DreamerV2 and
Backpropagation-based Policy
Gradients with World Models

Presentation by Sergey Sedov



Literature

Do Transformer World Models Give Better Policy Gradients?

DreamerV2: Mastering Atari with Discrete World Models

Li’Loq: Policy Gradient Algorithms

Myvriad: a real-world testbed to bridge trajectory optimization and deep learning



https://arxiv.org/pdf/2402.05290
https://arxiv.org/pdf/2010.02193
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://arxiv.org/pdf/2202.10600

Main questions that we are going to answer

1.

How to train an Actor in World Models? DreamerV2 example.
What are the trade-offs of policy learning in model-based RL methods?

REINFORCE vs Backpropagation-based Policy Optimization (BPO)

Why don’t Transformers succeed in current World Models applications?
When are backpropagation-based policy gradients unstable?

Can we improve something in terms of policy gradient bounds?



World Models recap: World Model Learning
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World Models recap' Actor & Critic Learning

* :—
[

o~ \ \/ \ \/ \ \/

o o o

h

W
y S
a

Actor: at ~ py(ar | 2¢) Critic: ve(2:) =~ Ep, py, [ZT>t AT trT}



World Models recap: Critic Learning

Critic is trained with MSE loss on A-target of value function:

A2 A= Nve(Ze41) + AV, it < H,
STt {vg(éﬂ) if t=H.

Intuitively, it is a weighted average of n-step returns for different horizons, where
longer horizons are weighted exponentially less.



World Models recap: Actor Learning

Policy learning objective is much more interesting: it combines Reinforce policy
gradient estimate with dynamic backpropagation of value gradients:

L(Y) = Ep, p, [ i (—pInpy(ar | 2)sg(VP — ve()) —(1 — )V, —nHlay|2] )}

reinforce dynamics entropy regularizer
backprop

What does it mean? Let’s break it down.



Monte-Carlo Policy Optimization

The goal of the policy optimization is to find 8, such that:
H

maximize J/(0;H) := Zr(st)
t=1
We seek to estimate VeJ/(0; H) in order to maximize the reward.
In model-free RL we don’t know the transition function, and REINFORCE
algorithm saves us due to Policy Gradient Theorem:

VoJ(0) =E;[Q"(s,a)Velnmg(als)]
= E;|G:Vglnmg(As|S)] . Because Q™ (S, A;)=E.[G:|S;,A]

i i F Lil'L
where we sample G_t from real sample trajectories. rom Hikod



Backpropagation-based Policy Optimization

However, we deal with model-based RL methods, as we model the transition
function using the World Model itself:

H
maximize JY(8;H) := Zr(st), subject to  s¢11 = f(s¢,a¢), ar = mo(Sk)
t=1

It means that besides using REINFORCE, we can recursively propagate the value
gradient to the policy model through transition function f!



Backpropagation-based Policy Optimization

(a) Markovian world model. (b) History World Model. (c) Actions World Model.

Figure 1: Diagram illustrating gradient flows through different world model types from states to actions.
Circuitous (longer than necessary) gradient paths go through connections highlighted in red. An Actions World
Model has no circuitous gradient paths, allowing gradients to directly flow from states to actions through a
single application of a world model.

There’s no gradient flow from actions to states - authors consider stop-gradient case:

maximize J/(6; H) Zfr st), subjectto sir1 = f(s¢,a¢), ax = me(sg[sk])



Backpropagation-based Policy Optimization

Algorithm 1: Backpropagation-based Policy

Dynamics model loss: Optimization (BPO)

A Input: Initial buffer B, initial policy parameters 6,
P) = Z 8741 — fw(st,ai) 12, initial model parameters 1), learning rates
{ae, ayp }, world model class W.
. _ T T T : J
where: 7 = (s1,ai,...,sy) is a trajectory : while not exceeding training steps do
: Collect an episode with 7 and add it to B
for each world model learning step do

1
2
3: le
Policy model (Actor): . VY —aypVylV (1), T~B
6
7

end for
H for each pohc%learnmg step do
maximize JY (6; H) Z r(st), Compute J 1)) by unrolling the world
model
subjectto  sy11 = f(sq, at), ar = mo(sg[sk]) 8: Compute Vg.J"” (8; 1) by backpropagation
9: 0 <+ 0+ aeVeJ" (0;7)
10:  end for

11: end while




REINFORCE or Dynamic Backpropagation (BPO)?

L) = Ep, p, [ i1 (—pInpy(ae | 2)sg(V — ve(2)) —(1 — p)V;* —nHlae|2)] )]

reinforce dynamics entropy regularizer
backprop

DreamerV2 Actor loss combines both REINFORCE and BPO due to the trade-off:

- REINFORCE: requires Monte Carlo sampling of full trajectories, reward signal
has no bias, but high variance, low sampe efficiency.

- Backpropagation-based Policy Optimization: low reward variance, but has
bias due to straight-through gradients in World Model.



REINFORCE or Dynamic Backpropagation (BPO)?

L) = Ep, p, [ i1 (—pInpy(ae | 2)sg(V — ve(2)) —(1 — p)V;* —nHlae|2)] )]

reinforce dynamics entropy regularizer
backprop

DreamerV2 Actor loss combines both REINFORCE and BPO due to the trade-off:

- REINFORCE: requires Monte Carlo sampling of full trajectories, reward signal
has no bias, but high variance, low sampe efficiency.

- Backpropagation-based Policy Optimization: low reward variance, but has
bias due to straight-through gradients in World Model.

Is bias the main drawback of BPO? The paper analyzes the following question:
when are BPO recurrent gradients unstable?



Transformers in World Models: History World Models

(a) Markovian world model. (b) History World Model. (c) Actions World Model.

Figure 1: Diagram illustrating gradient flows through different world model types from states to actions.
Circuitous (longer than necessary) gradient paths go through connections highlighted in red. An Actions World
Model has no circuitous gradient paths, allowing gradients to directly flow from states to actions through a
single application of a world model.




History World Models

History World Models condition on the full history of states and actions:
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Policy Gradient bound for HWM

Even if the gradient of transformer HWM is bounded, the policy gradient may grow
exponentially w.r.t. H, due to circuitous gradient paths:

Theorem 1. Let the gradient norm of h with respect to its inputs be bounded by L, and Lg:
| Oh(31:1,01:1) | < Ly and || 6h(81 t’al‘t) | < Lg for all s1.4,a1.4, k,i. Let v be the L,.-Lipschitz reward

day
function from a Markov Deczszon Process M, 1lg a parametric space of differentiable deterministic

L-policies. Given mg € Ilg, the norm of the policy gradient Vo J"(0; H) of mg under a History
World Model h grows asymptotically as a function of the horizon H as:

IVgJ"(0; H)|| = O(HL, + H*L, + H?L, + H*L?) = O(LY) .

All bounds are tight



Action World Models

Authors aim to find the proper application of Transformers in World Models.
They suggest conditioning on action sequences only:

H-1

B =3 5T — gp(s1,aL0) 2 @ ?
t=1

g g g

H
maximize JY(0; H) g r(5¢),

subject to  §;+1 = g(s1, alzt), ar = me(sg(8k]) a1 @ @




Action World Models

Policy Gradient of AWM with RNN transition model = Policy Gradient of MWM

Proposition 1. Let f-RNN be a recurrent network with its recurrent cell being the dynamics f of the
MDP M, and g ¢.ryn denote an AWM instantiated with f-RNN. Then,

Ve J9=(0; H) = Ve J' (0; H).

The above proposition tells us that the policy gradient computed through a Markovian model is, in
fact, equivalent to the one computed through an AWM when instantiating g as a recurrent neural
network with a specific recurrent cell. Crucially, this not only provides grounding for gradient
estimation with AWMs but also solidifies a fundamental fact that will be analyzed in-depth in this
section: policy gradient computation by differentiating through unrolled Markovian models can be
understood to be fundamentally ill-behaved due to its correspondence to an RNN structure.



Action World Models

Policy Gradient of RNN-based AWM can explode exponentially => MWM'’s too!

(9rnw) Tip1 = o(Wext) + Weas + b; St+1 = Woriy1, 4)
where o is an activation function with gradient norm bounded by ||diag(c’(x))| < % for some
constant 3. Then, the following result holds.

Corollary 2.1. Let gryy be an Actions World Model instantiated with a recurrent neural network
as in Equation 4 and n = |[WZI|| % The asymptotic behavior of the norm of the policy gradient

Ve J9:%(0; H) as a function of the horizon H can be described as:

IVeJ9=(8; H)|| = O (n™).



Action World Models

Policy Gradient of Transformer-based AWM is bounded:

Corollary 2.2. Let g, be an attention-based Actions World Model instantiated with self-attention
as in equation 5. The asymptotic behavior of the norm of the policy gradient V¢ J977(0; H) as a
function of the horizon H can be described as:

Vo797 (8; H)|| = O (H®).



Experiments: non-differentiable points

State-conditioning in World Models blows gradients in non-differentiable point:
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overview. non-differentiable point at the initial action for different
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Figure 3: AWMs ignore non-differentiable points in the state space. (a) After the block is pushed with
some initial action, it bounces off the wall, instantaneously reversing its velocity. (b) Visualization of the point
of non-differentiability in the state space. (c) Learning a Markovian model or a HWM causes catastrophic
compounding errors, but an AWM can still accurately model the final reward when varying the initial action.
Learned dynamics are trained offline on a dataset collected using random actions.



Experiments: Double-pendulum chaotic dynamics
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Figure 4: Transformer AWMs smooths out chaotic dynamics. (a) A double-pendulum environment where
an initial position must be chosen in order to achieve some pre-determined goal state after H steps. Different
transition models are learned on a data set of random trajectories. (b) The mean gradient norm of the final
state with respect to the initial action for each model is computed over 50 different random actions for different
horizons. (¢) Final return according to different models with respect to different initial actions for H = 100.



