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Main questions that we are going to answer

1. How to train an Actor in World Models? DreamerV2 example.                                      
What are the trade-offs of policy learning in model-based RL methods?

REINFORCE vs Backpropagation-based Policy Optimization (BPO)

2. Why don’t Transformers succeed in current World Models applications?

3. When are backpropagation-based policy gradients unstable?

4. Can we improve something in terms of policy gradient bounds?



World Models recap: World Model Learning
DreamerV2
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Train jointly on: image reconstruction

DreamerV2



World Models recap: World Model Learning

Train jointly on: image reconstruction, 
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World Models recap: World Model Learning

Train jointly on: image reconstruction, 
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World Models recap: World Model Learning

Train jointly on: image reconstruction, 
reward prediction, continue prediction, 
dynamics. 
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World Models recap: Actor & Critic Learning
DreamerV2



World Models recap: Critic Learning

Critic is trained with MSE loss on λ-target of value function:

Intuitively, it is a weighted average of n-step returns for different horizons, where 
longer horizons are weighted exponentially less.



World Models recap: Actor Learning

Policy learning objective is much more interesting: it combines Reinforce policy 
gradient estimate with dynamic backpropagation of value gradients:

What does it mean? Let’s break it down.



Monte-Carlo Policy Optimization

The goal of the policy optimization is to find θ, such that:

We seek to estimate                   in order to maximize the reward.

In model-free RL we don’t know the transition function, and REINFORCE 
algorithm saves us due to Policy Gradient Theorem:

where we sample G_t from real sample trajectories. From Lil’Log



Backpropagation-based Policy Optimization

However, we deal with model-based RL methods, as we model the transition 
function using the World Model itself:

It means that besides using REINFORCE, we can recursively propagate the value 
gradient to the policy model through transition function f!



Backpropagation-based Policy Optimization

There’s no gradient flow from actions to states - authors consider stop-gradient case:



Backpropagation-based Policy Optimization

Dynamics model loss:

Policy model (Actor):



REINFORCE or Dynamic Backpropagation (BPO)?

DreamerV2 Actor loss combines both REINFORCE and BPO due to the trade-off:

- REINFORCE: requires Monte Carlo sampling of full trajectories, reward signal 
has no bias, but high variance, low sampe efficiency.

- Backpropagation-based Policy Optimization: low reward variance, but has 
bias due to straight-through gradients in World Model.



REINFORCE or Dynamic Backpropagation (BPO)?

DreamerV2 Actor loss combines both REINFORCE and BPO due to the trade-off:

- REINFORCE: requires Monte Carlo sampling of full trajectories, reward signal 
has no bias, but high variance, low sampe efficiency.

- Backpropagation-based Policy Optimization: low reward variance, but has 
bias due to straight-through gradients in World Model.

Is bias the main drawback of BPO? The paper analyzes the following question: 
when are BPO recurrent gradients unstable?



Transformers in World Models: History World Models



History World Models

History World Models condition on the full history of states and actions:



Policy Gradient bound for HWM

Even if the gradient of transformer HWM is bounded, the policy gradient may grow 
exponentially w.r.t. H, due to circuitous gradient paths:

All bounds are tight



Action World Models

Authors aim to find the proper application of Transformers in World Models.       
They suggest conditioning on action sequences only:



Action World Models

Policy Gradient of AWM with RNN transition model = Policy Gradient of MWM



Action World Models

Policy Gradient of RNN-based AWM can explode exponentially => MWM’s too!



Action World Models

Policy Gradient of Transformer-based AWM is bounded: 



Experiments: non-differentiable points

State-conditioning in World Models blows gradients in non-differentiable point:



Experiments: Double-pendulum chaotic dynamics



Experiments: Double-pendulum chaotic dynamics



Experiments: non-differentiable points

State-conditioning in World Models blows gradients in non-differentiable point:



Experiments: Myriad testbed

Optimal Control tasks to benchmark RL vs Optimization methods



Experiments: Myriad testbed

State-conditioning in World Models blows gradients in non-differentiable point:



That’s it! Thank you for your attention!



DINO-WM: World Models on Pre-trained Visual 

Features enable Zero-shot Planning

Paper presented by Pratyaksh Prabhav Rao

 

Gaoyue Zhou Hengkai Pan Yann LeCun Lerrel Pinto 
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Introduction

x Unable to generalize

Can we design our decision-making algorithm to effectively generalize to many tasks?

Boston Dynamics DeepMind NVIDIA
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World Models

Agile Quadrotor Flight [1]

[1] Hanover, Drew, Philipp Foehn, Sihao Sun, Elia Kaufmann, and Davide Scaramuzza. "Performance, precision, and payloads: Adaptive 
nonlinear mpc for quadrotors." IEEE Robotics and Automation Letters 7, no. 2 (2021): 690-697.

What is a world model?
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Related Works
Online Model-based 

Learning

✓ Data efficiency 

✓ Improve downstream control 

task

x World model conditioned 

on policy

x Cannot generalize

Offline World Models

✓ High fidelity 

✓ General purpose

x Conditioned on text

x Computationally expensive
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Challenges

Support test-time behavior 
optimization?

Trainable on offline, pre-
collected trajectories?

PineconeAI

[1] Williams, Grady, Brian Goldfain, Paul Drews, Kamil Saigol, James M. Rehg, and Evangelos A. Theodorou. "Robust Sampling Based 
Model Predictive Control with Sparse Objective Information." In Robotics: Science and Systems, vol. 14, p. 2018. 2018.

Model Predictive Control [1]
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Problem Formulation
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Methodology
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• Observation model remain frozen during training
• Extracts Patch level features 

DINOv2𝒐𝑡 ∈ ℝ𝐻×𝑊×3 𝒛𝑡 ∈ ℝ𝑁×𝐸

N denotes no. of patches
E denotes embedding dimension

                         

          
   

          
      

             

𝐻 denotes context length

• Decoder-only transformer
• Causal attention with auto-regression

Trained using teacher forcing to prevent collapse
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Methodology

• Cross-Entropy method (CEM) optimization ∁ = ||ො𝒛𝑇 −  𝒛𝑔||2

T is planning horizon
𝒛𝑔 denotes goal embedding
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Results
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Can it be used for Visual Planning ?



