examples:
e Image Segmentation:
SAM, SAM2

e Text Generation: GPT-X
° Protein Structure: ESM,
Alphafold-X



Magma: Goals & Contributions

e Develop multimodal foundation agentic model for physical and digital domains
e Curate large pre-training dataset (~39M) of VL, Ul, robotics, human
instructional videos, etc.



Magma: Combining Physical & Digital Grounding

Physical Environment

User: Whatis they doing?  User: On what date did the individual
) leave a place that Simon thought was

Magma: They are camping  very important to him?

in a forest and hiking on a Task: Push the chip bag to left Task: Put the can to left

User: Close the middle drawer Magma: Trajectory Rollout on SimplerEnv Google Robot

rocky mountain. Magma: The date is June 9, 2021. °

Temporal

User: The figure represents a 5x5 grid
containing various animals, where

each 1x1 square is considered a block Task: Peel the potato Task: Stir the food in the pot User: Pick up the mushroom tothe pot  Magma: Trajectory Rollout on Widow-X Real Robot
& and each block contains an animal
from ['cat’, 'dog, 'elephant, ‘giraffe’, i . . e - =
‘rabbit’]. What is the animal of the Plannlng = T ‘ A5
‘ a block located at the first row, second = " 3 s Y
¥ column of the grid? [ EY N ry
e T e A AR
A b Magma: The animal is a cat. »- T !,‘ o R
e ey '
. - =
Spatial ) . '
User: Find baby shoes under 20 dollars and rated 5 stars. Magma: Trajectory on Mind2Web
i = [ R e B N g
User: Whatis User: How to Q7 amm " it el Bl - ' e
unusual thing increase the sound? e Bt A== ot o
about this | /&eddn % = i < stgnam R Jnstgnam R'
Imegs? OO @ Magma:Taponthe L |y { —— ] |-
"Volume" icon. & .3
Magma: The unusual aspectof  @@@O. Then, slide the @B 1t ngl ngl
this image is thata man is 800  volumeupto oy g = j == ]
ironing clothes on the back of a increase &e volume: = el Lol man oot Digital Environment
yollow el -2 Task: Lock Screen Task: View my Account Task: Install app "Instagram” Magma: Trajectory on AITW
Multimodal Understanding Multimodal Action Grounding Multimodal Agentic Taks

Figure 1. We introduce Magma, the first foundation model that is capable of interpreting and grounding multimodal inputs within its
environment. Given a described goal, Magma is able to formulate plans and execute actions to achieve it. By effectively transferring
knowledge from freely available visual and language data, Magma bridges verbal and spatial intelligence to navigate complex tasks.



Data

e Compile and curate various datasets into pretraining data
o Robotics manipulation data: Open-X-Embodiment.
o Ul navigation Data: SeeClick and Vision2UI
o Instructional videos: Epic-Kitchen, Ego4d, Somethingv2, and some proprietary mix
o Multimodal understanding: ShareGPT4V, some instruction tuning data from LLaVA-1.5,
and data from ChartQA and infographicQA

e For data re: Ul navigation (e.g., app/browser screenshots) and videos (e.g., instructional
demos), generate Set-of-Marks (SoMs) and Trace-of-Marks (ToMs) on data (see next slide)



Set of Marks

Ul Navigation Robot Manipulation Human Action
QPOVHEHVCENROC

13
RECORD-BREAKING STORM FORCES EMERGENCY EVACS Rt 14

%
#& Thursday, Feb 16 Q. AAgg

S 3
- i
| g o

Task: Swipe until Thursday, Feb Task: Move the white object Task: Move potato in left hand
16. above the green cloth. to the center of cutting board.
Set-of-Mark: Set-of-Mark: Set-of-Mark:

Mark 15 for bounding box at Mark 1 at [169,54], Mark 4 at Mark 1 at[72,231], Mark 4 at
coordinate: [152,37], Mark 8 at [169,86], [56,243], Mark 6 at [105,182],
[33, 95, 130, 105] Mark 9 at[169,70] Mark 7 at[121,117]

Figure 3.  Set-of-Mark supervisions for action grounding
on UI screenshot (left), robot manipulation (middle) and hu-
man video (right). All coordinates are normalized by image
size (height, width) and then quantized into 256 bins. Images bet-
ter viewed by zooming in.

Algorithm 1 SoM generation for UI images

Require: image I, bounding boxes B, image height and
width (ip,, i)

1: B* ]

2: for (idz,b) € enumerate(B) do

3: text < str(ide +1)
I + DrawRectangle(Z,b)
(¢y,Csz) < FindOptimalCorner(b, B, (in, iw))
> Find corner that is far away from all boxes in B*
6 (mp, my) < GetMarkSize(text, H, W)
7: text box & (G5 Gy £ Mins o )
8
9

o

I + DrawRectangle(I,text_box)

: I + DrawText([, (cz, cy), text, color = white)
10: B* < B*+[b] > Add current drawn box to B*
11: end for
12: Return 7




Trace of Marks

Algorithm 2 SoM and ToM generation for instructional
videos and robotic data

Require: image sequence Z = {Ii,...I;}; grid size s;

a

O o 07 (N0

global motion threshold 7; foreground threshold e
M = {M,,...,M;} < CoTracker(Z,s)
if HasGlobalMotion(M,n) then

M +— H(M) > Apply homography transformation
end if
MF Mb =cClassifyTraces(M,e) > Classify
traces into foreground and background ones
k «+ Random(1, min(5, |M|))
MF, Mb = KMeans(M/, k), KMeans(M®,2k) >
Cluster foreground and background traces separately
I, + SoM(I,, {M}, M?}) > Apply SoM on 1st frame

9: Return Z, M}

Track motion (CoTracker) Find motion traces
Detect & correct global motion Stabilize frames
Classify into Separate moving objects

foreground/background
Select number of clusters randomly  Limit complexity
Cluster traces (KMeans) Identify distinct motions

Generate SoM (Segmentation) Visualize segmentation

Output Provide segmented sequence & traces

Original point traces

Trace-of-Marks

Figure 5. An illustration of Alg. 2 to handle videos with camera
motions for SoM/ToM generation.