Experiments: Double-pendulum chaotic dynamics
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Experiments: Myriad testbed

Optimal Control tasks to benchmark RL vs Optimization methods

Name Brief Description Fixed zr Terminal Cost
Bacteria* Manage bacteria population levels No Yes
Bear Populations* Manage metapopulation of bears No No
Bioreactor* Grow bacteria population No No
Cancer Treatment*  Decrease tumour size via chemotherapy No No
Cart-Pole Swing-Up  Swing up pendulum by translating pivot Yes No
Epidemic* Control epidemic via vaccination No No
Glucose* Manage blood glucose via insulin injections No No
Harvest* Maximize harvest yield No No
HIV Treatment* Manage HIV via chemotherapy No No
Mould Fungicide* Control mould population via fungicide No No
Mountain Car Drive up valley with limited force Yes No
Pendulum Swing up pendulum by rotating pivot Yes No
Predator Prey* Minimize pest population Yes Yes
Rocket Landing Land a rocket Yes No
Simple Case Use for initial algorithm testing No No
Timber Harvest* Optimize tree harvesting No No
Tumour* Block tumour blood supply No Yes

Van Der Pol Forced Van der Pol oscillator Yes No




Experiments: Myriad testbed
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Figure 5: Policy optimization with transformer AWMs gives better policies for long horizons. (a) Final
performance of BPO with different world models on Myriad (10 seeds &= 95% C.1.). (b) Learning curves of
BPO through a transformer AWM, a SAC agent, and an Online-DT agent on 20 and 100 length horizons (10

seeds + 95% C.1.).



That’s it! Thank you for your attention!



DINO-WM: World Models on Pre-trained Visual
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Introduction

Ea

Boston Dynamics DeepMind NVIDIA

X Unable to generalize

Can we design our decision-making algorithm to effectively generalize to many tasks? >

NYU 2



World Models

What is a world model?
Xt+1 = h(ti Uy, ‘9)

4 )

Agile Quadrotor Flight [1]

X¢

Uy

X is the system state

| }
: u is the control action :
: h is the dynamics model :
:\ 0 is the model parameters /:
N v

— — — — — — — — — — — — — — —

[1] Hanover, Drew, Philipp Foehn, Sihao Sun, Elia Kaufmann, and Davide Scaramuzza. "Performance, precision, and payloads: Adaptive
‘4 NYU nonlinear mpc for quadrotors." IEEE Robotics and Automation Letters 7, no. 2 (2021): 690-697.
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Related Works

Online Model-based
Learning

v’ Data efficiency
v Improve downstream control

task

X World model conditioned
on policy
x Cannot generalize

Offline World Models

v' High fidelity
v General purpose

X Conditioned on text

x Computationally expensive



Challenges

|
Trainable on offline, pre- |
. 5 |

collected trajectories? |

/

PineconeAl

[1] Williams, Grady, Brian Goldfain, Paul Drews, Kamil Saigol, James M. Rehg, and Evangelos A. Theodorou. "Robust Sampling Based
id NYU Model Predictive Control with Sparse Objective Information." In Robotics: Science and Systems, vol. 14, p. 2018. 2018.



A NYU

Challenges

/
' Support test-time behavior
: optimization?

(b)
Model Predictive Control [1]

[1] Williams, Grady, Brian Goldfain, Paul Drews, Kamil Saigol, James M. Rehg, and Evangelos A. Theodorou. "Robust Sampling Based
Model Predictive Control with Sparse Objective Information." In Robotics: Science and Systems, vol. 14, p. 2018. 2018.




Problem Formulation

Initial State




Methodology

z; = Ency(oy)

Training ]
[ Zt1 — Pe(Zt—H:m at—H:t)

Predictor

H denotes context length
* Observation model remain frozen during training

e Extracts Patch level features
 Decoder-only transformer
e Causal attention with auto-regression

/

O+ € RHXWXS —| DINOV2 [—— Z € [RNXE

\

Trained using teacher forcing to prevent collapse
N denotes no. of patches

E denotes embedding dimension

Pre-trained Encoder

N
+
[S—



Methodology
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Cross-Entropy method (CEM) optimization

NYU

Lt+2 Zr

C=llzr — z4]|?

T is planning horizon
z, denotes goal embedding

10



Results
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Can it be used for Visual Planning ?

T
N/ W




Can it Generalize to Unseen Scenarios?

* Dino-WM is compared against

Table 3. Planning results for offline world models on three suites

W| de Va riety Of b ase“nes _ with unseen environment configurations.

Model WallRandom PushObj GranularRandom

delb 4 onl | IRIS 0.06 0.14 0.86

Model-based online learning DreamerV3 0.76 0.18 1.53

° o . - -

DreamerV3 [2] with no reward prediction R3M 0.40 0.16 1.12

ResNet 0.40 0.14 0.98

*TD-MPC2 [3] DINO CLS 0.64 0.18 1.36

Ours 0.82 0.34 0.63

* AVDC [4]

v

Diffusion Model

[1] Micheli, Vincent, Eloi Alonso, and Francois Fleuret. "Transformers are sample-efficient world models." arXiv preprint arXiv:2209.00588 (2022).

[2] Hafner, Danijar, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. "Mastering diverse domains through world models." arXiv preprint arXiv:2301.04104 (2023).

[3] Hansen, Nicklas, Hao Su, and Xiaolong Wang. "Td-mpc2: Scalable, robust world models for continuous control." arXiv preprint arXiv:2310.16828 (2023).

[4] Ko, Po-Chen, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B. Tenenbaum. "Learning to act from actionless videos through dense correspondences." arXiv preprint arXiv:2310.08576 (2023).

il NYU 13
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Conclusion

* DINO-WM models visual dynamics in latent space and generalizes to unseen
simulation setups

* Enables zero-shot planning

* Limitations —
* DINO-WM assumes having access to offline datasets with sufficient state-action
coverage
* No real-world experiments

14



Thanks!

Questions?
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Visual Details Matter in Atari
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Relationship to Embodied Al

It is very hard to have robots in the wild because:
e Hand-crafting mathematical states often intractable

e Objective/reward definition is ambiguous for many tasks

[ T = f(x,u) wherex:?]




System-1: Habits and Memorization

Memorizing the mapping from vision/observation to action:

Behavior Cloning Reinforcement Learning
int{e_r\rfl state %eward

Dataset of experience Policy (

Behavior cloning SRR
i* actlonr)
m Collect experience and b

I

environment
=TT |
S )

NYU



System-2: Planning and Search

We want to spend more compute for complicated/unseen tasks:

532

Y Majority vote

(a) Input-Output  (c) Chain of Thought  (c) Self Consistency

Prompting (10) Prompting (CoT) with CoT (CoT-SC) (d) Tree of Thoughts (ToT)

NYU

Yao, Shunyu, et al. "Tree of thoughts: Deliberate problem solving with large language models, 2023." URL https://arxiv. org/pdf/2305.10601. pdf (2023).



System-2: Ingredients

Two main components needed to formulate the search/optimization:

Dynamics Model Reward/Value Model
(World Model)

NYU



System-2 to System-1 Distillation

Deliberate thinking for everything we do it too expensive. Generalizable skills should be
memorized like words in a language.

Learning In Imagination in RL Bootstrapping in Behavior Cloning
e D
World+Reward World+Reward
Model Real World Model -— Real World
N ; ) Y

O ( )
Task and Motion
More often Less often Planner
\ J

I ( N\
Large Synthetic [ Small Real ]

Y

Dataset Dataset
Policy ~ J

Policy
Pre-Training Fine Tuning

ANYU e




Diffusion for World Modeling:

Visual Details Matter in Atari
(NeurlIPS 2024)



Motivation

The paper is motivated by:
e Lossy compression in latent-dynamics models

e Diffusion models are very successful in high-fidelity image synthesis

TDo Dy
o X

’_‘Z = :-:xtTH H
g T

DIAMOND



Contributions

This is an important paper because:
e Computationally efficient world models leveraging NVIDIA EDM diffusion models.
e Jointtraining of state-of-the-art RL agents in the world-model’'s imagination
e Demonstrating the world-model’s long rollouts on challenging 3D games

e Well-documented and reproducible implementation

NYU



Diffusion Recap
Diffusion models learn to reverse a progressive noising process (diffusion) to recover

clean data points.

Diffusion Process Reverse Process (Also Diffusion)

dx = f(x,7)dT + g(7)dw dx = [f(x,7) — g(17)*Vx log p” (x)]d7 + g(7)dw

Affine Process

Denoising Score Matching L(6) = E [||SQ(XT, T) — Vxr longT (x| XO)HQ]

l P is known Gaussian Distribution

L(0) =E [|Do(x",7) =x"I”] , Dy(x",7) = Sg(x7,7)0*(r) +x"
NYU

10



Practical Choice of Diffusion Paradigm

EDM expands the design exploration space and propose efficient and modular
preconditioning, noise scheduling, and integration methods.

p» Empirical schedule to

. . keep the objective
0 0 _ . <0 2
p T(XZ-I—I | X1;—|—1) - N(Xa—l’ xt+17 o (T)I) Diffusion Process medium variance.

T T — AT T T T T T ene N
Dy (X7, 1,97) = cfp Xi41 + ¢ Fo(ch, X7, 1,5])  Preconditioning

1 0 2
£(6) = E[| o (chxf11,97) - o (6t~ i) | ]
Network prediction

~
Network training target

NYU Karras, Tero, et al. "Elucidating the design space of diffusion-based generative models." Advances in neural n
information processing systems 35 (2022): 26565-26577.