13

Can it Generalize to Unseen Scenarios?

• Dino-WM is compared against 

wide variety of baselines –

• IRIS [1] 

• DreamerV3 [2]

• TD-MPC2 [3]

• AVDC [4]

Model-based online learning 
with no reward prediction

Diffusion Model

[1] Micheli, Vincent, Eloi Alonso, and François Fleuret. "Transformers are sample-efficient world models." arXiv preprint arXiv:2209.00588 (2022).
[2] Hafner, Danijar, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. "Mastering diverse domains through world models." arXiv preprint arXiv:2301.04104 (2023).
[3] Hansen, Nicklas, Hao Su, and Xiaolong Wang. "Td-mpc2: Scalable, robust world models for continuous control." arXiv preprint arXiv:2310.16828 (2023).
[4] Ko, Po-Chen, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B. Tenenbaum. "Learning to act from actionless videos through dense correspondences." arXiv preprint arXiv:2310.08576 (2023).
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Conclusion
• DINO-WM models visual dynamics in latent space and generalizes to unseen 

simulation setups

• Enables zero-shot planning

• Limitations –
• DINO-WM assumes having access to offline datasets with sufficient state-action 

coverage
• No real-world experiments
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Thanks!

Questions?



Diffusion for World Modeling:  
Visual Details Matter in Atari

Rooholla Khorrambakht

rk4342@nyu.edu
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Relationship to Embodied AI

It is very hard to have robots in the wild because:

● Hand-crafting mathematical states often intractable  

● Objective/reward definition is ambiguous for many tasks
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System-1: Habits and Memorization

Memorizing the mapping from vision/observation to action:

Behavior Cloning Reinforcement Learning
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System-2: Planning and Search

We want to spend more compute for complicated/unseen tasks:

Yao, Shunyu, et al. "Tree of thoughts: Deliberate problem solving with large language models, 2023." URL https://arxiv. org/pdf/2305.10601. pdf (2023).
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System-2: Ingredients

Two main components needed to formulate the search/optimization:

Dynamics Model
(World Model)

N
N

Reward/Value Model

NN NN

|| . ||
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System-2 to System-1 Distillation

Deliberate thinking for everything we do it too expensive. Generalizable skills should be 
memorized like words in a language.

Learning In Imagination in RL

World+Reward 
Model Real World

Policy

More often Less often

World+Reward 
Model Real World

Bootstrapping in Behavior Cloning

Task and Motion 
Planner

Large Synthetic 
Dataset

Small Real 
Dataset 

Policy
Pre-Training Fine Tuning



Confidential Customized for Lorem Ipsum LLC Version 1.0

Diffusion for World Modeling: 
Visual Details Matter in Atari
(NeurIPS 2024)  
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Motivation

The paper is motivated by:

● Lossy compression in latent-dynamics models

● Diffusion models are very successful in high-fidelity image synthesis

Before DIAMOND
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Contributions

This is an important paper because:

● Computationally efficient world models leveraging NVIDIA EDM diffusion models.

● Joint training of state-of-the-art RL agents in the world-model’s imagination

● Demonstrating the world-model’s long rollouts on challenging 3D games

● Well-documented and reproducible implementation  
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Diffusion Recap

Diffusion models learn to reverse a progressive noising process (diffusion) to recover 
clean data points.

Diffusion Process Reverse Process (Also Diffusion)

Affine Process

P is known Gaussian Distribution

Denoising Score Matching
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Practical Choice of Diffusion Paradigm

EDM expands the design exploration space and propose efficient and modular 
preconditioning, noise scheduling, and integration methods.

Karras, Tero, et al. "Elucidating the design space of diffusion-based generative models." Advances in neural 
information processing systems 35 (2022): 26565-26577.

Diffusion Process

Preconditioning

Empirical schedule to 
keep the objective 
medium variance.
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Architecture

A CNN-based conditional autoregressive architecture is adopted:

U-Net

Adaptive 
Group Normalization
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RL Training in Imagination

Reinforce algorithm is used to train an agent entirely in the imagination of the world 
model:

World+Reward 
Model Game Engine

Policy

More often Less often

Update
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Qualitative Results

Authors train the world-model for Atari (jointly with an RL player) and Counter-Strike 3D 
game (off policy).
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Atari 100K Benchmark

Thanks to the world model (learning in imagination) the agent learns to play each game 
after 100K interactions as opposed to 50M steps.
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Choice of Diffusion Framework

Thanks to the world model (learning in imagination) the agent learns to play each game 
after 100K interactions as opposed to 50M steps.
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Number of Denoising Steps

Multiple number of steps is essential for capturing the multi-modality. The black boxer 
disappears due to mode averaging: 
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Limitations

DIAMOND is subject to the following issues:

● Computationally expensive
● No direct way of leveraging pre-trained encoders (e.g. DINO)
● Evaluation of RL training is only done for discrete action environments
● The architecture has a shallow memory (as deep as the input frames stack)
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Demo: Training on Custom Data

Next we trained this world model on a real-world robotic setup:

FlexivPy DiffIK Controller

4 Hours of Data While 
Interacting with the T
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Interacting with the Learned World Model
The world model captures the contact-rich interaction dynamics:

https://docs.google.com/file/d/1uDHagK9EZ2o5XM-VjPwOJWa9bMdDQkiM/preview


21

Global Planner
In addition to the world model, we also trained a diffusion based sampler to generate 
random interaction rollouts. We used this sampler to make a simple global planner:

World 
Model

32 Rollouts of the robot interacting with the T-tool

DINOv2
Patch Embeddings

Planner
(Simply select the best)

Diffusion 
Action Sampler

DINOv2
Patch Embeddings

Target ImageL2 
Loss

Global plan with terminal state 
Closest to the target.