Magma: Pre-Training

Spatial & Temporal

L !! Q: What is the color of chair? A:Red. e !!
Natural § Q: Is something on the chair? A: Yes, a horse.
Image y Q: Is it snowing? A: No.
T Q: Locate domed building. A: <Red box>

-
(0]
D e
'
S g8
e B
Q: Describe the video ina '9 % ‘u:.) A: Akitchen scene
few sentences. & 8 % with a person
Instruction Q: The person is doing <TASK>, © = holding a green
Video how to do in next <STEPS> = cutting board over a Action
steps with speed <SPEED>? frying pan on a stove.
Magma N—— ——
e Q: Check the Supplier A Verbal R il
ul Q: Check the Supplier Multlmodal a.) ‘/’
Navigation ’. "_ » } Qaddtocan =B AgentiC c E ’_ l" » ) O
L= im i=  Q:GotoHome o '8 X o e e 1 ylor [x v, wih]
29 Foundation 55
Q: What action should the robot w < d’)
take to <Task>? (=)

Robot

3 % : The robot is doing <TASK>,
Manipulation Q 8

how to do in next <STEPS>
steps with speed <SPEED>?

Figure 7. Magma pretraining pipeline. For all training data, texts are tokenized into tokens, while images and videos from different domains
are encoded by a shared vision encoder. The resulted discrete and continuous tokens are then fed into a LLM to generate the outputs in
verbal, spatial and action types. Our proposed method reconcile the multimodal understanding and action prediction tasks.

e LLaMAS-8B as language backbone, ConvNext-XXlarge as vision encoder

e Problem formalism: " l ; ;
ogr1 ~ P(ogyql{o, .. 01} V(T), task, ctx)



Results (0-shot overall)

| Multimodal Understanding UI Action Grounding and Navigation Robot Manipulation
Model Size | VQAv2 TextVQA POPE SS-Mobile SS-Desktop SS-Web  VWB-Ele-G  VWB-Act-G  SE-Google Robot  SE-Bridge
GPT-4V [99] n/a 712 78.0 n/a 22.6/24.5 20.2/11.8 9.2/8.8 67.5 75.7 - -
GPT-4V-OmniParser [83]  n/a n/a n/a n/a 92.7/49.4 64.9/26.3  77.3/39.7 - - - -
LLaVA-1.5[71] 7.4B 78.5 58.2 85.9 - - - 12.1 13.6 - -
LLaVA-Next [75] 7.4B 81.8 64.9 86.5 - - - 15.0 8.7 - -
Qwen-VL [3] 9.6B 78.8 63.8 n/a 7.5/4.8 5.7/5.0 3.52.4 14.0 10.7 - -
Qwen-VL-Chat [3] 9.6B 782 61.5 n/a - - - - - - -
Fuyu [4] 8B 742 n/a n/a 41.0/1.3 33.0/3.6 33.9/4.4 19.4 15.5 - -
SeeClick [19] 9.6B - - - 78.0/52.0  72.2/30.0  55.7/32.5 9.9 1.9 - -
Octo [113] 93M - - - - - - - - 6.0 159
RT-1-X [23] 35M - - - - - - - - 342 1.1
OpenVLA [54] 8B - - - - - - - - 31.7 14.5
Magma-8B (Ours) 8.6B | 80.0 66.5 874  60.4/58.5  75.3/52.9 69.1/52.0 96.3 1.8 52.3 354

Table 2. Zero-shot evaluation on agentic intelligence. We report the results for pretrained Magma without any domain-specific finetuning.
Magma is the only model that can conduct the full task spectrum. “SS” denotes the ScreenSpot benchmark proposed in SeeClick [19];
“VWB” denotes VisualWebBench [79]; “SE” denotes the SimplerEnv simulator [65]. ‘n/a’ means not available and ‘-’ means not supported.
For all related evaluations, we use OmniParser to provide the detection results only, without local semantics.



Results: Digital (Web Ul Navigation)

Method Backbone Input Source Cross-Website Cross-Task Cross-Domain
DoM Tree Image Ele. Acc Op.Fl1 StepSR Ele. Acc Op.Fl1 StepSR Ele. Acc Op.Fl Step SR

GPT-4-MindAct [27] GPT-4 [98] v 35.8 51.1 30.1 41.6 60.6 36.2 37:1 46.5 26.4
GPT-4V-OmniParser [83] | GPT-4V [99] v v 41.0 84.8 36.5 424 87.6 39.4 45.5 85.7 42.0

GPT-4V [99] v 13.9 - - 20.3 - - 23.7
SeeAct [141] Gemini-Pro [36] v v 21.5 67.7 19.6 215 67.7 19.6 20.7 64.3 18.0