Architecture

A CNN-based conditional autoregressive architecture is adopted:

¢ U-Net

x) | — Tt

Adaptive
Group Normalization

NYU
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RL Training in Imagination

Reinforce algorithm is used to train an agent entirely in the imagination of the world
model:

World+Reward

Game Engine
7 Model 9
.
7/
4
Update ,/
\ —O0
\
R More often Less often
\\
N
N
N
\\
> ~
s ~
N
e ~
N
. Policy

NYU



Qualitative Results

Authors train the world-model for Atari (jointly with an RL player) and Counter-Strike 3D
game (off policy).

World model imagination (64x64) - t= 1

.... rmretemraaiand

NYU "



Atari 100K Benchmark

Thanks to the world model (learning in imagination) the agent learns to play each game
after 100K interactions as opposed to 50M steps.

Mean Interquartile Mean
DIAMOND I LR
STORM | |
DreamerV3 I |
RIS BN R
TWM W= =
SimPLe || |
0.4 0.8 1.2 1.6 0.2 0.4 0.6

Human Normalized Score

NYU s



Choice of Diffusion Framework

Thanks to the world model (learning in imagination) the agent learns to play each game
after 100K interactions as opposed to 50M steps.

t=106 t=50608 t=1600

(a) DDPM-based world model trajectories. (b) EDM-based world model trajectories.

A NYU s



Number of Denoising Steps

Multiple number of steps is essential for capturing the multi-modality. The black boxer
disappears due to mode averaging:

t=5
.-

-

NYU
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Limitations

DIAMOND is subject to the following issues:

Computationally expensive

No direct way of leveraging pre-trained encoders (e.g. DINO)

Evaluation of RL training is only done for discrete action environments
The architecture has a shallow memory (as deep as the input frames stack)

NYU
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Demo: Training on Custom Data

Next we trained this world model on a real-world robotic setup:

FlexivPy

A

DiffIK Controller

4 Hours of Data While
Interacting with the T

19



Interacting with the Learned World Model

The world model captures the contact-rich interaction dynamics:

-

Ievr = f(Tgk—m, ug)

TIAE

A NYU
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https://docs.google.com/file/d/1uDHagK9EZ2o5XM-VjPwOJWa9bMdDQkiM/preview

Global Planner

In addition to the world model, we also trained a diffusion based sampler to generate
random interaction rollouts. We used this sampler to make a simple global planner:

Current State (camera)

32 Rollouts of the robot interacting with the T-tool

Diffusion

Action Sampler N /

DINOv2
Patch Embeddings

Planner

Target Image
(Simply select the best)

DINOv2

Global plan with terminal state Patch Embeddings
Closest to the target.

NYU
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Local Planner

With the global plan as input, the MPPI planner closes the feedback between vision and
the actions to make sure the robot stays close to the global plan:

Current State (camera)

Rollout for each MPPI action

_ Multi-Mo
dal World

Model

DINO
Embeddings of «—
Terminal State

MPPI

Controller

Subsection of the plan to run on the robot Sequence of embeddings in the global p|an

22




Running On The Robot

Further optimization is required but our preliminary deployments was promising:

ANYU
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https://docs.google.com/file/d/1TR6loVKVFmP1vK29LzlltDhXjXSENIYn/preview

Differential MPC

Mrunal Sarvaiya



Typical Robotics Systems

Examples

PID

A' A ) Model Based
Sensors (state, images, etc) Controllers

- > Controller
; Neural

Q J) Networks

Commands




Model Predictive Control

- Atype of model based controller

- Optimization or sampling based method

- Exploits the dynamics model

- Why select MPC over a learned controller?
- Use known model
- Interpretable weights

- Reduce out of distribution issues




Optimization Based MPC

horizon length = v _1

min L k)) <@—— Cost Function
x(k),u(k) Z m(k))

subject to X(k +1) = F(x(k),u(k), m(k)) €—— Dynamics
X(O) = Xy, <@— |Initial Condition
Hx (X(k)) S O’ Hu(u(k)) S O <@ State and Input inequality constraints



Tuning is Difficult

- Task specific cost tuning
- Tuning soft constraint weights
- Needs to be done manually, since MPC is a

black box to learning algorithms




Differential MPC

Backprop through MPC

Think of it as a NN policy with a strong inductive bias that stems from control theory

Learnable weights

Eg. Loss = Tracking error

Backprop

States I:> Policy a Actions |:> Loss

|:> Learnable MPC Module |:>

Submodules: Cost and Dynamics




Differential MPC

Learn an interpretable controller

Weights can be task dependent

Select what is learnable

Convenient way to add inductive

biases

N-1

L =zyQn

N-1
L =aNQNThn + S: 2 (Qk

T E : T T

k=0

T
Cr + Uy, Rkuk
k=0
N-1
T 1 1
QNCEN + E l’katk + UkRklfk




Integrate with RL
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Robustness to Dynamics Mismatch

1. -
AC-MLP ¢ | 1
= 0.8 i3
o |
AC-MPC ' 06 -
: v 0.4 i
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2 H
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— |
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Differential QP

- Backprop through a quadratic program
- Add differentiable constraints to a policy
- Eg. Field of view constraints for aerial

transportation




Differential MPC

Pros
- Differentiable version of a widely used
controller
- Not a black box anymore

- MPC can utilize arbitrary sensor inputs

Cons

Does not natively support input constraints
Backprop is slow
Optimization based control or sampling

based control?



Thank you!

Questions?
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MP3 - A Unified Model to

Map, Perceive, Predict
and Plan




Why HD Maps ?



What are HD
maps for
autonomous
driving?

Traditional GPS lacks the precision and
dynamic data needed for driverless
cars.

HD maps enable high-precision
localization by mapping a vehicle's
exact position in relation to its
environment.

They combine real-time data from
sensors, LIDAR, cameras, satellite
imagery, and GPS.



Why
Autonomous
Vehicles Need
HD Maps ?

NYU

HD maps are essential for lane-level
navigation and safe autonomy.

Unlike humans, self-driving cars can't adapt
to inaccurate maps—even with sensors and
cameras.

HD maps offer inch-perfect detail: lanes,
crosswalks, traffic signals, and barriers.

Onboard sensors alone aren’t enough for
complex driving tasks.

Example: Early Tesla FSD struggles show HD
Maps are a necessity, not a luxury.



Challenges with High-Definition

Maps

High Cost and Maintenance: Creating and

updating HD maps is expensive and

time-consuming, making it difficult to scale

self-driving solutions globally.

33 ; : : -“‘\
Localization Errors: Even small localization errors / / 7, ‘\\\\\\\\\\\ \

can lead to unsafe situations, such as driving off

the road or into oncoming traffic.

NYU

Dnvmg W|th an HD map

N\

\
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Challenges with High-Definition
Maps

Dnvmg W|th an HD map

Lack of Real-Time Information: HD maps do not
reflect real-time changes like road closures or
construction, which can cause confusion and

hazards. __ n _“\\
Dependence on Vendors: Relying on HD maps /, 7 ‘\\\\\\\\\\\
creates a dependency on map vendors, limiting / m),\\\\\\\\\\\\\\\
flexibility and adaptability Y

NYU



Motivation for
Mapless Driving




Mapless drivin

" e
Mapless q) “TURN RIGHT"
m— ® : ) X 3
Driving? 7 |
9g-:
e Limitations of HD maps: Costly, hard to
scale, maintenance issues.

SRee: T —d AR M
e H A T BN
a2 T i

e Safety risks with HD map failures (e.g.,
localization errors).

e Advantages of mapless driving:
o Lower cost.
o Greater robustness to localization
errors.
o Scalable to diverse environments.

pre S SRR T
NYU Mapless driving can interpret the scene from sensors
J : .
and achieve a safe plan that follows a high-level command



Key Objectives
of MP3



MP3: Key Objectives

Create an end-to-end mapless driving system that:

1.  Maps - Generates an online map from raw sensor data.
2. Perceives - Understands dynamic and static environments.

3. Predicts - Anticipates the motion of surrounding objects.

4. Plans - Generates safe and comfortable driving trajectories.

Main Goal: Achieve safe and robust autonomous driving without HD maps.

NYU
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Related Work



Online Mapping

What others did:

e Many systems use offline HD maps, built using satellite images or special mapping vehicles. These
take time, cost money, and aren't usable for on-the-fly driving.

e Some newer methods try to predict road layouts in real time from images or LiDAR.
e But they're often focused only on highways (which are easier than city streets).

e And they make discrete decisions (like saying "this is a lane" or not) — which can be risky if something
is missed.

e They also lose uncertainty (e.g., how confident are we that this is a lane?), which matters for safety.

ANYU g



What MP3 does differently

Online Mapping

MP3 uses a dense,
continuous map
representation — it keeps all
the information and
understands uncertainty,
making it much safer for
planning.

ANYU
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Perception and Prediction

What others did:

e Traditional systems detect individual objects (cars, pedestrians) and try to predict their future
movements.
o Some predict a few possible future paths, or
o Use occupancy maps (grids that show what space might be occupied).

e But many rely on confidence thresholds — if the model isn't confident, it might miss detecting a real
object entirely.

e Some methods predict what's in a scene, but not how things will move (no motion prediction).

e Others try to predict motion fields, but can't handle multi-modal behavior — for example, a pedestrian
might go left or right, and we need to account for both.

A NYU
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What MP3 does differently

Online Mapping Perception and

MP3 uses a dense, Prediction

continuous map
representation — it keeps all
the information and

MP3 predicts a new kind of
"occupancy flow", which:

understands uncertainty, e Shows where things
making it much safer for are,
planning. e Predicts how they will

move over time,

e Andcan handle
multiple possibilities
— allin a scene-level
(not just per-object)
way.