Current State (camera)
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Local Planner
With the global plan as input, the MPPI planner closes the feedback between vision and 
the actions to make sure the robot stays close to the global plan:  

Multi-Mo
dal World 

Model

Rollout for each MPPI action

DINO 
Embeddings of 
Terminal State

Current State (camera)

MPPI 
Controller

Sequence of embeddings in the global planSubsection of the plan to run on the robot
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Running On The Robot
Further optimization is required but our preliminary deployments was promising:

https://docs.google.com/file/d/1TR6loVKVFmP1vK29LzlltDhXjXSENIYn/preview


Differential MPC

Mrunal Sarvaiya



Typical Robotics Systems

Sensors (state, images, etc)
Controller

Commands

PID 

Model Based 
Controllers

Neural 
Networks

Examples



Model Predictive Control

- A type of model based controller

- Optimization or sampling based method

- Exploits the dynamics model

- Why select MPC over a learned controller?

- Use known model 

- Interpretable weights

- Reduce out of distribution issues



Optimization Based MPC 

Cost Function

State and Input inequality constraints

Initial Condition

horizon length

Dynamics



Tuning is Difficult

- Task specific cost tuning

- Tuning soft constraint weights

- Needs to be done manually, since MPC is a 

black box to learning algorithms



Differential MPC

- Backprop through MPC

- Think of it as a NN policy with a strong inductive bias that stems from control theory

- Learnable weights

- Eg. Loss = Tracking error



Differential MPC

- Learn an interpretable controller

- Weights can be task dependent 

- Select what is learnable

- Convenient way to add inductive 

biases



Integrate with RL



Robustness to Dynamics Mismatch



Differential QP

- Backprop through a quadratic program

- Add differentiable constraints to a policy

- Eg. Field of view constraints for aerial 

transportation



Differential MPC

Pros

- Differentiable version of a widely used 

controller 

- Not a black box anymore

- MPC can utilize arbitrary sensor inputs

Cons

- Does not natively support input constraints

- Backprop is slow 

- Optimization based control or sampling 

based control?



Thank you!

Questions?



MP3 - A Unified Model to 
Map, Perceive, Predict 
and Plan 

PRESENTED BY SUSHMA MAREDDY



Why HD Maps ?

01
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What are HD 
maps for 
autonomous 
driving?

● Traditional GPS lacks the precision and 
dynamic data needed for driverless 
cars.

● HD maps enable high-precision 
localization by mapping a vehicle's 
exact position in relation to its 
environment.

● They combine real-time data from 
sensors, LiDAR, cameras, satellite 
imagery, and GPS.
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Why 
Autonomous 
Vehicles Need 
HD Maps ?

● HD maps are essential for lane-level 
navigation and safe autonomy.

● Unlike humans, self-driving cars can’t adapt 
to inaccurate maps—even with sensors and 
cameras.

● HD maps offer inch-perfect detail: lanes, 
crosswalks, traffic signals, and barriers.

● Onboard sensors alone aren’t enough for 
complex driving tasks.

● Example: Early Tesla FSD struggles show HD 
maps are a necessity, not a luxury.
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Challenges with High-Definition 
Maps

● High Cost and Maintenance: Creating and 
updating HD maps is expensive and 
time-consuming, making it difficult to scale 
self-driving solutions globally.

● Localization Errors: Even small localization errors 
can lead to unsafe situations, such as driving off 
the road or into oncoming traffic.
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Challenges with High-Definition 
Maps

● Lack of Real-Time Information: HD maps do not 
reflect real-time changes like road closures or 
construction, which can cause confusion and 
hazards.

● Dependence on Vendors: Relying on HD maps 
creates a dependency on map vendors, limiting 
flexibility and adaptability



Motivation for 
Mapless Driving

02
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Why 
Mapless 
Driving?
● Limitations of HD maps: Costly, hard to 

scale, maintenance issues.

● Safety risks with HD map failures (e.g., 
localization errors).

● Advantages of mapless driving:
○ Lower cost.
○ Greater robustness to localization 

errors.
○ Scalable to diverse environments.

Mapless driving can interpret the scene from sensors
and achieve a safe plan that follows a high-level command



Key Objectives 
of MP3

03
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MP3: Key Objectives
Create an end-to-end mapless driving system that:

1. Maps - Generates an online map from raw sensor data.

2. Perceives - Understands dynamic and static environments.

3. Predicts - Anticipates the motion of surrounding objects.

4. Plans - Generates safe and comfortable driving trajectories.

Main Goal: Achieve safe and robust autonomous driving without HD maps.



Related Work

04
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Online Mapping
What others did:

● Many systems use offline HD maps, built using satellite images or special mapping vehicles. These 
take time, cost money, and aren't usable for on-the-fly driving.

● Some newer methods try to predict road layouts in real time from images or LiDAR.

● But they’re often focused only on highways (which are easier than city streets).

● And they make discrete decisions (like saying "this is a lane" or not) — which can be risky if something 
is missed.

● They also lose uncertainty (e.g., how confident are we that this is a lane?), which matters for safety.
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What MP3 does differently
Online Mapping

MP3 uses a dense, 
continuous map 

representation — it keeps all 
the information and 

understands uncertainty, 
making it much safer for 

planning.

Online Mapping

MP3 uses a dense, 
continuous map 

representation — it keeps all 
the information and 

understands uncertainty, 
making it much safer for 

planning.
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Perception and Prediction
What others did:

● Traditional systems detect individual objects (cars, pedestrians) and try to predict their future 
movements.
○ Some predict a few possible future paths, or
○ Use occupancy maps (grids that show what space might be occupied).

● But many rely on confidence thresholds — if the model isn't confident, it might miss detecting a real 
object entirely.

● Some methods predict what's in a scene, but not how things will move (no motion prediction).

● Others try to predict motion fields, but can’t handle multi-modal behavior — for example, a pedestrian 
might go left or right, and we need to account for both.
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What MP3 does differently
Online Mapping

MP3 uses a dense, 
continuous map 

representation — it keeps all 
the information and 

understands uncertainty, 
making it much safer for 

planning.