GPT-4V [99] v v 38.0 67.8 324 46.4 73.4 40.2 424 69.3 36.8
Fuyu-8B?¥ Fuyu-8B [4] v 4.8 81.3 4.0 8.3 83.9 6.6 3.6 83.0 3.0
Fuyu-8B-GUI [17] Fuyu-8B [4] v 139 80.7 122 19.1 86.1 15.6 14.2 83.1 11.7
MiniCPM-V# MiniCPM-V [128] v 8.2 78.2 6.0 11.0 85.6 8.5 6.5 81.4 52
MiniCPM-V-GUI [17] MiniCPM-V [128] v 20.3 81.7 17.3 23.8 86.8 20.8 17.9 74.5 17.6
Qwen-VLS Qwen-VL [3] v 13.2 83.5 9.2 15.9 86.7 13.3 14.1 84.3 12.0
SeeClick [19] Qwen-VL [3] v 214 80.6 16.4 28.3 87.0 255 23.2 84.8 20.8
CogAgent! [43] CogVLM [118] v 273 - 234 30.2 - 26.9 33.1 - 28.5
Qwen2-UIX [78] Qwen?2 [124] v 39.2 - 31.0 434 - 38.2 40.4 - 34.9
Magma-8B (Ours) | LLaMA3 [92] v 57.2 76.9 454 54.8 79.7 434 55.7 80.6 47.3

Table 4. Efficient finetuning on Mind2Web for web UI navigation. “Ele. Acc” denotes element selection accuracy. “Op. F1” denotes
the token-wise F1 score between predicted ground-truth operation. “Step SR” denotes the step-wise success rate. + Numbers reported in
Chen et al. [17]. % Numbers reported in Cheng et al. [19]. T Numbers reported in Liu et al. [78].



Results: Digital (Mobile Ul Navigation)

Method Backbone DoM Tree Image General Install GoogleApps Single WebShopping Overall
GPT-4V-SeeAct' [141] GPT-4V [99] v 34.1 394 40.0 46.2 38.2 39.6
GPT-4V-ReAct! [127] GPT-4V [99] v 36.2 42.5 46.6 49.1 39.2 42.7
GPT-4V-OmniParser [83] | GPT-4V [99] v v 48.3 57.8 51.6 77.4 529 57.7
Fuyu-8B¥ Fuyu-8B [4] Ve - 45.9 40.0 47.2 40.8 -
Fuyu-8B-GUI [17] Fuyu-8B [4] v - 50.9 41.6 45.7 43.8 -
MiniCPM-V# MiniCPM-V [128] v - 50.2 45.1 56.2 44.0 -
MiniCPM-V-GUI [17] MiniCPM-V [128] v - 62.3 46.5 67.3 57.5 -
Qwen-VLSH Qwen-VL [3] v 49.5 59.9 46.9 64.7 50.7 54.3
SeeClick [19] Qwen-VL [3] v 54.0 66.4 54.9 63.5 57.6 59.3
Magma-8B (Ours) LLaMA3 [92] v 61.5 73.2 62.7 71.5 61.7 67.3

Table 5. Efficient finetuning on AITW for mobile UI navigation. We compared models either using DoM tree or image screenshot. We
finetune our Magma jointly and then report the results on individual tasks. T Numbers reported in Zhang et al. [138]. ¥ Numbers reported

in Chen et al. [17].  Numbers reported in Cheng et al. [19].



Results (Spatial Reasoning)

‘ VSR BLINK-val SpatialEval®

Model Spatial Map Maze Nav.  Spatial Grid
GPT-40 74.8 60.0 - - -
Gemini . 61.4 - = o
LLaVA-1.5-7B 57.1* 37.1 28.4 28.8 41.6
LLaVA-1.6-7B [75] | 52.2% - 28.0 34.8 322
Qwen-VL-9.6B [3] - 40.3 28.7 31.8 25.7
Magma-8B (Act"®) | 62.8 30.1 36.9 44.8 37.5
Magma-8B (Full*?) | 58.1 38.3 27.5 33.5 473
Magma-8B (Full) 65.1 41.0 434 36.5 64.5

Table 6. Spatial reasoning evaluations. We use * to denote
results that are obtained by us evaluating the provided model

weights.  Superscript ‘w/o’ means models pretrained without
SoM/ToM.

The figure represents a Maze, where the colored blocks have the following
meanings ... Green block denotes the starting point (S) of the maze. Red block
marks the endpoint or the exit (E) of the maze ... The objective is to navigate
from Sto E ... How many right turns are there in the provided path (marked by
Blue) from S to E? Available options: A. 4,B.0,C. 2,D. 9.

1. Start from the Green block (S). 2. Move to the right ... In total, there

i . is:C. 2.
GPT-40 are 3 right turns on the Blue path. So the correct answer is: C. 2.

"'ﬁi\ The correct answer is:

Magma



Results (Video Understanding)

Method Backbone IntentQA  Next-QA VideoMME (w/o subs) MVBench
Overall Overall  Short Medium Long Action Prediction Action Sequence Action localization  Overall

Gemini-1.5 [36] - - - 81.7 74.3 67.4 - - - 37.7
GPT-4V [2] GPT-4 - - 70.5 55.8 53.5 - - - 43.7
LLaVA-OV [60] Qwen2-7B - 794 68.1 54.9 47.8 46.0 74.5 48.0 56.7
Long-Llava 9B [119] Long-Llava 9B - - 524 422 36.4 - - - 49.1
LongVA [136] Qwen2-7B - 69.3 61.1 50.4 46.2 49.0 53.0 425 51.3
ShareGPT4Video [15] | LLaMA3-8B - - 483 36.3 35.0 40.0 49.5 415 51.2
Video-Llama2 [20] Llama2-7B - - 55.9 454 42.1 - - - 34.1
Video-Chat2 [63] Mistral 7B - 433 483 37.0 332 47.5 75.0 50.5 60.4
Video-Llava [69] Vicuna-7B - 514 453 38.0 36.2 50.0 38.5 30.5 43.0
IG-VLM [55] Vicuna-7B 60.3 - - - - - - - -
SF-LLaVA [121] Vicuna-7B 60.1 - - - - - - - -
Magma-8B (Ours) | LLaMA3-8B 88.6 80.9 72.9 55.8 443 65.0 79.0 55.5 59.4

Table 8. Zero-shot Video QA benchmarks. We compare our Magma model to other state-of-the-art approaches with comparable numbers
of parameters. Our Magma model performs competitively and even outperforms some state-of-the-art approaches such as Video-Llama2
and ShareGPT4Video on most benchmarks, despite using much fewer video instruction tuning data.