ANYU



Motion Planning

What others did:

e Some early models just took sensor data and directly output driving commands (steer, brake). These
can be unstable and hard to debug.

e Newer ones use cost maps to decide which paths are safest or best.
o  But many of them still rely on HD maps or hand-designed rules.

o Others try to learn cost maps from data, but don't predict what's in the scene (no perception), so
they can be unsafe.

ANYU
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What MP3 does differently

Online Mapping

MP3 uses a dense,
continuous map
representation — it keeps all
the information and
understands uncertainty,
making it much safer for
planning.

ANYU

Perception and
Prediction

MP3 predicts a new kind of
"occupancy flow", which:

e Shows where things
are,

e Predicts how they will
move over time,

e And can handle
multiple possibilities
—all in a scene-level
(not just per-object)
way.

Motion Planning

Retrieves examples from
expert human drivers to
help it plan.

Builds its own route map
using sensor data and a
high-level command like
“keep straight”.

Uses its own predicted
occupancy flow to make
safe and explainable plans
— all without HD maps.

17



MP3 System
Architecture




MP3 System Architecture

Inputs

Voxelized LiDAR

High-level Goal

"HEEp STRATGHT”

NYU

Backbone
Network

Scene Representations

Mapping

Perception &
Prediction

Online map

‘{\ Trajectory sampler Trojectory
s , Costing

Dynamic state

Motion Planning

Retrieval-based

NN

\"/ﬁ%k%éij

Sbv

<&

T N

MP3 pipeline
consists of:
o Mapping and
Perception
o  Prediction of
Dynamic
Occupancy
o  Motion
Planning

Uses LiDAR point
clouds, camera data,
and high-level
driving commands.

19



Extracting
Geomet‘rlc and
Semantic Features




Extracting Geometric and Semantic

F_eatures

Input Data:

e 10 LIiDAR point clouds sweeps (1 second of history)

e Voxelized into Bird's Eye View (BEV)

Spatial Specs:

e Resolution: 0.2 m/voxel
e Region of interest:

o Length:140m (70 front + 70 back)
o Width: 80m (40 left + 40 right)

o Height:5m

Tensor Shape: 3D Tensor (%, %,

Preprocessing:

Z -
2.T,) = (400,700,250)

° Motion compensation using odometry

e Height + time concatenated in channels (no 3D conv

needed)

ANYU

Height

BEV tensor

Width

21



Backbone Network
e The backbone network is crucial for
for scene extracting geometric and semantic
e features from sensor data.
underStandlng e Input: Voxelized LIDAR point clouds in
Bird's Eye View (BEV).

e Processing:
o Uses multi-resolution

T*D= 32,3x3 64, 3x3 128, 3x3 256, 3x3

convolutional blocks to extract

features.
o Downsampling layers to

aggregate information from

g spatial and temporal domains.
, OX

ﬂ Conv2d + GroupNom + ReLU [> AvgPool < Interpolate () Concat W ° Output: Rich scene context features for

ﬂ MaxPool + Conv2d + GroupNorm + ReLU ~ Output features, kel size mapping, perception, and prediction.

NYU &



Interpretable
Scene
Representations



Interpretable Scene

Representations

Scene Representations

Inputs Scene Representat-

| Voxelized
LiDAR

| High-level |
Goal 72

"KEEP STRAIGHT"

NYU

Motion
Planning

Retrieval-bosed
Trajectory sampler

Costing

MP3 replaces HD maps with interpretable,
probabilistic scene representations.

These representations:

e Provide semantic understanding of the static
world (road layout, intersections).

e Predict dynamic actor behavior (position,
velocity, intent).

e Areinterpretable and uncertainty-aware -
suitable for safe motion planning.

24



Epping Module

128,33, 2 128, 313, 1 128, 3x3, 1 6, 33, 1
Y/
» M
C*@*ﬁ |
CQm Cla:

@Conde+GroupNorm+ReLU Conv2d ) Inferpolate @ Concat  Output features, kemel size, dlation

ANYU

Input: Multi-scale features (Clx, C2x, C)
from backbone

Architecture: Multi-resolution CNN
combining fine details & global context

Techniques: Max-pooling & interpolation
to align feature scales

Output: 6-channel probabilistic map:
o Drivable area (Bernoulli)
o Intersections (Bernoulli)
o Lanedistance (Laplacian: mean, std)
o Lanedirection (Von Mises: Von Mises:
angle, concentration)

25



Online Map
Representation

Drivable Area: Only where the SDV can legally go.

Reachable Lanes:

e Stay near centerline.

e Follow proper lane orientation.

Intersections:

e Must handle stop/yield/red-light conditions.

Drivable area Intersections

Reachable Distance Transform Reachable Angle

All predictions are probabilistic, so uncertainty can be reasoned over.

NYU
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Perceptlon and
Prediction
architecture



Perception and
Prediction
architecture:

128,313, 1 128,33, 1 / 1,3, 1 i Oocupncy

C B // f—*(/)g (il Occupancy) —» OCCFT(?;HCY _'Of:T
2 II 2 KT 53 1
/ ! . Kc (Motion scores) —— ﬂ Conv2d + GroupNorm + ReLU
128,36.2 128, 3x3, 1 “
/ KT2, 313, 1 Conv2d Olnterpolate @ Concat
C —_ 4 Vc (Motion vectors) ——
QOutput features, kemel size, dllation

Separate network per dynamic object
class:
o Vehicles
o Pedestrians
o Bicyclists
Inputs:
o Context features from backbone.
Architecture:
o  Separate CNNs per object class
o Dilation for large receptive field with
fewer parameters
o Combines multi-scale features for
richer motion cues
Output:
o  Occupancy map (current positions)
o  Motion mode scores (multi-modal
behavior)
o  Motion vectors (future movement)
Future prediction: Uses motion fields to
warp occupancy over time



Dynamic
Occupancy Field



MP3’s Approach: Occupancy Flow
Field

MP3 predicts:

e Initial occupancy of dynamic objects at time t = O.

e Atemporal motion field (velocity vectors) that warps this occupancy
across time.

Key Components:

Resolution: 0.4 meters/pixel (BEV grid) g %

Prediction Horizon: 11 steps » 5 seconds (0.5s each)
Each occupied pixel gets:
o A2D velocity vector (vx, vy)
o  One for each motion mode
e Separate predictions for:
o  Vehicles
o  Pedestrians
o  Cyclists

ANYU

t=0 t=1

=2
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Probabilistic
Modeling




Probabilistic Modeling : Static
Map

Goal: Model uncertainty in static scene layers.

NYU

Each BEV cell is an independent variable
Distributions per channel:

e Drivable area: Bernoulli
e Intersection: Bernoulli
e Lanedistance: Laplacian

e Lane direction: Von Mises

Drivable area

B Bernoulli

Lane distance

Interection

Lane direction

B Bernoulli

32



Probabilistic Modeling -
Dynamic Field

Each class (vehicle, pedestrian, cyclist) modeled separately:

e Occupancy (Ocl,): Bernoulli
e Motion Mode (Kc0,): Categorical over K modes

e Motion Vectors (Vc,,): 2D velocity for each mode

Why this is useful:

e  Multi-modal behavior » car may turn OR go straight

e Allows capturing uncertainty in motion prediction

ANYU
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Occupancy Flow: Modeling
Movement Over Time

Flow Event Definition (from cell i; to i3):

Flii)—(t+1,45) = U 10:4: A Ky = RAVea, 5 = G0}
k

Flow Probability:

p (F(Ct,il)%(tJrl,h)) = ZP (Of,il) P (Ktczl = k) “p (Vtczlk = i2)
2

Motion vector projection:

e Uses bilinear interpolation for smooth mass distribution

ANYU
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Future Occupancy Estimation

At each time step, update occupancy with:

p (Ofﬂ,i) =1~ H (1 e (F(ct,j)—>(t+1,i)))
J

e Interpretation:
A cell is occupied at t+1 if anything flows into it from t.

e Efficient & consistent computation over time

e Enables safety-aware planning with dynamic agents

ANYU



Why Probabilistic Occupancy

Flow Is Powerful

t=0 t=1

t=2

— Flow —|

— Flow —|

Occupancy

Motion

Figure 4: The motion field warps the occupancy over time.

Transparency denotes probability. Color differences the
and the future occupancy. We

depict the particular case of unimodal motion (K = 1).

ANYU

Replaces fragile object detection + forecasting
pipeline

Captures multi-modal, uncertain agent behavior

Models interactions (e.g., car-yielding to
pedestrians)

Fully differentiable and interpretable

Enables risk-aware, goal-directed planning

36



Motion Planning

ANYU



Goal

e Generate trajectories that are:

a. Safe (avoid collisions)
b. Comfortable (low jerk, smooth)
c. Goal-directed (follow command)

e Approach:
a. Sample kinematically feasible trajectories
b. Score them using learned cost function
C. Select best trajectory:

ANYU

T™* = arg min‘rET(mo) f(T, M, O, K, V, UJ)

(L=~ ||

Scene Representations

Mapping  Online map

__ Backbone
Network ‘
- —|

Perception
\Predlchon Dynamic state

Motion Planning

Costing

SDV
Trajectory

f\\‘

Routlng J \‘\

Sampling Routing Scoring

R

AV Trajectory
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Trajectory Sampling

e 150+ hours of driving logs - clustered into 3000 trajectory prototypes
e Binned by (velocity, acceleration, curvature)
e Retrieval is based on SDV initial state

e Trajectories re-rolled out using (a, K) and bicycle model (for smoothness)

NYU
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Routing Command & Prediction

64, 55, 2

Tum left
branch

Online map

M

Distance to

Tun right
branch

action (m)

repeat

Keep straight
branch

NYU

fght

straight

---» Acts as a switch
ﬂ CoordConv + GroupNorm + ReLU
ﬁ Conv2d + GroupNorm + ReLU

ﬂ Cov2d P Concat

QOutput features, kernel size, dilation

Driving command:

O

O

a € {keep lane, turn left, turn right}
d: estimated distance to action

Routing Network:

(@]

O

3 CNN branches (one per action)

Input: predicted map + repeated distance
(CoordConv)

Output: dense route probability map

40



Trajectory Scoring Functions -
Routing

e Encourage SDV to stay on predicted route
e Add "cost-to-go" for goal beyond horizon

e Penalize off-route maneuvers

ANYU
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Trajectory Scoring - Map

Constraints

Map Alignment Cost Terms

ANYU

Stay near lane center: use Mp (distance map)
Align to lane direction: use My
Penalize uncertainty: fi(z, My, Mp) =Y, v,(aP + )

Stay on road: use My » penalize off-road cells

42



Trajectory Scoring - Safety

Safety & Collision Cost

e Avoid dynamic objects using predicted occupancy O: f,(z:, O) = Zc maxiem(mt)P(Otc,i)
e Maintain safe headway: fi(z,,0,K,V)=>,P(O;)- Eg, [h(x¢, Vii)]

e Considers relative velocity & stopping distance

ANYU
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Trajectory Scoring - Comfort

e Penalize jerk (sudden changes in acceleration)
e Penalize lateral acceleration (unpleasant sideways motion during turns)

e Encourage smooth, human-like driving

ANYU
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Learning Strategy



Two-Stage Training Overview

Stage 1 (Multi-task Learning): Train Online
Map, Dynamic Occupancy, and Routing.

Stage 2: Freeze above, train Planner Scoring

weights.

ANYU

Learning Strategy

Stage 1 Stage 2
Train Online Map, Freeze N Train Planner

Dynamic Scoring weights
Occupancy, and
Routing

46



Stage 1 - Multi-task Learning

Combined loss: To do so, we linearly combine the mapping loss LM, occupancy loss LO, motion loss LK,V , and
routing loss LR L:L0+)\K,VLK,V+)\MLM+)\RLR
Hyperparameters:
Axyv = 0.1, Apr = 0.5, Ag = 2.0
Each component trained with proper distribution loss:
e Map: NLL (Bernoulli, Laplacian, Von Mises)
e Occupancy: Cross-entropy + Hard Negative Mining

e Motion Modes: Unsupervised cross-entropy

° Motion Vectors: Huber loss

ANYU
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Stage 2 - Max-Margin
Trajectory Scoring

Goal: Penalize low-cost unsafe trajectories

Use Max-Margin Loss:

Ly = max [mm ~ 1)+l Y () - i) + zz>}

+

Encourages expert-like, safe behavior.

ANYU
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Experlmental
Evaluation




Experimental Setup

Dataset: URBANEXPERT

5k train /500 val / 1k test
25s per scenario
33x more driving data than KITTI

Geographically non-overlapping splits

Baselines:

ANYU

Imitation Learning (IL)

Conditional Imitation Learning ( CIL)
Trajectory Classification(TC)

Neural Motion Planner(NMP)

Conditional Neural Motion Planner(CNMP)

Evaluation Criteria

e Planning performance
e Safety & comfort metrics
e Route-following accuracy

° Collision and off-road rates

50



Closed-Loop Evaluation

e Realistic LIDAR simulation with dynamic actors
e 164 curated scenarios, 18s each
e Actors adapt reactively using Intelligent Driver Model

e Measures: Success rate, L2 to expert, Progress (m/event), Comfort

Model | Success | OffRoute L2 Progress per event (m) 1 Comfort

(%)t (%) | (m)d any collision off-road off-route oncoming | jerk(73) | latacc. (33){

event

IL 0.00 99.39 | 39.10 15.69 44.49 36.40 30.28 65.18 98.99 0.91
CIL 0.00 99.39 | 35.53 15.85 38.50 34.68 35.64 54.58 52.88 0.81
TC 12.80 67.07 | 30.35 51.17 127.87 288.07 105.26 329.90 3.15 0.25
NMP 22.56 64.02 | 27.95 69.83 331.81 721.74 10470  1229.82 3.04 0.14
CNMP 21.34 47.56 | 27.45 74.85 158.85 646.49 198.28 543.32 2.96 0.26
MP3 | 74.39 ‘ 14.63 ‘ 12.95 ‘ 21840 1037.08  1136.49 409.34  1465.27 | 1.64 0.10

ANYU



Open-Loop Evaluation

e Plans are made from expert’s state » useful for analysis but less realistic
e |Land CIL show good imitation but poor safety

° MP3 still most robust and safest

Model | Collisions (%) | L2(m) | Progress(m)| OffRoute(%) OffRoad(%) Oncoming(%) | latacc.(iz)  Jerk (13)

0-3s 0-5s | @3s @55 0-5s 0-5s 0-5s 0-5s 0-5s 0-5s
IL 217 954 | 1.36 3.77 23.62 5.05 4.46 3.05 1.00 247
CIL 220 10.15 | 1.38 379 23.58 5.16 5.28 3.64 1.10 2.60
TC 1.72 695 | 202 434 22.26 2.68 0.28 0.62 1.47 748
NMP | 0.83 518 | 1.75 447 23.09 1.59 0.00 0.21 1.14 3.98
CNMP | 1.03 545 | 1.62 4.02 22.99 0.14 0.07 0.14 1.28 3.97
MP3 [ 021 207 | 171 454 2515|015 042 0.09 | 123 1.88

ANYU



Qualitative
Results




Scenario 1: Keep Lane

Scenario 1 - Keep Lane i s

I Intersections

\ l Reachable lanes

e SDVinstructed to go straight at intersection

Dynamic obstacles

e Pedestrians emerge from occlusion Al lmeciory:
Vehicle occ.

Os 5

Pedestrian occ.

Os "N 5s

Map and Route
|

e Model predicts multimodal pedestrian motion &
stops safely

Bicyclist occ.
Os 5s

Motion Planning
MIC SDV GT traj

Occupancy

SDV planned traj

Predicted Route
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Scenario 2 - Turn Left

e Complex intersection with dense actors
e Route prediction aligns with command

e Planner progresses smoothly through traffic

NYU

Scenario 2 -

Turn Left

T
{
}/
{

Online map

Drivable area

Intersections

Reachable lanes

Dynamic obstacles
GT trajectory

Vehicle occ.
Os N 5s

Pedestrian occ.
Os N 5s

Bicyclist occ.
Os N 5s

Motion Planning
SDV GT traj

SDV planned traj

Predicted Route
a
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Scenario 3 - Turn Right

¢
1

Route prediction successfully captures the turn
SDV avoids surrounding dynamic agents

Follows expert-like trajectory with safe margin

Scenarlo 3 - Tarn nght

\/

Online map

Drivable area

Intersections

Reachable lanes

Dynamic obstacles
GT trajectory

Vehicle occ.
0Os I 5s

Pedestrian occ.
Os N 5s

Bicyclist occ.
Os 5s

Motion Planning
SDV GT traj

SDV planned traj

Predicted Route
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Conclusion

Neural Motion Planner
End-to-End Mapless Driving
e Sample-based trajectory generation
e Directly processes raw LIDAR data

e Optimized for safety, comfort, and goal progress
e Nodependency on HD maps

Key Results
Interpretable Probabilistic Representations

' . . . ° +3x success rate over baselines
e Online map: drivable areas, lane structure, intersections

' ‘ ‘ e Most comfortable & safest trajectories
e Dynamic occupancy: future motion & uncertainty

e Robust generalization in closed-loop simulation

e Used as cost functions in planning without fine-tuning

A NYU s






Questions?

ANYU



EANvu \

Planning-oriented
Autonomous Driving

Presented by Raman Jha
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Introduction

UniAD is a unified framework for
autonomous driving that integrates
perception, prediction, and planning tasks
into a single end-to-end system.

Unlike traditional modular approaches,
UniAD adopts a planning-oriented
philosophy, ensuring that all preceding tasks
contribute directly to safe and efficient
driving decisions.

The framework uses query-based interfaces
to connect modules, enabling flexible feature
sharing and robust task coordination

A NYU
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: . . (¢.1) Vanilla Solution
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o D | b —— e eseusss
Mol '\‘8 O e /j [ Module | ] [ Modu]cl] i Planner E
(a) Standalone Models | (¢2) Explicit Design
@ T@ [ Motion ] [()ccupanc_v} [ Plannerl
= |
H

: (¢.3) Planning-oriented Design (Ours)
(=)

(b) Multi-task Framework

perception prediction planning

(¢) End-to-end Autonomous Driving



Background

Traditional autonomous driving systems often rely
on standalone models for individual tasks or
multi-task learning paradigms with separate heads,
which can lead to cascading errors and poor task

coordination.

End-to-end approaches have emerged to unify
perception, prediction, and planning but often lack
interpretability and robustness in dynamic urban

environments.

UniAD addresses these challenges by explicitly
modeling intermediate representations (e.g.,
occupancy maps, agent trajectories) and
optimizing the system for planning as the ultimate

goal.