Perception and 
Prediction

MP3 predicts a new kind of 
"occupancy flow", which:

● Shows where things 
are,

● Predicts how they will 
move over time,

● And can handle 
multiple possibilities 
— all in a scene-level 
(not just per-object) 
way.

Online Mapping

MP3 uses a dense, 
continuous map 

representation — it keeps all 
the information and 

understands uncertainty, 
making it much safer for 

planning.
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Motion Planning
What others did:

● Some early models just took sensor data and directly output driving commands (steer, brake). These 
can be unstable and hard to debug.

● Newer ones use cost maps to decide which paths are safest or best.

○ But many of them still rely on HD maps or hand-designed rules.

○ Others try to learn cost maps from data, but don’t predict what’s in the scene (no perception), so 
they can be unsafe.
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What MP3 does differently
Online Mapping

MP3 uses a dense, 
continuous map 

representation — it keeps all 
the information and 

understands uncertainty, 
making it much safer for 

planning.

Motion Planning

● Retrieves examples from 
expert human drivers to 

help it plan.
● Builds its own route map 

using sensor data and a 
high-level command like 

“keep straight”.
● Uses its own predicted 

occupancy flow to make 
safe and explainable plans 
— all without HD maps.

Perception and 
Prediction

MP3 predicts a new kind of 
"occupancy flow", which:

● Shows where things 
are,

● Predicts how they will 
move over time,

● And can handle 
multiple possibilities 
— all in a scene-level 
(not just per-object) 
way.



MP3 System 
Architecture

05
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MP3 System Architecture
● MP3 pipeline 

consists of:
○ Mapping and 

Perception
○ Prediction of 

Dynamic 
Occupancy

○ Motion 
Planning

● Uses LiDAR point 
clouds, camera data, 
and high-level 
driving commands.



Extracting 
Geometric and 
Semantic Features

06
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Extracting Geometric and Semantic 
Features

Input Data:

● 10 LiDAR point clouds sweeps (1 second of history)
● Voxelized into Bird’s Eye View (BEV)

 Spatial Specs:

● Resolution: 0.2 m/voxel
● Region of interest:

○ Length: 140m (70 front + 70 back)
○ Width: 80m (40 left + 40 right)
○ Height: 5m

Tensor Shape: 3D Tensor                          = (400,700,250)
Preprocessing:

● Motion compensation using odometry
● Height + time concatenated in channels (no 3D conv 

needed)
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Backbone Network 
for Scene 
Understanding

● The backbone network is crucial for 
extracting geometric and semantic 
features from sensor data.

● Input: Voxelized LiDAR point clouds in 
Bird’s Eye View (BEV).

● Processing:
○ Uses multi-resolution 

convolutional blocks to extract 
features.

○ Downsampling layers to 
aggregate information from 
spatial and temporal domains.

● Output: Rich scene context features for 
mapping, perception, and prediction.



Interpretable 
Scene 
Representations

07
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Interpretable Scene 
Representations

● MP3 replaces HD maps with interpretable, 
probabilistic scene representations.

● These representations:

● Provide semantic understanding of the static 
world (road layout, intersections).

● Predict dynamic actor behavior (position, 
velocity, intent).

● Are interpretable and uncertainty-aware → 
suitable for safe motion planning.



25

Mapping Module ● Input: Multi-scale features (C1x, C2x, C) 
from backbone

● Architecture: Multi-resolution CNN 
combining fine details & global context

● Techniques: Max-pooling & interpolation 
to align feature scales

● Output: 6-channel probabilistic map:
○ Drivable area (Bernoulli)
○ Intersections (Bernoulli)
○ Lane distance (Laplacian: mean, std)
○ Lane direction (Von Mises: Von Mises: 

angle, concentration)
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Online Map 
Representation
Drivable Area: Only where the SDV can legally go.

Reachable Lanes:

● Stay near centerline.

● Follow proper lane orientation.

Intersections:

● Must handle stop/yield/red-light conditions.

All predictions are probabilistic, so uncertainty can be reasoned over.



Perception and 
Prediction 
architecture

08
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Perception and 
Prediction 
architecture:

● Separate network per dynamic object 
class:
○ Vehicles
○ Pedestrians
○ Bicyclists

● Inputs: 
○ Context features from backbone.

● Architecture:
○ Separate CNNs per object class
○ Dilation for large receptive field with 

fewer parameters
○ Combines multi-scale features for 

richer motion cues
● Output:

○ Occupancy map (current positions)
○ Motion mode scores (multi-modal 

behavior)
○ Motion vectors (future movement)

● Future prediction: Uses motion fields to 
warp occupancy over time



Dynamic 
Occupancy Field

09
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MP3’s Approach: Occupancy Flow 
Field
MP3 predicts:

● Initial occupancy of dynamic objects at time t = 0.
● A temporal motion field (velocity vectors) that warps this occupancy 

across time.

Key Components:

● Resolution: 0.4 meters/pixel (BEV grid)
● Prediction Horizon: 11 steps → 5 seconds (0.5s each)
● Each occupied pixel gets:

○ A 2D velocity vector (vx, vy)
○ One for each motion mode

● Separate predictions for:
○ Vehicles
○ Pedestrians
○ Cyclists



Probabilistic 
Modeling

10
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Probabilistic Modeling : Static 
Map

Goal: Model uncertainty in static scene layers.

● Each BEV cell is an independent variable

● Distributions per channel:

● Drivable area: Bernoulli

● Intersection: Bernoulli

● Lane distance: Laplacian

● Lane direction: Von Mises
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Probabilistic Modeling – 
Dynamic Field

Each class (vehicle, pedestrian, cyclist) modeled separately:

● Occupancy (Ocₖ,ᵢ): Bernoulli

● Motion Mode (Kcₖ,ᵢ): Categorical  over K modes

● Motion Vectors (Vcₖ,ᵢ,ₖ): 2D velocity for each mode

Why this is useful:

● Multi-modal behavior → car may turn OR go straight

● Allows capturing uncertainty in motion prediction
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Occupancy Flow: Modeling 
Movement Over Time

Flow Event Definition (from cell i₁ to i₂):

Flow Probability:

Motion vector projection:

● Uses bilinear interpolation for smooth mass distribution
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Future Occupancy Estimation
At each time step, update occupancy with:

● Interpretation:
 A cell is occupied at t+1 if anything flows into it from t.