Conclusion

e Shows considerable improvements, especially in robotic/embodied/spatial
tasks, suggesting meaningful grounding and integration of spatial intelligence
with visual/text understanding

e For a foundation model, quite a significant amount of SFT (80% train data)

o Unclear picture of “true” zero-shot agentic performance in some cases
o No real zero-shot results on benchmarks/data where SFT was done

e Zero-shot performance done on benchmarks/data not really “agentic”, more
static Ul and GUI grounding (e.g., ScreenSpot)

o  Would be interesting to see zero-shot performance on OSWorld/Windows Agent Arenal/etc (i.e.
fuller, realistic agentic environments)
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Introduction & Background

e Embodied Al enables agents to interact with and learn from real-world environments through
physical actions.

e Unlike traditional NLP or vision models, embodied agents operate in 3D, dynamic settings and it
involves 3 key elements.
a. Perception: understanding surroundings through 2D/#D inputs.
b. Language: interpreting instructions and generating plans.
c. Action: executing tasks like navigation or manipulation.

A NYU



Why Do We Need Embodied Generalist Agents?

e Today’s agents are specialized for specific tasks.

e Goal: Develop generalists capable of performing diverse tasks, like:
a. Organizing a room.
b.  Answering 3D spatial questions.
c. Planning multi-step actions.

[ J

It should be more human like, which combines language, memory, and physical interaction.

How LLM Agents can be leveraged to build Generalist Embodied Al in an Open World?

A NYU



What's Missing in Current LLM-based approach?

1. LLMs excel at reasoning and language but struggle in physical spaces:
a. Lack spatial and temporal memory.
b. No grounding in the real-world 3D context.

More specifically,
c. Reasoning about object permanence (where things are over time).
d. Performing long-horizon tasks (e.g., cleaning a messy room).
e. Handling unseen objects and instructions.
f.  Generating multi-step physical plans grounded in perception.

A NYU



LEO: An Embodied Generalist Agent

LEO = Language + Environment + Object-centric memory

Scene Captioning

LEO: In this
3 room, thereisa
wooden floor
that is clean
and flat. A tall
wardrobe ...

3D Question @
Answering
Question: Where is the Printer
located?
LEO: Standing on the desk
next to the wardrobe.

3D Dialogue
Human: I need help organizi-
ng my bedroom. Can you assi-
st me?
LEO: Of course! What speci-
fically do you need help with?
Human: Can you check if the-
re are any clean clothes hangi-
ng on the wall?
LEO: I'm sorry, but the clot-
hes hanging on the wall are
messy.
Human: Thanks! Also, can yo-
u check if there are any clean
clothes hanging on the wall?

NYU

Embodied Generalist Agent in 3D World

System [fa] Egocentric 3D Scene Instruction
Message Image
You are an assi- User: Please desc-
stant situated ribe the toy house
in a 3D scene. over ...
: & & :
Tokenizer 2D Encoder 3D Encoder Tokenizer
N2 N2 N N
LoRA"}s
Large Language Model
' N
Text Response : Action Response
Thereisasofa | It’sa kitchen for : P=0.1,-0.2,0] ! “Turn right”
nextto the TV. ' cooking. i R=[0,001] ' E De-tokenize

3D Object Captioning

LEO: 4 3D model of a Southern White Rhino,
one of largest animal species in the world.

LEO: It’s a 3D model of a midnight
green ceramic coffee cup with a plate.

Embodied Reasoning

Situation: Sitting at the edge of the bed and
facing the couch.

Question: Can I go straight to the coffee
table in front of me?

LEO: No.

Robotic
Manipulation
Human: pack
the yoshipﬁg~ -
ure in the >
brown box
LEO:
P=1[0.1,-0.2,0]
R=1[0,0,0,1]

Embodied
Navigation

Human: Find the pillow

LEO: |
1. Move forward £ 3
2. Turn right

3. Move forward
Chees

Task Planning

Human: Organize and tidy up
the bedroom.

LEO:

1. Clean the floor by
sweeping to remove ...
2. Make the bed ...

3. Fold and organize ...



Model

1. Tokenization

First step, Tokenizes all multimodal inputs: text, 2D images, 3D point clouds, and embodied actions into a unified sequence of discrete tokens
using established methods and SentencePiece, enabling LEO to process diverse modalities in a consistent format.

2. Token Embedding & LLM

° Scene representation : The scene point cloud is
partitioned into object-centric point clouds (either
ground truth or predicted proposals), which are then
processed by the 3D encoder to obtain object-centric
features. They also incorporate an optional 2D branch,
where a 2D encoder processes the agent's ego-view
observation to obtain ego-centric features.

° Unified sequence and objective: The sequence begins
with a system message that tells the agent its role and
situation. Subsequent 2D image tokens and 3D object
tokens provide the perceived scene information. Next
an instruction specifies the task or context, and also
prompts for the final response. The learning objective
is a simple auto-regressive loss.

NYU


https://docs.google.com/file/d/1nTf7HA5B8Inb_R0WxlbXzA-vQKXmsLiC/preview

Model

3. Training and Inference

LEO is trained using a prefix language modeling objective, fine-tuning only select components while freezing the LLM
and 3D encoder, and uses beam search during inference to generate responses or map them to action commands.