ANYU
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Model Architecture

A O Ego-vehicle Query
BEV Feature

B
-5
Multi-view Bird’s eye view Mapd J
Vision-only Input Feature o
. Mangner
B S

\

Agent-level
Feature
Motion
— —>
Former K
A [
M Motion Q

OccFormer ] =3

Scene-level
OC‘C Q Feature

Prediction S

|

L Planning =



Motionformer

e  Structure: MotionFormer consists of N stacked
transformer layers for agent-agent, agent-map, and
agent-goal interactions.

e Modules:

e Agent-agent and agent-map interactions use
standard transformer decoder layers.

e  Agent-goal interaction is based on the

deformable cross-attention module. [ o=

e Inputs:
. A t-A t Agent-Map A t-Goal
e ITs: Scene-level anchor endpoint. bilar e eraction ke
. K&V K&V 1e Qs TV
e ITa: Clustered agent-level anchor endpoint. B
PE + MLPA- o (mm ]

e  x”0o: Current position of the agent. Agent query Qs Map query 0 I BBV
e X TI-1: Predicted goal point from the previous layer. | e | | M“’(*ia | [ meeecy | | MLP(T(_,) |
e  Qctxl—1: Query context from the preceding layer. (5 ] [ ) [ 2 ] i | (i ]

ANYU
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OccFormer

Structure: OccFormer comprises To sequential blocks,

where each block predicts the occupancy for a specific Block t

frame within the temporal horizon.
Features Incorporated:
e Dense Scene Features: Encoded from BEV
representations for global scene understanding.

[ MLP

e Sparse Agent Features: Derived from track query

(QA), agent position (PA), and motion query (QX)to [ mvLp.

o — — . . T ——————————

Lo
Cross-attn I

Unflatten

e

inject agent-level knowledge.

Qa
Instance-Level Occupancy: 5
e  Generated via matrix multiplication between ,

agent-level features and decoded dense features at

[ Upscale ]

S———_—_—rte e, — e

the end of each block (O"At) (

MLP

A NYU
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e Inputs:
e QegoA: Ego-vehicle query from the tracking module.

e Qegoctx: Ego-vehicle query from the motion forecasting module.

e High-level command embeddings indicating navigation directions
(e.g., turn left, go straight).
e Processing:

B

e Queries are encoded via MLP layers and aggregated using = Kevl E;Et\e/:;:g;e .
max-pooling to select salient modal features. BEV:feHImR v

e  BEV feature interaction is performed using stacked transformer Leamed PE (C)—
decoder layers (N layers). ———

. ou =

e Predicts future waypoints () for ego-vehicle planning while bl ——

optimizing trajectories to avoid collisions based on predicted { egoA] [ ego D]
A t

occupancy maps (O%). =

A NYU



Loss Function

Ll = mek + Lmap' L2 = Ltrack T Lmap T Lmotion + Locc + Lplan'

Stage One Loss Function Stage Two Loss Function
Combines tracking loss (Hungarian loss with Focal Integrates all task-specific losses (tracking,
and L1 components) and mapping loss (Focal, L1, mapping, motion forecasting, occupancy

GloU, and Dice losses) to pre-train perception tasks: prediction, and planning) for end-to-end training

ANYU :



Qualitative Results

CAM_FRONT_LEFT CAM_FRONT CAM_FRONT_RIGHT BEV (TOP VIEW)

Map |
Wy — i
N/
KEEP FORWARD st ——— b
CAM_BACK_LEFT CAM_BACK CAM_BACK_RIGHT k N —s

e Task Results: Predictions from motion and occupancy modules are consistent, visualized in
surround-view images and BEV.
Ego-Vehicle Behavior: Ego vehicle yields to a front black car, demonstrating safe decision-making.
Agent Representation: Each agent is illustrated with a unique color for clarity.
Trajectory Visualization:
e Image View: Displays top-1 trajectory from motion forecasting.
e BEV View: Shows top-3 trajectories for better spatial understanding.

NYU



Quantitative Results

Method AMOTAT AMOTP] Recallf IDS| Method Lanest Drivablet Dividerf Crossing?
Immortal Tracker' [93] | 0.378 1119 0478 936 VPN[72] 180 760
ViP3D [30] 0217 165 0363 - ;izf/ {:761 : ;23 ;;g
QD3DT [36] 0242 1518 0399 - omer [35] [ T . :
MUTR3D [104] 0294 1498 0427 382 BE,VC;)“ [103] ™ 3‘5’6 1;;
UniAD 0359 1320 0467 906 _UmA - d B
Multi-object tracking Online mapping
e  UniAD Performance: Outperforms previous end-to-end e Performance: UniAD achieves competitive results against
MOT techniques with image inputs on all metrics. state-of-the-art perception-oriented methods with
e Comparison Note: Tracking-by-detection methods with comprehensive road semantics.
post-association are implemented using BEVFormer for e Segmentation Metric: Reports segmentation loU (%) for
fair evaluation. lanes, drivable areas, dividers, and crossings.
(gfl NYU e Comparison Note: Methods are implemented with 10

BEVFormer for fair evaluation



Quantitative Results

Method minADE(m)| minFDE(m), MR| EPA?
PnPNet' [57] 115 1.95 0.226 0.222
ViP3D [30] 2.05 2.84 0.246 0.226
Constant Pos. 5.80 10.27 0.347
Constant Vel. 2.13 4.01 0318 -
UniAD 0.71 1.02 0.151 0.456

Motion forecasting.

Performance: UniAD significantly outperforms prior
vision-based end-to-end methods across all metrics.
Comparative Settings: Evaluated with two vehicle modeling
settings—constant positions and constant velocities.

Reimplementation: Prior methods reimplemented with

BEVFormer for fair comparisons.

NYU

Method IoU-n.t IoU-ft VPQ-nt VPQ-f.t

FIERY [35] 504 367 50.2 29.9
StretchBEV [1] | 555  37.1 46.0 29.0
ST-P3 [38] : 38.9 - 32.1
BEVerse' [105] | 614 409 54.3 36.1
UniAD 634 402 547 3.5

Occupancy prediction

Improvement in Nearby Areas: UniAD achieves significant gains
in near evaluation ranges (30x30m), critical for planning
accuracy.

Evaluation Ranges: Results are reported for "n." (near) and "f."
(far, 50x50m) evaluation ranges.

Training Note: Models trained with heavy augmentations yield
improved occupancy prediction metrics. 1



Quantitative Results

ANYU

L2(m)l Col. Rate(%).)
Methor! 1s 2s 3s Avg. ls 2s 3s Avg.
NMP' [101] - - 231 - - - 1.92 -
SA-NMP' [101] - - 2.05 - - - 1.59 -
FF' [37] 055 120 254 143 | 006 0.17 107 043
EO' [47] 067 136 278 160 | 004 009 088 0.33
ST-P3 [38] 1.33 2.11 290 E2ki 023 062 127 piil
UniAD 048 096 165 103 | 005 017 071 031
Planning

e Performance: UniAD achieves the lowest L2 error and collision rate across all time intervals.

Comparison: Outperforms LiDAR-based methods in most cases, demonstrating superior safety.
Validation: Results verify the effectiveness of integrating motion and occupancy prediction for
safe planning.
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Ablation Study

D Sm' 1?::: EnQ N0, | mdDE| mDE) M mm"‘E?ET
| %m0
1|y IR
S 0 0 o
Voo T s o
S e

Cross, At Mask BEV Col.  Occ, LY Col. Rate)
Dl v vk | 0t WUEE VRt WOE D s s s b
| owoSs | 0409 171[0% 085 16!
1|y 0o SN 1/ 0L 181[0%5 071 18
Ol A I B TR S N A A [ VR R E A L W UIRE
A A TI I V | R  A AA I I T A T L

Ablation for designs in
the motion
forecasting module

NYU

Ablation for designs in

the occupancy
prediction module

Ablation for designs
in the planning

module
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Strengths

NYU

UniAD integrates perception, prediction, and
planning into a unified end-to-end framework
for enhanced coordination.

Query-based design enables flexible feature
sharing across tasks, improving accuracy and
task interaction.

Achieved state-of-the-art performance in
motion forecasting, occupancy prediction,
and safe planning metrics.

Reduces cascading errors and enhances
interpretability through explicit intermediate
representations.

Obstacles avoidance visualization



. ) CAM_FRONT_RIGHT

Weakness

e High computational
complexity limits deployment
on resource-constrained
platforms.

e Struggles with long-tail
scenarios like large trailers or
poorly lit environments.

e Adding more tasks may
increase system complexity
and training difficulty.

fensa) .
o

]

]

@

plaady =
o

KEEP FORWARD

KEEP FORWARD
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Applications in
Embodied environment

1. Urban Autonomous Driving: Real-time navigation in
dense traffic, handling tasks like obstacle avoidance
and pedestrian yielding.

2. Simulated Driving (CARLA): Testing UniAD's
performance in diverse traffic scenarios such as
intersections and roundabouts.

3. Warehouse Robots: Guiding autonomous robots for
dynamic obstacle avoidance and route planning in
warehouses.

4. Collaborative Driving: Coordinating vehicle-to-vehicle
communication for safe and efficient traffic flow.

NYU
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Result
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https://docs.google.com/file/d/1BFvGhVKeEE7LXsPdQUPjF11ihOIUaXm0/preview

Future Scope, and Extensions:

Conclusion:

e UniAD introduces a novel planning-oriented framework that unifies perception, prediction, and
planning tasks, achieving state-of-the-art performance across multiple benchmarks.

e The query-based design ensures effective task coordination and interpretability, paving the
way for safer and more robust autonomous driving systems.

Future Scope:

e Optimize the framework for lightweight deployment in real-time applications.
e Extend UniAD to include additional tasks like depth estimation and behavior prediction.
e Explore vehicle-to-vehicle communication for collaborative driving scenarios.

ANYU o
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' Embodied Learning & Vision Paper Presentation 28

EmbodiedGPT:
Vision-Language Pre-Training via
Embodied Chain of Thought

BY MU ET AL (2023): HTTPS://ARXIV.ORG/ABS/2305.1502]

By Jovita Gandhi 1


https://arxiv.org/abs/2305.15021

'=]' Recap

End-to-End Planning

e A process that spans the entire workflow or task, from initial input to
the final output, without relying on manual interventions or hand
crafted intermediate steps.

e Often used in Al, robotics & Machine Learning to describe systems that
directly learn or optimize a complete solution pipeline.