● Efficient & consistent computation over time

● Enables safety-aware planning with dynamic agents
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Why Probabilistic Occupancy 
Flow Is Powerful

● Replaces fragile object detection + forecasting 
pipeline

● Captures multi-modal, uncertain agent behavior

● Models interactions (e.g., car-yielding to 
pedestrians)

● Fully differentiable and interpretable

● Enables risk-aware, goal-directed planning



Motion Planning

11
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Goal :
● Generate trajectories that are:

a. Safe (avoid collisions)

b. Comfortable (low jerk, smooth)

c. Goal-directed (follow command)

● Approach:

a. Sample kinematically feasible trajectories

b. Score them using learned cost function

c. Select best trajectory:  
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Trajectory Sampling

● 150+ hours of driving logs → clustered into 3000 trajectory prototypes

● Binned by (velocity, acceleration, curvature)

● Retrieval is based on SDV initial state

● Trajectories re-rolled out using (a, κ̇) and bicycle model (for smoothness)
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Routing Command & Prediction

● Driving command:
○ a ∈ {keep lane, turn left, turn right}
○ d: estimated distance to action

● Routing Network:
○ 3 CNN branches (one per action)
○ Input: predicted map + repeated distance 

(CoordConv)
○ Output: dense route probability map 
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Trajectory Scoring Functions – 
Routing

● Encourage SDV to stay on predicted route

● Add "cost-to-go" for goal beyond horizon

● Penalize off-route maneuvers
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Trajectory Scoring – Map 
Constraints

Map Alignment Cost Terms

● Stay near lane center: use        (distance map)

● Align to lane direction: use 

● Penalize uncertainty: 

● Stay on road: use      → penalize off-road cells
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Trajectory Scoring – Safety

Safety & Collision Cost

● Avoid dynamic objects using predicted occupancy 

● Maintain safe headway:  

● Considers relative velocity & stopping distance
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Trajectory Scoring – Comfort
● Penalize jerk (sudden changes in acceleration)

● Penalize lateral acceleration (unpleasant sideways motion during turns)

● Encourage smooth, human-like driving



Learning Strategy

12
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Two-Stage Training Overview

Stage 1 (Multi-task Learning): Train Online 

Map, Dynamic Occupancy, and Routing.

Stage 2: Freeze above, train Planner Scoring 

weights.
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Stage 1 - Multi-task Learning
Combined loss: To do so, we linearly combine the mapping loss LM, occupancy loss LO, motion loss LK,V , and 

routing loss LR

Hyperparameters:

Each component trained with proper distribution loss:

● Map: NLL (Bernoulli, Laplacian, Von Mises)

● Occupancy: Cross-entropy + Hard Negative Mining

● Motion Modes: Unsupervised cross-entropy

● Motion Vectors: Huber loss
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Stage 2 - Max-Margin 
Trajectory Scoring

Goal: Penalize low-cost unsafe trajectories

Use Max-Margin Loss:

 

Encourages expert-like, safe behavior.



Experimental 
Evaluation

13
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Experimental Setup
Dataset: URBANEXPERT

● 5k train / 500 val / 1k test

● 25s per scenario

● 33x more driving data than KITTI

● Geographically non-overlapping splits

Baselines:

● Imitation Learning (IL)

● Conditional Imitation Learning ( CIL )

● Trajectory Classification(TC)

● Neural Motion Planner(NMP)

● Conditional Neural Motion Planner(CNMP)

Evaluation Criteria

● Planning performance

● Safety & comfort metrics

● Route-following accuracy

● Collision and off-road rates
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Closed-Loop Evaluation
● Realistic LiDAR simulation with dynamic actors

● 164 curated scenarios, 18s each

● Actors adapt reactively using Intelligent Driver Model

● Measures: Success rate, L2 to expert, Progress (m/event), Comfort
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Open-Loop Evaluation
● Plans are made from expert’s state → useful for analysis but less realistic

● IL and CIL show good imitation but poor safety

● MP3 still most robust and safest



Qualitative 
Results
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Scenario 1: Keep Lane

● SDV instructed to go straight at intersection

● Pedestrians emerge from occlusion

● Model predicts multimodal pedestrian motion & 
stops safely
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 Scenario 2 - Turn Left

● Complex intersection with dense actors

● Route prediction aligns with command

● Planner progresses smoothly through traffic
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 Scenario 3 - Turn Right

● Route prediction successfully captures the turn

● SDV avoids surrounding dynamic agents

● Follows expert-like trajectory with safe margin



Conclusion
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End-to-End Mapless Driving

● Directly processes raw LiDAR data

● No dependency on HD maps

Interpretable Probabilistic Representations

● Online map: drivable areas, lane structure, intersections

● Dynamic occupancy: future motion & uncertainty

● Used as cost functions in planning

Neural Motion Planner

● Sample-based trajectory generation

● Optimized for safety, comfort, and goal progress

 Key Results

● +3× success rate over baselines

● Most comfortable & safest trajectories

● Robust generalization in closed-loop simulation 
without fine-tuning

Conclusion



“
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THANK YOU !
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Questions?
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Introduction
● UniAD is a unified framework for 

autonomous driving that integrates 
perception, prediction, and planning tasks 
into a single end-to-end system.

● Unlike traditional modular approaches, 
UniAD adopts a planning-oriented 
philosophy, ensuring that all preceding tasks 
contribute directly to safe and efficient 
driving decisions.

● The framework uses query-based interfaces 
to connect modules, enabling flexible feature 
sharing and robust task coordination
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Background
● Traditional autonomous driving systems often rely 

on standalone models for individual tasks or 
multi-task learning paradigms with separate heads, 
which can lead to cascading errors and poor task 
coordination.