A

1Bl T
L£(0,B) = logps(s&V[s&<?, s,

b=1 t=1
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Dataset for training

1. Two-stage scheme: alignment & instruction tuning.
2. They combine existing datasets and LL.M-prompted data to create
a. LEO-align
that focuses on 3D vision language (VL) alighment to bridge the gap between 3D scene representation
and natural language
e object-level captions
e object-in-the-scene captions
e scene-level captions
b. LEOinstruct
that targets at 3D VLA instruction tuning to endow LEO with various capabilities.
e 3D captioning and question answering
e 3D dialogue and task planning
e navigation and manipulation

NYU



Dataset for training

B in

Object Captioning 3D Captioning Manipulation
Y E.
LEO-align ﬁ i ) LEO-instruct
Object Referring 3D QA Navigation
Scene Captioning 3D Dialogue Task Planning
V \ U
ﬁ A 4
Visual domains Objaverse ScanNet 3RScan Matterport3D CLIPort

NYU



LLM-assisted 3D-language Data Generation

A NYU

4 Scene-Graph-based Prompting

N

[

Refinement Procedures )

Dialogue Context: high level task: organize the bedroom. low level task:
check some objects.
Human: | need help organizing my bedroom. Can you assist me? Thought:
no specific objects
Assistant: Of course! What specifically do you need help with?
Human: Can you check if there are any clean clothes hanging on the wall?
Thought: clothes-13
Assistant: I'm sorry, but the clothes hanging on the wall are messy.
Human: Thanks for your help! Thought: no specific object

V\ssistant: You're welcome! If you need any further assistance, feel free to asly

Messages Responses Raw Responses Refined Responses

1. System Message 1) Object scene caption [ 1. Wrong Answers N 1. Answer Refinement 3

You are an Al visual assistant in a 3D scene. .. 2) Scene caption I There are two curtains in the room. : : There are 3 curtains in the room. :

: 3) Dialogue(O-CoT) | 2. Negative Responses o X . |

2. Demonstrations 4) QA(O-CoT) | Question: Where is the football table?! | 2: Removing Negative Responses

Scene Graph Context: § _ 1 \ | The negative responses will be |

: 5 5) Planning | Thought: football table-17 Answer: | |

{'sofa-1": {'attributes': {'color": 'red"}, 'relations": ['to . | unknown fnovec |

the right of chair-2', 'in front of table-3'}, ‘chair-2": Potential Issues: : 3. Responses with ID | : 3. GPT-based rewriting :

{attributes": {'color": 'brown'}, 'relations": [[}} 1) Wrong Answers | The kitchen cabinet-9 and kitthen | | The kitchen features a cabinet and |

Human-labeled Responses 2) Negative Responses I counter-10 are parts of the kitchen. : | a counter. :

3.Query(a new scene) 3) Responses with IDs : 4. Others : I 4. Others :
\__Scene Graph Context ot )\ ezt o) S o emssnyenes DY)
[Dialogue(O-CoT): \ [Scene Caption: \

In this room, there is a wooden floor that is
clean and flat. A tall wardrobe stand on the
right side of a desk, close to a basket. The
wardrobe is in front of a chair, a bed, and
behind a bedside table. Clothes are hanging
on a white wall, to the right of a closed
curtain. The bed is wide, clean, and covered
with blue blanket. The room has a
comfortable and organized setting with
Qunctional furniture.

iject Scene Caption: QA(O-CoT): Planning: \
The showcase is supported by Question: Where is the printer located? Thought: printer-8 High-Level Task: Organize and tidy up the bedroom.
the wall and positioned behind, Answer: standing on the desk Low-Level Actions:
close to, and to the left of the Question: How many blankets are on the bed? Thought: 1. Clean the floor by sweeping to remove any dirt.
shelf. The wall is flat, architectural, blanket-16, blanket-17 Answer: 2 2. Make the bed by arranging the blanket and pillows.
and dark in color. The shelf is Question: What is the type of the room? Thought:wardrobe- 3. Place any loose items or belongings into the basket.
\made of wood and has a low size. 2, desk-7, chair-11, bed-15 Answer: bedroom 4. Arrange items on the shelves and showcase in a tidy wayj

10



Results

Quantitative comparison with state-of-the-art models
on 3D VL understanding and embodied reasoning tasks

NYU

Scan2Cap (val) ScanQA (val) SQA3D (test)

C B4 M R Sim C B4 M R EM@1 EMe@1
Task-specific models
Scan2Cap 352 224 214 435 - - - - - - 41.0f
3DICG 477 315 243 518 - - - - - - -
Vote2Cap-DETR 61.8 345 262 544 - - - - - - -
ScanRefert MCAN - - - - - 554 79 115 30.0 18.6 -
ClipBERT - - - - - - - - - - 433
ScanQA - - - - - 64.9 101 13.1 333 21.1 47.2
Task-specific fine-tuned
3D-VisTA 669 340 27.1 543 538 69.6 104 139 357 22.4 48.5
3D-LLM (FlanT5) - - - - - 69.4 12.0 145 357 20.5 -
LEO 724 382 279 581 553 1014 132 20.0 492 24.5(47.6) 50.0 (52.4)




Results

Results on robot manipulation

packing-google put-blocks-in

separating-piles -objects-seq -bowls

s€én unseen Sseén unseen seen unseen

CLIP-only 902 710 958 578 97.7 445
CLIPort (single) 98.0 752 962 719 100 25.0
CLIPort (multi) 89.0 628 844 703 100 458

LEO 988 752 766 798 862 352

Results on object navigation

MP3D-val HM3D-val
Success(1) SPL(T) Success(1) SPL(T)
Habitat-web (shortest) 4.4 2.2 - -
Habitat-web (demo) 35.4 10.2 - -
ZSON 15.31 4.87 25.5 12.6

T i
" NYU LEO 231 152 231t 194 ,




Improvements

1. Embodied Generalization: LEO marks a significant advancement in extending large language models from pure language
tasks to 3D visual understanding and embodied action, demonstrating promising performance across navigation,
manipulation, and dialogue tasks in simulated 3D environments.