' Recap

Some definations in the paper

e Foundation Models: Large pre-trained model trained on broad, diverse data
at scale, designed to be adaptable to a wide range of down stream tasks with
minimal task specific tuning.

e Downstream Tasks: Applying the learnt general knowldge from pre- training
to do something specific. EQ: Nagivation to objects, “Bring me the apple”

e Egocentric Videos: 1 st person Point of view. Recorded with wearable cameras

e Low-Level control tasks: Requires precision & real-teim feedback. EQ: set
torque on joint 2 to 0.1 nm



| Qverview

Problem the paper addresses

e Embodied Al required egocentric data.

e Structured language instruction for precise planning requires high efforts and
costs.

e Less high quality embodied multi-modal data available

e Apply LLM's to field of robotics in a generalised manner

e Leverage the “chain-of-thought” capability for structured planning

e How to use the output language plan for downstream manipulation tasks in a
end-to-end manner.



I -1 Overview

Solution undertaken - overview

e Built a large scale embodied planning dataset: EQoCOT
 Created an EQoVQA dataset
e Based off of the datasets, presented end-to-end multi-modal embodied

foundation model called EmbodiedGPT.



' Detailed Breakdown

Current works & where they lack

e Models such as Uniter, Oscar, VinVL, & LIT are large scale foundation models
for vision language pre - training that freeze the image encoder.

e Whereas, Frozen & VGPT freeze the language model.
 Due to lack of open-source data for multi modal embodied planning, these

works struggle to perform details task decomposition and lack ability to

generate precise executable plans.



'-|' Detailed Breakdown

E m bOd ied G PT GOOI(r::wlif;te human-like

perception and interaction

<imgs>[Image/8de837d8.mp4]
How to do this task?

Assistant : Plans are A A 1
SEEp 1: grasp the h:ndle of ® Identlfy releVG nt ObJeCtS
Embodied Queries Text Queries t ;t:przn?:;ﬁﬁvih:v::ndi:rout

, , ~\ Graspchnane e analyse spatial relationships

- N i Pull out(handle)
Vision Embodied-Former — LaNZUAEE —» LLaMA

Transformer Mapping Embodied Planning

| o formulate detailed task plan

Human: Please give caption
of Video/8deB837d8.mpd

2 Assistant: A robot is .
e pronyt S Model features
N microwave Oven (]

Questions Video Caption

Global information ) Task description i .
e Examples e - e Pre-trained vision
I <imgs>[Video/8de837d8.mp4]

Instance information

Dialogue Memory _ What object is the robot

Assistant: The microwave operating?

transformer as the visual

“%  CNN w/ global Policy Video Q&A
average pooling Mapping

* ¢<imgs>[Video/8de837d8.mp4] el enCOder

What object is the robot

ﬂ e operating? .
E m ‘ - TR e e Pre trained LLAMA model as
n D [mststone ed | | the vision model

Physical Manipulation Multi-turn Dialogue




) The cycle of events

Embodied Queries Text Queries
v v

- e —» Embodied-Former —» LAnpuags
Transformer Mapping

}

Instance information

Global information ———&%)

“ CNN w/ global Policy
average pooling Mapping

—

Text prompt
Questions
Task description
Examples
Dialogue Memory

' SN

Physical Manipulation

EmbodiedGPT

e compact visual features are extracted from
output of vision model.

e Mapped to Ilanguage modality through
language mapping layer, and embeddings
sent to the frozen LLaMA for visual caption,
visualQA and embodied planning.

e This is used to query highly relevant features.

e Which are then utilised to generate low level

it tum iogue .. control commands for task execution through

a downstream policy network.

Addiotnally, to enhance performance, for generalisability, a novel video-language pre-training paradigm that

8

leverages a cognitive chain of thought to prdouce planning from egocentric video inputs was introduced.



' The MATH
hV—J

The math of the Architecture

/ /
£ Ll voery

Zglﬂb&l Zinstance — 8 33v1 y Lplan, yquerv

VIS ‘II;VIS : yVIS

a = g(Zinstancea Zglobal)

Whoa! Lots of info, let’s break this down e



'-)! The MATH

Visual Input processing Visual Language Mapping

S() Embodied Former M : z — 2z BIEEIgIeE o)y
3 Image/video frame tokens / , : :
ge/ Project Z to match LLM input

dimension. Ouptut z' : soft

E. applies visual feature extraction visual prompts for the frozen

language model

Text Input processing

E. applies text feature extraction

Cross-Modal interaction
Learnable embodied query embeddings

Output of compact cross modal embedding
RN XD after interacting with the cross attention with
visual features, and the self attention with text
features 10

Planning Generation

Frozen LLM receives z' + text
prompt and outputs chain of
thought embodied plan




'-)! The MATH

Instance Feature Querying for control

Zinstance — g(mviS: Lplan; 'yquer}r)

Use the inputs to output task relevant
instance level features

Global feature extraction
Zglobal Use pre-trained ResNet-50 with global

avaerage pooling to output scene context

Low-level Action Generation
a=4gd (Zinstancea Zglobal)

oolicy network g(.), an MLP takes the inputs and
putputs the action command, eg: joint angles,
velocities

11



')! Training settings

Training set up for EmbodiedGPT

e ViT-G/14 image encoder from EVA-CLIP and a LLaMA-7B language model
are used, both kept frozen during vision-language pre-training.

e The language model is fine-tuned beforehand on instruction-following
datasets (ShareGPT and GPT-4 generated data), and model weights are
converted to FP16 to improve training efficiency.

12



Stages

e Stage 1& 2: Focus on pre training in basic cognitive and responsive skills

) The Training Process: 3 stages, that incrementally develop reasoning and planning capabilities

e Stage 3: Involves training the embodied Al task with egocentric video-text data on EgoCOT.

Stage Objective Datasets Training Focus
1 Image-text conversation alighment - COCO Caption [44] e Train Embodied-former and
pre training - CC3M (595K filtered pairs) [45] language projection
- Re-captioned LAION-400M (491K) e Freeze vision/language model
via BLIP-2 [17] parameters
2 Enhance complex sentence - Complex_Reasoning_77k e Update language projection and
understanding and reasoning - LLaVA_Instruct_150K prefix language adapter
3 Train on embodied Al task with - EgoCOT e End-to-end training on

egocentric video-text data

egocentric vision-language
grounded tasks

13



... I (] (] A ® o (] om0y ®
=)' The Training Process: 3 stages, that incrementally develop reasoning and planning capabilities

Stage 3: Embodied “chain-of-thought”
training with EoCOT

e Vision Transfer with Conv3D: Adapt the pre-trained image encoder from stage 2 to videos using
Conv3D (time offset = 2, 8 frames total).

e Chain-of-Thought Prompting: Introduce vision-language pretraining with structured prompts
that include task description, planning steps, and verb-noun action summaries (see Listing 1).

e Fine-tuning for Temporal Reasoning: To avoid overfitting, fine-tune the patch embedding,
language projection, and prefix adapter to better capture temporal information.

Listing 1: Prompt we used for chain-of-thought pre-training.

14



£ creation of the EgoCOT & EgoVQA Data Set

EgoCot creation

e Obtained from Ego4D dataset (9,645 untrimmed videos of various

durations from 5 seconds to 7 hours]|

e 2 stages of data cleaning:
o filtered videos with missing or short narrations, and with unsure tags

o excluded videos without human-object interaction
e Ultimately left with 2927 hours of video [3.85 million narrations, from 129

d to generate plans with chain of thought £ h task, and then extract

[ ] [ ]
dlfferent Scend rIOS ] detailed actions (collocation of nouns and verbs) from the plan.
The action can be of the following form:

[action_name], eg., turn left;
[action_name] argumentl, eg., pick up(apple);
[action_name] argumentl argument2, eg., put(apple,
Task: pick up a cup on the table

plans: grasp the handle of the cup with the gripper and 1lift it up

Actions:

table)

1. grasp(handle of the cup, gripper)
2. 1ift up{cup)

Listing 2: Prompt we used for creating EgoCOT dataset. 15




£ creation of the EgoCOT & EgoVQA Data Set
hV—J

More math/notations

e To pair each narrated sentence Ti, with a relevant video segment Vi, first

use its timestamp ti from the Ego4D dataset.
e Then calculate the average time gap between narrations in a video as (Bi*,

and normalize it using a global scaling factor aa(set to 4.9 seconds).
e The start and end of each clip are defined as JiEEEEEN AP RE AR PRI

ensuring each segment captures the action context around the narration.

e This method automatically aligns video segments with narrations without
manual annotation. These segments are then used to generate chain-of-
thought plans and action labels via ChatGPT.

Adjustable parameter equal to the average temporal 16
distance between consecutive narrations in a given video




') Creation of the EQOoCOT & EgoVQA Data Set

Fmally, similarity score

e To pair each narrated sentence Ti, with a relevant video segment Vi, first
use its timestamp ti from the Ego4D dataset.
e Then calculate the average time gap between narrations in a video as (Bi*,

and normalize it using a global scaling factor aa(set to 4.9 seconds).

e The start and end of each clip are defined as
ensuring each segment captures the action context around the narration.

e This method automatically aligns video segments with narrations without
manual annotation. These segments are then used to generate chain-of-
thought plans and action labels via ChatGPT.

Adjustable parameter equal to the average temporal

17

distance between consecutive narrations in a given video




=j' Creation of the EJoCOT & EgoVQA Data Set

Finally, similarity score : Post Procedure

e To ensure video-caption-plan quality, compute similarity scores between

video frames and text using CLIP embeddings. Each frame I|i and
corresponding text Ti are encoded into feature vectors Yli and Yt, and their

cosine similarity is calculated as S(yT:yI) _ H T"‘HI H
yrliyrI

e Since each video has multiple keyframes, they compute an ensemble
similarity score across all frames:

e This averaged score E(V,T), ensures robust alignment across frames and is
used to filter out mismatched video-caption-plan triplets, keeping only .
high-quality examples for the EQoCOT dataset.