● End-to-end approaches have emerged to unify 
perception, prediction, and planning but often lack 
interpretability and robustness in dynamic urban 
environments.

● UniAD addresses these challenges by explicitly 
modeling intermediate representations (e.g., 
occupancy maps, agent trajectories) and 
optimizing the system for planning as the ultimate 
goal.
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Model Architecture



5

Motionformer
● Structure: MotionFormer consists of N stacked 

transformer layers for agent-agent, agent-map, and 
agent-goal interactions.

● Modules:
● Agent-agent and agent-map interactions use 

standard transformer decoder layers.
● Agent-goal interaction is based on the 

deformable cross-attention module.
● Inputs:
● ITs: Scene-level anchor endpoint.

● ITa: Clustered agent-level anchor endpoint.

● x^00: Current position of the agent.

● x^Tl−1: Predicted goal point from the previous layer.

● Qctxl−1: Query context from the preceding layer.
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OccFormer
● Structure: OccFormer comprises To sequential blocks, 

where each block predicts the occupancy for a specific 
frame within the temporal horizon.

● Features Incorporated:
● Dense Scene Features: Encoded from BEV 

representations for global scene understanding.
● Sparse Agent Features: Derived from track query 

(QA), agent position (PA), and motion query (QX) to 
inject agent-level knowledge.

● Instance-Level Occupancy:
● Generated via matrix multiplication between 

agent-level features and decoded dense features at 
the end of each block (O^At)
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Planner
● Inputs:

● QegoA: Ego-vehicle query from the tracking module.

● Qegoctx: Ego-vehicle query from the motion forecasting module.
● High-level command embeddings indicating navigation directions 

(e.g., turn left, go straight).
● Processing:

● Queries are encoded via MLP layers and aggregated using 
max-pooling to select salient modal features.

● BEV feature interaction is performed using stacked transformer 
decoder layers (N layers).

● Output:
● Predicts future waypoints (τ^) for ego-vehicle planning while 

optimizing trajectories to avoid collisions based on predicted 
occupancy maps (O^).
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Loss Function

Stage One Loss Function

Combines tracking loss (Hungarian loss with Focal 
and L1 components) and mapping loss (Focal, L1, 

GIoU, and Dice losses) to pre-train perception tasks:

Stage Two Loss Function

Integrates all task-specific losses (tracking, 
mapping, motion forecasting, occupancy 

prediction, and planning) for end-to-end training
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Qualitative Results

● Task Results: Predictions from motion and occupancy modules are consistent, visualized in 
surround-view images and BEV.

● Ego-Vehicle Behavior: Ego vehicle yields to a front black car, demonstrating safe decision-making.
● Agent Representation: Each agent is illustrated with a unique color for clarity.
● Trajectory Visualization:

● Image View: Displays top-1 trajectory from motion forecasting.
● BEV View: Shows top-3 trajectories for better spatial understanding.
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Quantitative Results

Multi-object tracking

● UniAD Performance: Outperforms previous end-to-end 
MOT techniques with image inputs on all metrics.

● Comparison Note: Tracking-by-detection methods with 
post-association are implemented using BEVFormer for 
fair evaluation.

Online mapping

● Performance: UniAD achieves competitive results against 
state-of-the-art perception-oriented methods with 
comprehensive road semantics.

● Segmentation Metric: Reports segmentation IoU (%) for 
lanes, drivable areas, dividers, and crossings.

● Comparison Note: Methods are implemented with 
BEVFormer for fair evaluation
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Quantitative Results

Motion forecasting.

● Performance: UniAD significantly outperforms prior 
vision-based end-to-end methods across all metrics.

● Comparative Settings: Evaluated with two vehicle modeling 
settings—constant positions and constant velocities.

● Reimplementation: Prior methods reimplemented with 
BEVFormer for fair comparisons.

Occupancy prediction

● Improvement in Nearby Areas: UniAD achieves significant gains 
in near evaluation ranges (30×30m), critical for planning 
accuracy.

● Evaluation Ranges: Results are reported for "n." (near) and "f." 
(far, 50×50m) evaluation ranges.

● Training Note: Models trained with heavy augmentations yield 
improved occupancy prediction metrics.
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Quantitative Results

Planning

● Performance: UniAD achieves the lowest L2 error and collision rate across all time intervals.
● Comparison: Outperforms LiDAR-based methods in most cases, demonstrating superior safety.
● Validation: Results verify the effectiveness of integrating motion and occupancy prediction for 

safe planning.
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Ablation  Study

Ablation for designs in 
the motion 
forecasting module

Ablation for designs in 
the occupancy 
prediction module

Ablation for designs 
in the planning 
module



14

Strengths
● UniAD integrates perception, prediction, and 

planning into a unified end-to-end framework 
for enhanced coordination.

● Query-based design enables flexible feature 
sharing across tasks, improving accuracy and 
task interaction.

● Achieved state-of-the-art performance in 
motion forecasting, occupancy prediction, 
and safe planning metrics.

● Reduces cascading errors and enhances 
interpretability through explicit intermediate 
representations.

Cruising around urban areas

Obstacles avoidance visualization
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Weakness
● High computational 

complexity limits deployment 
on resource-constrained 
platforms.

● Struggles with long-tail 
scenarios like large trailers or 
poorly lit environments.

● Adding more tasks may 
increase system complexity 
and training difficulty.
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Applications in 
Embodied environment
1. Urban Autonomous Driving: Real-time navigation in 

dense traffic, handling tasks like obstacle avoidance 
and pedestrian yielding.

2. Simulated Driving (CARLA): Testing UniAD's 
performance in diverse traffic scenarios such as 
intersections and roundabouts.