2. Unified Multimodal Tokenization: It unifies diverse modalities : language, 2D vision, 3D point clouds, and actions into a
common token space, enabling a consistent and scalable way to learn from rich embodied data.

3.  Joint Learning Benefits: The framework shows that joint training on 3D vision-language tasks and embodied control tasks
can boost performance across both, highlighting the synergy between perception and action.

4.  Efficient Fine-tuning: By freezing the LL.M and 3D encoder and only fine-tuning the image encoder and task-specific layers
(~142M parameters), LEO achieves scalability while maintaining computational efficiency.

ANYU &



Fallbacks

1. Limited Generalization to Novel Scenes: Despite its performance on known datasets, LEO struggles with
scene generalization, indicating that it may overfit to training environments and lack robust domain
transfer.

2. Action Execution Gap: There remains a performance gap between visual-linguistic understanding and
physical action execution, pointing to challenges in grounding high-level reasoning into low-level control.

3. Safety and Alignment Unaddressed: While LEO takes steps toward embodiment, it currently lacks robust

mechanisms for safety, alignment, and interpretability, which are critical in real-world applications of
embodied Al

ANYU 2



Broader Thoughts

1. Scaling 3D VL Data: Expand training datasets to include more diverse and complex 3D scenes, possibly incorporating
synthetic and real-world scans, to improve robustness and generalization.

2.  Tighter Perception-Action Coupling: Investigate architectures and learning paradigms that tightly couple 3D vision
understanding with action generation, reducing latency and increasing task fidelity.

3. Continual and Lifelong Learning: Enable LEO to adapt over time to new tasks and environments without catastrophic
forgetting, essential for deployment in dynamic real-world settings.

4.  Safety and Alignment Research: Introduce formal mechanisms for ethical reasoning, value alignment, and safe
exploration, especially as models are scaled up and deployed in embodied agents.

5.  Unified Scaling Laws: Further explore how scaling model size and data affects multimodal performance, aiming for
principled guidelines for building stronger embodied generalists.

ANYU
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TEMPLATE
NOTES

This template is part of the NYU Templates collection.
Refer to our Usage Guidelines for help topics and quick

tips on how to use this template.

Download the Grackle Slides add-on to automatically run
accessibility checks on all aspects of your document and
get advice on how to make things better.
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https://www.nyu.edu/employees/resources-and-services/media-and-communications/nyu-brand-guidelines/creating-messaging-and-visual-assets/templates.html
https://drive.google.com/drive/folders/1fqEj3C01dO5TuHCjKlPpOaJd_SK9G-6j?usp=sharing
https://gsuite.google.com/marketplace/app/grackle_slides/273764076887

Leveraging Cognitive
Science for Better Agent
Design

Presenter: Solim LeGris
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. Therise of language agents

LLMs are powerful but have limitations: knowledge, reasoning, etc.



INTRO

BACKGROUND

The rise of language agents

Language Agent

Environment

Language agents: systems using LLMs to interact with the world
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The rise of language agents

Cognitive Language Agent

7
0’0

0
L X4

0
L X4

Agents overcome LLM limits (grounding)
and traditional agent limits
(generalization via LLM priors).

Direct selection or generation of actions
is limited

Need structures that integrate
reasoning, long-term memory and
planning with LLM

Reasoning

Environment




A novel framework

INTRO

BACKGROUND

Cognitive Architectures for Language Agents

Theodore R. Sumers* Shunyu Yao* Karthik Narasimhan Thomas L. Griffiths

Princeton University
{sumers, shunyuy, karthikn, tomg}@princeton.edu

FRAMEWORK

CASE
STUDIES

# Rapid development leads to custom terminology and architectures (e.g, "tool
use', "'grounding").

%  Difficult to compare agents, understand evolution, or build new agents
systematically.

% Need a conceptual framework to organize efforts.

AGENT
DESIGN

FUTURE



BACKGROUND

Production systems and
control flow

Production systems (Newell & Simon, 1972):
> Rules (precondition — action) applied iteratively.
> Originated for string manipulation.

XYZ->XWZ
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Production systems and

control flow

%  Production systems were popularized in Al for understanding human problem
solving (Newell, 1967; Newell and Simon, 1972)

(temperature > 70°) A (temperature < 72°)
temperature < 32°
(temperature < 70°) A (furnace off)

(temperature > 72°) A (furnace on)

| A

stop
call for repairs; turn on electric heater
turn on furnace

turn off furnace

Adams et al, 2012; Sun, 2004; Newell, 1980; 1992; Anderson and Lebiere, 2003
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Cognitive architectures

Blueprints for intelligence, combining production systems with modules for memory,
perception, decision-making, learning.

Procedural

e 1

unantm Episodic
1 Ldmm;: Learning

Preference

Spatial-Visual System Perceptual LT Memory
Other Perception Visual Perception

Embodiment

SOAR (Laird et al, 1987; 2022)



Historical analogy: production -
systems

=
=1
o
o©

Formally:
LLMs as production systems: LLMs define a probabilistic distribution over text
continuations (string changes/additions).

X ~»XY.
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Historical analogy: control flow -
& prompting

<+ Prompt engineering as control flow: manipulating the input prompt (string)
biases the LLM's production selection towards desired outputs.
> Simple concatenation, RAG, chain-of-thought, etc,, structure the
"algorithm”.