' Creation of the EQOoCOT & EgoVQA Data Set

Prompt to create EQOVQA dataset

e For each caption in Ego4D dataset, ChatGPT was used to generate five QA

pairs.

Please ask some questions accroding to the verbs and nouns in the sentence.

For example, in this sentence "a man is picking up a cup", the verb is picking up and the
noun is cup, therefor questions can be "what is the object the man is picking up?"
or "what operation is performed on the cup?".

Then You need to give the answer.

input: a man is picking up a cup
question: What is the object the man is picking up
answer: The cup

Listing 3: Prompt used for creating EgoVQA dataset.

19



- ! Experiments & Evaluation

Evaluation Metric
Object Recognition
Accuracy

Spatial Relationship
Understanding

Level of Redundancy
in the Answer

Reasonability of the
Planning

Executability of the
Planning

Evaluation metrics

Explanation

This metric measures the ability of a system to accurately identify objects
from images or videos. A higher accuracy indicates that the system can
correctly recognize the objects present in the given visual data.

Spatial relationship understanding refers to the system’s capability to
accurately discern the spatial relationships between objects in a scene. It
evaluates whether the system can determine the relative positions, orien-
tations, distances, and other spatial attributes of objects with precision.
The level of redundancy in the answer assesses the amount of unneces-
sary or repetitive information present in the system’s response. Lower
redundancy indicates that the system provides concise and non-repetitive
answers, which is generally preferred as it reduces verbosity and im-
proves clarity.

The reasonability of the planning metric gauges the logical coherence and
appropriateness of the system’s planning process. It examines whether
the system’s generated plans are sensible and align with the given goals
or objectives.

This metric evaluates the feasibility and practicality of the system’s gen-
erated plans. It assesses whether the plans can be executed successfully
in the real world.

Table 3: Explanation of Evaluation Metric

20



'—=J' Experiments & Evaluation

Experiment1: Eval on Image input tasks

 What was evaluated?
o Quality of generated captions and planning with given image

Model Object(T) Spatial(T) Redundancy(]) Plan Reasonable(1) Plan Executable(?)
Minigpt4 5.6 4.8 4.4 4.5 4.8
LLaVA-7B 1.3 74 3.9 7.5 6.6

LLaVA-13B 8.5 8.6 3.4 8.4 7.6
EmbodiedGPT 8.4 8.8 2.6 8.8 8.4

Table 1: Generate Quality Evaluation on image input tasks.

e Where did these numbers come from?

o User study with 30 participants evaluated image captions and embodied plans
generated by different models. Participants rated outputs from 10 MS-COCO
images, 5 simulated embodied scenarios, and 5 real-world planning tasks across
five criteria on a 1-10 scale. The average scores are reported in Table 1. 21



'—=J' Experiments & Evaluation

Experiment1: Eval on Image input tasks

Human: give a detailed explanation of the image, describe the scene and the observed objects, and spatial relationships in this image. Where should
I go if [ wish to find a coat hanger in this image?

EmbodiedGPT:

1. The image is of a doorway with a clock on the wall above the door and a picture hanging on the wall.

2. There is a coat hanger on the floor, placed towards the lett side of the scene.

3. The coat hanger is positioned near the right side of the doorway, and it is visible to the left of the woman's picture.

4. The coat hanger is near the edge of the image, and it is positioned in a way that it does not obstruct the view of the clock or the woman's picture.
Visual ChatGPT:

The image shows a bathroom with a clock on the wall and a toilet in the comer. The clock is white and has a black face with two hands owalls are

tiled and there is a window in the room.
The image shows a bathroom with a clock and a toilet. There is no coat hanger visible in the image.

Figure 3: Comparison between EmbodiedGPT and VisualGPT in the question-answering task.

e Visual ChatGPT fails to find coat hanger due to its relieance solely on caption model for
extracting visual information
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Experiment 2: Eval on Video input embodied Al Tasks

e What was evaluated?
o Recognition ability of videos & planning abilites of EmbodiedGPT from
embodied control tasks on standard embodied Al benchmarks
e How was it evaluated?
o Benchmark models are Franka Kitchen and Meta-World
o Meta-world requires complex object manipulation skills, eg: ring on a
peg, picking and placing etc
o Franka kitchen focuses on sliding open a door, opening d
cabinet/microwave
e Results: EmbodiedGPT accurately interpret the embodied control task and

provided a step-by-step planning =
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Experiment 2: Eval on Video input embodied Al Tasks

Human: describe this video 1n detail

Assistant:
The video displays a red robotic arm, a red cylinder, and a ring. The cylinder is positioned on a flat surface, and
the ring is positioned next to it, with their centers aligned. The robotic arm is then used to pick up the ring.
——— Carefully, the center of the ring is aligned with the center of the cylinder, and the ring is slowly lowered onto the
cylinder, joining the two together. The final step is to inspect the join using the robotic arm, ensuring that it is

secure and without gaps.
Human: can you write a detailed plan )

for the task the robot is performing? ~s

Assistant:
1. Position the first object, a cylinder, on a flat surface.
2. Position the second object, a ring, next to the red cylinder, with their centers aligned.

— 13, Use the robotic arm to pick up the ring.
' 4. Carefully align the center of the ring with the center of the cylinder.
‘5 Slowly lower the ring onto the cylinder, joining the two objects together.

Figure 4: Example of video input embodied Al tasks on Meta-World benchmark. EmbodiedGPT 24
accurately analyzes embodied control tasks in demonstration videos and provides precise planning




'—J! Experiments & Evaluation
~~

Experiment 2: Eval on Video input embodied Al Tasks

e What happens next?
o The output planning is fed into the Embodied-former module of

EmbodiedGPT to query highly relevant features for use as inputs in the

policy network and the low-level actions are generated by the policy
network to interact with the environment
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Experiment 3 : Eval on embodied control tasks

e \What was evaluated?
o Compare model with SOTA [R3M]| & an ablation version called [BLIP-

2|Ego4D], and is only fine tuned on the video captioning task, has the
same parameters as EmbodiedGPT

o The policy network was trained using few-shot learning with either 10 or
25 demonstrations per task

o Performance is evaluated over 100 trials using visual observations
across b5 tasks, b seeds, and 2 camera views.

e What was found?
o EmbodiedGPT consistently outperforms baseline models, highlighting

the effectiveness of training with EQoCOT. =
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Experiment 3 : Eval on embodied control tasks

Bl BLIP-2(EgodD)
B R3M
1 Embodied-gpt

Success Rate

cabinet left cabinet right micro_left micro_right knobs_left knobs_right light_left light_right sdoor_left sdoor_right
(a) Performance comparison in Franka Kitchen with only 10 demos.
BN BLIP-2(Ego4D)

B R3M
@O EmbodiedGPT
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]

bin_left bin_right button_left  button_right assembly left assembly right drawer_left drawer_right hammer_left hammer_right

(b) Performance comparison in Meta-World with only 10 demos.

Figure 5: Performance of EmbodiedGPT in low-level control tasks with 10 demonstration demos.
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Experiment 3 : Eval on embodied control tasks

I BLIP-2(EgodD)
B R3M
1 Embodied-gpt

cabinet_left  cabinet_right micro_left micro_right knobs_left knobs_right light_left light_right sdoor_left sdoor_right

(a) Performance comparison in Franka Kitchen with 25 demos.

Success Rate

I ELIP-2(EgodD)
- ngﬂ
O EmbodiedGPT

bin_left bin_right button_left button_right assembly left assembly right drawer left drawer right hammer left hammer right

(b) Performance comparison in Meta-World with 25 demos.

Figure 6: Performance of EmbodiedGPT in low-level control tasks with 25 demonstration demos.
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- -1l Conclusion

Finally, almost there!

e Key Takeaways:

O

Introduce EmbodiedGPT, an end-to-end multi-modal foundational

model for embodied Al.

Enables agents to perform step-by-step planning and low-level action

execution.

Built on a large-scale dataset, EQOCOT, with chain-of-thought planning

annotations.
Uses prefix tuning to efficiently train high-qua
Seamlessly integrates high-level planning wit

Ity planning behavior.

N low-level control.
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Il Conclusion
-~

Finally, almost there!

e Key Takeaways:
o Achieves state-of-the-art or comparable performance on multiple
embodied tasks.
o Limitations:
= Freezes vision and language model weights due to compute limits.
= Highly reliant on textual inputs and may not fully exploit visual cues
o Future work: Joint training and adding modalities like speech.

e EQOCAT Data set: _https://github.com/EmbodiedGPT/EgoCOT Dataset?
tab=readme-ov-file

30
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' Embodied Learning & Vision Paper Presentation

Thank you!

BY MU ET AL (2023): HTTPS://ARXIV.ORG/ABS/2305.1502]

By Jovita Gandhi

31


https://arxiv.org/abs/2305.15021

	Sergey Sedov BPO in World Models
	Pratyaksh Prabhav Rao DINO WM
	Slide 1: DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning
	Slide 2: Introduction
	Slide 3: World Models
	Slide 5: Related Works
	Slide 6: Challenges
	Slide 7: Challenges
	Slide 8: Problem Formulation
	Slide 9: Methodology
	Slide 10: Methodology
	Slide 11: Results
	Slide 12: Can it be used for Visual Planning ?
	Slide 13: Can it Generalize to Unseen Scenarios?
	Slide 14: Conclusion
	Slide 15: Thanks!

	Rooholla Khorrambakht
	Mrunal Sarvaiya DiffMPC
	Sushma Mareddy MP3
	Raman Jha UniAD
	Jovita Gandhi EmbodiedGPT