3. Warehouse Robots: Guiding autonomous robots for 
dynamic obstacle avoidance and route planning in 
warehouses.

4. Collaborative Driving: Coordinating vehicle-to-vehicle 
communication for safe and efficient traffic flow.
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Result

https://docs.google.com/file/d/1BFvGhVKeEE7LXsPdQUPjF11ihOIUaXm0/preview
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Future Scope, and Extensions:
Conclusion:
● UniAD introduces a novel planning-oriented framework that unifies perception, prediction, and 

planning tasks, achieving state-of-the-art performance across multiple benchmarks.
● The query-based design ensures effective task coordination and interpretability, paving the 

way for safer and more robust autonomous driving systems.

Future Scope:
● Optimize the framework for lightweight deployment in real-time applications.
● Extend UniAD to include additional tasks like depth estimation and behavior prediction.
● Explore vehicle-to-vehicle communication for collaborative driving scenarios.
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Recap

End-to-End Planning
A process that spans the entire workflow or task, from initial input to
the final output, without relying on manual interventions or hand
crafted intermediate steps. 

Often used in AI, robotics & Machine Learning to describe systems that
directly learn or optimize a complete solution pipeline.

2



Recap

Some definations in the paper
Foundation Models:  Large pre-trained model trained on broad, diverse data
at scale, designed to be adaptable to a wide range of down stream tasks with
minimal task specific tuning.
Downstream Tasks: Applying the learnt general knowldge from pre- training
to do something specific. Eg: Nagivation to objects, “Bring me the apple” 
Egocentric Videos: 1 st person Point of view. Recorded with wearable cameras
Low-Level control tasks: Requires precision & real-teim feedback. Eg: set
torque on joint 2 to 0.1 nm

3



Overview

Problem the paper addresses
Embodied AI required egocentric data.
Structured language instruction for precise planning requires high efforts and
costs.
Less high quality embodied multi-modal data available
Apply LLM’s to field of robotics in a generalised manner
Leverage the “chain-of-thought” capability for structured planning
How to use the output language plan for downstream manipulation tasks in a
end-to-end manner.

4



Overview

Solution undertaken - overview
Built a large scale embodied planning dataset: EgoCOT
Created an EgoVQA dataset 
Based off of the datasets, presented  end-to-end multi-modal embodied
foundation model called EmbodiedGPT. 
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Detailed Breakdown

Current works & where they lack
Models such as Uniter, Oscar, VinVL, & LiT are large scale foundation models
for vision language pre - training that freeze the image encoder.
Whereas, Frozen & VGPT freeze the language model.
Due to lack of open-source data for multi modal embodied planning, these
works struggle to perform details task decomposition and lack ability to
generate precise executable plans.
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Detailed Breakdown

EmbodiedGPT
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Goals: 
Imitate human-like
perception and interaction
identify relevant objects
analyse spatial relationships
formulate detailed task plan

 Model features: 
Pre-trained vision
transformer as the visual
encoder
Pre trained LLaMA model as
the vision model

 



The cycle of events

EmbodiedGPT
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Process:
compact visual features are extracted from
output of vision model.
Mapped to language modality through
language mapping layer, and embeddings
sent to the frozen LLaMA for visual caption,
visualQA and embodied planning. 
This is used to query highly relevant features.
Which are then utilised to generate low level
control commands for task execution through
a downstream policy network.

Addiotnally, to enhance performance, for generalisability, a novel video-language pre-training paradigm that
leverages a cognitive chain of thought to prdouce planning from egocentric video inputs was introduced.



The MATH 

The math of the Architecture

9Whoa! Lots of info, let’s break this down



The MATH 

Visual Input processing

10

Embodied Former

Image/video frame tokens

E. applies visual feature extraction

Text Input processing
E. applies text feature extraction

Cross-Modal interaction
Learnable embodied query embeddings

Output of compact cross modal embedding
after interacting with the cross attention with
visual features, and the self attention with text
features

Visual Language Mapping

Project Z to match LLM input
dimension. Ouptut z’ : soft
visual prompts for the frozen
language model

Linear projection 

Frozen LLM receives z’ + text
prompt and outputs chain of
thought embodied plan

Planning Generation



The MATH 

Instance Feature Querying for control
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Global feature extraction

oolicy network g(.), an MLP takes the inputs and
putputs the action command, eg: joint angles,
velocities

Use the inputs to output task relevant
instance level features 

Use pre-trained ResNet-50 with global
avaerage pooling to output scene context

Low-level Action Generation



Training settings

Training set up for EmbodiedGPT
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ViT-G/14 image encoder from EVA-CLIP and a LLaMA-7B language model
are used, both kept frozen during vision-language pre-training.
The language model is fine-tuned beforehand on instruction-following
datasets (ShareGPT and GPT-4 generated data), and model weights are
converted to FP16 to improve training efficiency.



Stage Objective Datasets Training Focus

1 Image-text conversation alignment
pre training

- COCO Caption [44] 
- CC3M (595K filtered pairs) [45] 
- Re-captioned LAION-400M (491K)
via BLIP-2 [17]

Train Embodied-former and
language projection 
Freeze vision/language model
parameters

2 Enhance complex sentence
understanding and reasoning

- Complex_Reasoning_77k 
- LLaVA_Instruct_150K

Update language projection and
prefix language adapter

3 Train on embodied AI task with
egocentric video-text data

- EgoCOT End-to-end training on
egocentric vision-language
grounded tasks

The Training Process: 3 stages, that incrementally develop reasoning and planning capabilities

Stages

13

Stage 1 & 2: Focus on pre training in basic cognitive and responsive skills
Stage 3: Involves training the embodied AI task with egocentric video-text data on EgoCOT. 



Vision Transfer with Conv3D: Adapt the pre-trained image encoder from stage 2 to videos using
Conv3D (time offset = 2, 8 frames total).
Chain-of-Thought Prompting: Introduce vision-language pretraining with structured prompts
that include task description, planning steps, and verb-noun action summaries (see Listing 1).
Fine-tuning for Temporal Reasoning: To avoid overfitting,  fine-tune the patch embedding,
language projection, and prefix adapter to better capture temporal information.