Prompting Method Production Sequence
Zero-shot Q~5QA
Few-shot Q-—Q1AI QA Q~Q1 A1 Q2 A, QA

Wlkl

Retrieval Augmented Generation Q ——— QO ~» QO A

Socratic Models Q> QO ~>QO0A

Self-Critique QS QANS QAC S QACA
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CoALA framework -

7/
%

7/
%

A conceptual framework to characterize roceRlIeron Semaniciemon DD EbEoBMemoD

and design language agents using LLMs B2 | =

as a core component within a cognitive A;e;t(::ie

architecture.

Organizes agents along three *** # * — * =

dimensions:

> Memory (information storage)

>  Action space (internal & external) — T
> Decision-making (procedure)

(((Q

Dialogue Physical Digital
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CoALA Component: Memory

Modules

K/
°

Working memory: Active, readily
available info for the current decision
cycle (inputs, goals, retrieved
knowledge). Persists across LLM calls.

> Perceptual inputs, information
carried over, etc

> More general than context
>

Procedural Memory

Agent Code

Decision Procedure

Dialogue

Semantic Memory

Episodic Memory

Physical

g::::::é ::ii%%%%iﬁiﬂ'

o) €9

Digital

Working Memory

13
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CoALA Component: Memory

Modules

% Long-Term memory

>

>

Episodic: Past experiences,
trajectories.

Semantic: Facts about the
world/self (knowledge).
Procedural: How-to knowledge

(LLM weights, agent's code/skills).

Procedural Memory

Agent Code

Decision Procedure

Dialogue

Semantic Memory

Episodic Memory

Physical

g::::::é ::ii%%%%iﬁiﬂ'

o) €9

Digital

Working Memory

14
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CoALA Component: Action
Space
% Actions modify the agent's state or the environment.

% External Actions: Interact with the outside world.
% Internal Actions (Memory Access):

Internal External

Planning

15
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Grounding actions “

7
%

7/
%

K/
L X4

7/
%

Connects the agent to the
external world.

Procedures execute external
actions & process feedback into
working memory (often as text).
Examples: Robot commmandes,
sending messages, navigating
websites, API calls, etc
Vision-Language Models (VLMs)
can help translate perception to
text.

Procedural Memory Semantic Memory  Episodic Memory

ﬁ;@

Decision Procedure Working Memory
Actions Observations

\ I

o) €9

Dialogue Physical Digital
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% Retrieval: Read relevant info from LTM
. . . . Procedural Memory Semantic Memory  Episodic Memory
(Episodic, Semantic, Procedural) into S
WM to support oo [[_E
reasoning/decision-making. S Coce
*# Retrieval @ @1 Learning Learning
o=
= Decision Procedure Actions Observations it

Dialogue Physical Digital

17
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Internal (Memory Ops)

% Reasoning: Process working memory
contents (e.g, summarize, reflect, plan
steps) using the LLM. Writes back to

g::::::é ::ii%%%%iﬁiﬂ'

Decision Procedure Working Memory

Dialogue Physical Digital

Procedural Memory Semantic Memory  Episodic Memory

Worklng memory Agent Code - -

18
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Internal (Memory Ops)

< Learning actions: Write information to

>

YyVYY

Procedural Memory Semantic Memory  Episodic Memory

LTM (new experiences, facts, S0 o
skills/code). S
Episode storage Agent Code

Facts storage
Direct weight updates

Procedure [ agent code z %ﬁ% @

updating

Decision Procedure Working Memory

Dialogue Physical Digital

19
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Decision Making

< The 'main loop" selecting which action
(Grounding or Learning) to execute.
% Decision Cycle:

a. Planning Stage: Use reasoning & retrieval
actions to propose, evaluate, and select
candidate actions. Can be simple (single
LLM calll) or complex (tree search,
simulation).

b. Execution Stage: Execute the chosen
Grounding/Learning action procedure.

c. Observe feedback, update working
memory, loop.

Planning

|

Evaluation

|

20
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Applying CoALA: Case Studies -

% COALA can characterize diverse existing agents.
% Helps understand their mechanisms, similarities, and differences structurally.

Long-term External Internal Decision
Memory ¥ Grounding Actions Making
SayCan (Ahn et al., 2022) - physical - evaluate
ReAct (Yao et al., 2022b) - digital reason propose
Voyager (Wang et al., 2023a) procedural digital reason/retrieve/learn  propose
Generative Agents (Park et al., 2023)  episodic/semantic  digital/agent reason/retrieve/learn propose
Tree of Thoughts (vao et al., 2023) - digitall reason propose, evaluate, select

Table 2: Some recent language agents cast into the CoALA framework.
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Case Study: ReAct

(Yao et al,, 2022)

: \
Reasoning [ ]
M Traces LM ’ ’ Env

Actions
& )

Observations

Reason Only

Act Only
Actions
‘. V‘* ) 3 r “‘ .
Reasoning ‘
LM Env
Traces
[N A )

Observations

ReAct (Reason + Act)

22
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Yao et al., 2022)

< Memory: WM only (implicit via LLM
context).

+ Grounding: Digital (Web APIs, Text
Games).

# Internal Actions: Reasoning (to

analyze, plan). No Retrieval/Learning.

< Decision cycle: Reason (Thought) —
Propose Action — Execute Action —
Observe.

% Key Idea: Integrating reasoning and
acting within a loop.

Case Study: ReAct

23

e { (1d) ReAct (Reason + Act) }

Thought 1: I need to search Apple Remote and find the
program it was originally designed to interact with.

Act 1: Search[Apple Remote]

Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple .. originally designed to control the
Front Row media center program ..

Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search Front
Row next and find what other device can control it.

Act 2: Search[Front Row]

Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports',' Front Row
(software) ', ..]

Thought 3: Front Row is not found. I need to search Front
Row (software)

Act 3: Search[Front Row (software) ]

Obs 3: Front Row is a discontinued media center software ..