The Training Process: 3 stages, that incrementally develop reasoning and planning capabilities

Stage 3: Embodied “chain-of-thought”
training with EgoCOT

14



Obtained from Ego4D dataset [9,645 untrimmed videos of various
durations from 5 seconds to 7 hours]
2 stages of data cleaning: 

filtered videos with missing or short narrations, and with unsure tags
excluded videos without human-object interaction

Ultimately left with 2927 hours of video [3.85 million narrations, from 129
different scenarios ]

Creation of the EgoCOT & EgoVQA Data Set

EgoCot creation
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To pair each narrated sentence Ti, with a relevant video segment Vi​, first
use its timestamp ti from the Ego4D dataset. 
Then calculate the average time gap between narrations in a video as βi*,
and normalize it using a global scaling factor αα(set to 4.9 seconds). 
The start and end of each clip are defined as 

      ensuring each segment captures the action context around the narration. 
This method automatically aligns video segments with narrations without
manual annotation. These segments are then used to generate chain-of-
thought plans and action labels via ChatGPT.

Creation of the EgoCOT & EgoVQA Data Set

More math/notations

16
Adjustable parameter equal to the average temporal
distance between consecutive narrations in a given video



To pair each narrated sentence Ti, with a relevant video segment Vi​, first
use its timestamp ti from the Ego4D dataset. 
Then calculate the average time gap between narrations in a video as βi*,
and normalize it using a global scaling factor αα(set to 4.9 seconds). 
The start and end of each clip are defined as 

      ensuring each segment captures the action context around the narration. 
This method automatically aligns video segments with narrations without
manual annotation. These segments are then used to generate chain-of-
thought plans and action labels via ChatGPT.

Creation of the EgoCOT & EgoVQA Data Set

Finally, similarity score

17
Adjustable parameter equal to the average temporal
distance between consecutive narrations in a given video



Creation of the EgoCOT & EgoVQA Data Set

Finally, similarity score : Post Procedure
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To ensure video-caption-plan quality, compute similarity scores between
video frames and text using CLIP embeddings. Each frame Ii and
corresponding text Ti are encoded into feature vectors YIi and Yt​, and their
cosine similarity is calculated as

Since each video has multiple keyframes, they compute an ensemble
similarity score across all frames:

This averaged score E(V,T), ensures robust alignment across frames and is
used to filter out mismatched video-caption-plan triplets, keeping only
high-quality examples for the EgoCOT dataset.



Creation of the EgoCOT & EgoVQA Data Set

Prompt to create EgoVQA dataset
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For each caption in Ego4D dataset, ChatGPT was used to generate five QA
pairs. 



Experiments & Evaluation

Evaluation metrics
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Experiments & Evaluation

Experiment 1 : Eval on Image input tasks
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What was evaluated?
Quality of generated captions and planning with given image

Where did these numbers come from? 
User study with 30 participants evaluated image captions and embodied plans
generated by different models. Participants rated outputs from 10 MS-COCO
images, 5 simulated embodied scenarios, and 5 real-world planning tasks across
five criteria on a 1–10 scale. The average scores are reported in Table 1.



Experiments & Evaluation

Experiment 1 : Eval on Image input tasks
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Visual ChatGPT fails to find coat hanger due to its relieance solely on caption model for
extracting visual information



Experiments & Evaluation

Experiment 2 : Eval on Video input embodied AI Tasks
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What was evaluated?
Recognition ability of videos & planning abilites of EmbodiedGPT from
embodied control tasks on standard embodied AI benchmarks

How was it evaluated? 
Benchmark models are Franka Kitchen and Meta-World
Meta-world requires complex object manipulation skills, eg: ring on a
peg, picking and placing etc
Franka kitchen focuses on sliding open a door, opening a
cabinet/microwave

Results: EmbodiedGPT accurately interpret the embodied control task and
provided a step-by-step planning



Experiments & Evaluation

Experiment 2 : Eval on Video input embodied AI Tasks
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Experiments & Evaluation
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What happens next?
The output planning is fed into the Embodied-former module of
EmbodiedGPT to query highly relevant features for use as inputs in the
policy network and the low-level actions are generated by the policy
network to interact with the environment

Experiment 2 : Eval on Video input embodied AI Tasks



Experiments & Evaluation

Experiment 3 : Eval on embodied control tasks
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What was evaluated?
Compare model with SOTA [R3M] & an ablation version called [BLIP-
2[Ego4D],  and is only fine tuned on the video captioning task, has the
same parameters as EmbodiedGPT
The policy network was  trained using few-shot learning with either 10 or
25 demonstrations per task 
Performance is evaluated over 100 trials using visual observations
across 5 tasks, 5 seeds, and 2 camera views. 

What was found? 
EmbodiedGPT consistently outperforms baseline models, highlighting
the effectiveness of training with EgoCOT.



Experiments & Evaluation

Experiment 3 : Eval on embodied control tasks
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Experiments & Evaluation

Experiment 3 : Eval on embodied control tasks
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Conclusion

Finally, almost there! 
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Key Takeaways:
Introduce EmbodiedGPT, an end-to-end multi-modal foundational
model for embodied AI.
Enables agents to perform step-by-step planning and low-level action
execution.
Built on a large-scale dataset, EgoCOT, with chain-of-thought planning
annotations.
Uses prefix tuning to efficiently train high-quality planning behavior.
Seamlessly integrates high-level planning with low-level control.



Conclusion

Finally, almost there! 
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Key Takeaways:
Achieves state-of-the-art or comparable performance on multiple
embodied tasks.
Limitations: 

Freezes vision and language model weights due to compute limits.
Highly reliant on textual inputs and may not fully exploit visual cues

Future work: Joint training and adding modalities like speech.  

EgoCAT Data set:   https://github.com/EmbodiedGPT/EgoCOT_Dataset?
tab=readme-ov-file

https://github.com/EmbodiedGPT/EgoCOT_Dataset?tab=readme-ov-file
https://github.com/EmbodiedGPT/EgoCOT_Dataset?tab=readme-ov-file
https://github.com/EmbodiedGPT/EgoCOT_Dataset?tab=readme-ov-file
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