Thought 4: Front Row (software) is controlled by an Apple
Remote or the keyboard function keys. So the answer is
keyboard function keys.

Act 4: Finish[keyboard function keys ]

.
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Case Study: Voyager

(Wang et al,, 2023)

Build House
with Human Feedback

24


https://docs.google.com/file/d/1jHDS9fHAwZgYkdoUCw9bd0sOoPApp_U8/preview
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Case Study: Voyager ’

(Wang et al,, 2023)

% Memory: Working + Procedural LTM
(skill library).

+ Grounding: Digital (Minecraft API).

< Internal Actions: Reasoning, Retrieval
(skills), Learning (add new skills).

< Decision-cycle: Propose task —
Retrieve/Generate code (skill) —
Execute — Reason on feedback —
Learn (if successful) or Refine.

% Key ldea: Lifelong learning by
building a procedural memory (code
library).

Iterative Prompting Mechanism Skill Library

Automatic Curriculum
& Mine Wood Log
‘ Make Crafting Table

o itensylone[ L.i0);
o \ ol ) {
Make Cratng Table Pk it )/ Craft Stone Sword
W New (DOt} errenee % Skill s Make Furnace
Combat Task // Craft and equip a shield Retrieval
. —> it (bot)j iscesemeseasecss — Craft Shield
Zombie
) @ CookSteak
f 1 Combat Zombie
Env Feedback Code as Refine Program
e Execution Errors Actions 0
NG verod Q‘ @ sddnewsii

Self-Verification

Mine Wood Log

MINECRREY

Update
Exploration
Progress

Environment
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Case Study: Generative Agents -
(Park et al., 2023)

7
L X4

7
L X4

Memory: Working + Episodic LTM (event
stream) + Semantic LTM (reflections).
Grounding: Digital (Sandbox Game) +
Agent Dialogue.

Internal Actions: Reasoning (reflect,
plan), retrieval (events, reflections),
learning (store events, reflections).
Decision-Making: Retrieve — Reason
(Plan daily schedule) — Execute actions
— Reason (update plan based on
observations).

Key Idea: Simulating believable human
lbehavior via rich memory & reflection.

in y
i R ¥ | I join you for coffee?
¥ 2 m ) [Klaus]: Not at all, Abigail.
How are you?

!

!

. !
Perceive

!

!

[Abigail] : Hey Klaus, mind if

Generative Agent Memory

!
1

Memory Stream ‘_{ Retrieve }—m Retrieved Memories * Act
1
1
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Case Study: Tree of thoughts -

(Yao et al,, 2023)

(a)

Input

(b)

Plans

=7
©
C
T
[ U ——

Passage Passage
1 2

(c)

Votes

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be: 1. It isn't
difficult to do a handstand if you just stand on your hands. 2. It caught him off guard that space smelled of
seared steak. 3. When she didn't like a guy who was trying to pick her up, she started using sign language. 4.
Each person who knows you has a different perception of who you are.

Plan1 Plan 2 ) Plan 3-5
1. Introduce and explain the technique 1. Introduction to an unusual self-help book,
of doing a handstand 2. Switch to a mentioning a handstand as a metaphor for
story about an astronaut's first time in embracing challenges. 2. Discuss the unexpected
space 3. Describe a situation where a things learned from astronauts, including the smell of
woman uses sign language to avoid space. 3. Describe a woman's clever tactic for avoiding
unwanted attention 4. The final unwanted attention at a bar. 4. Contemplate how
paragraph explains how everyone has different perceptions of oneself can shape one's
different perceptions of others identity.
i 0/5 votes t 3/5votes | | n/Svotes

)

)
)

Analyzing each choice in detail: Choice1, while incorporating the required end sentences, seems to lack a
clear connection between the paragraphs {..; Choice 2 offers an interesting perspective by using the
required end sentences to present a self-help book's content. It connects the paragraphs with the theme of

self-improvement and embracing challenges, making for a coherent passage. {..} The best choice is 2.
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Modular Agent Design

% Think beyond monoliths:
>  Structure agents using modules (Memory, Actions, Decision cycle).
%  Benefits:
> Conceptual clarity, easier comparison
> Code reuse, testing, maintenance
> Standardized abstractions (like MDPs and Gym envs for RL).
# LLMs vs Code: Use code for stable algorithms (e.g, search) complementing
LLM flexibility.

28
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Beyond Simple ”
Reasoning/Planning

R/
L X4

R/
L X4
R/

L X4

R/
L X4

Structured reasoning: Move beyond basic prompt engineering to structured
updates of working memory (e.g, LangChain, Guidance).

LTM: Leverage writable LTM for lifelong learning (not just retrieval augmentation).
Combine human knowledge + agent experience.

Learning: Explore diverse learning actions beyond fine-tuning (storing
experiences/facts, generating code/skills, meta-learning).

Decision Making: Move towards more deliberate planning (proposal, evaluation,
selection) using LLMs.
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Future Directions & Open
Questions

7 7 7
*%* 0‘0 *%*

7
0‘0

LLMs vs VLMs: Language-only vs integrated multimodal reasoning?

Learning vs Acting: How to autonomously decide when and what to learn?

Advanced decision making: Scaling deliberative planning, metareasoning (value

of computotion), calibration, alignment.

Co-evolution: How will agent design and LLM capabilities influence each other?

> Reasoning models are already a proof of agent design influencing LLM
capabilities

30
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Conclusion

< Language agents are evolving rapidly, incorporating complex internal processes.
%  COALA provides a framework inspired by cognitive science to:

Organize existing work.

Guide the design of new, more capable agents.

Structure thinking around Memory, Actions, and decision making.

Offers actionable insights for building modular, structured, and more
intelligent agents.

YVYVYY
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