## DINOv2: Learning Robust Visual Features without Supervision

OQUAB, M., DARCET, T., MOUTAKANNI, T., ET AL. (2024).

Presented by Dahye Kim

### 1-1. Motivation & Background

### **SSL** revolutionized NLP

Proves that models can learn representations from raw data without explicit labels

vision

Model

Develop general-purpose visual features that work across image distributions and tasks without finetuning.

### Success of foundation models in NLP

Suggests similar approaches could work in computer

### **Goal: Vision Fountation**

# *1-2. Challenges* in Vision Foundation Models

Text-supervised 1. models (e.g.CLIP) rely on image-text pairs, limiting their ability to capture pixel-level details

Mostly trained on small curated datasets (e.g., ImageNet-1k)

### 2. Prior SSL methods (e.g., DINO, iBOT) struggled with scalability and dataset quality

Poor generalization beyond ImageNet

## 1-3. Evolution From DINO to DINOv2

### **DINO (2021)**

introduced SSL via studentteacher distillation.

### **Limitations of DINO**

Small dataset, no patch-level learning, inefficient training.



## 1-4. Key Contributions of *DINOv2*

LVD-142M dataset for better pretraining Advanced SSL techniques (DINO + iBOT + SWAV losses)

Scalable training efficiency with lower memory usage State-of-the-art performance across multiple vision benchmarks

# 2. DINOv2: Data Pipeline

### Building LVD-142M: A Curated Pretraining Dataset

- Assembled from a large pool of uncurated images by retrieving those similar to curated datasets like ImageNet-22k
- Filtering process:
  - Deduplication (removes near-duplicates to ensure diversity)
  - NSFW filtering (removes inappropriate content)
  - Face blurring (enhances privacy)

## Self-Supervised Image Retrieval for Curation

- Used a self-supervised ViT-H/16 model to extract image embeddings.
- Cosine similarity + k-means clustering to retrieve diverse, high-quality images.
- Trade-off: Using 4 nearest neighbors (N=4) balances retrieval quality and dataset diversity.



#### 2. Data Processing

# DINOv2's Architecture 11100Transformer

### **Why Vision Transformers?**

- Unlike CNNs, ViTs process images like sequences, capturing long-range dependencies effectively. • **Self-attention** in ViTs allows better feature
- learning across an entire image.

### **How DINOv2 Uses ViTs:**

- backbone.
- Processes both global (image-level) and local (patch-level) features.
- Enables self-supervised training via the
  - student-teacher framework.

• Uses a ViT-based architecture as the

## 3-2. Self-Supervised Learning Framework Student-Teacher Framework (DINO/iBOT Inspired)



Training encourages feature consistency across different image augmentations

Self-Distillation Mechanism

of the student

### **DINO Loss (Image-Level Representation**)

iBOT Loss (Patch-Level Representation)

Sinkhorn-Knopp Centering (Inspired by SWAV)

KoLeo Regularizer

### **DINO Loss: Image-level objective**

- feature distributions.
- learning.

• Cross-entropy between student & teacher • Uses "prototype vectors" for contrastive

 $\mathcal{L}_{DINO} = -\sum p_t \log p_s$ 

DINO Loss (Image-Level Representation)

**iBOT Loss (Patch-Level Representation**)

Sinkhorn-Knopp Centering (Inspired by SWAV)

KoLeo Regularizer

### **iBOT Loss: Patch-Level Objective**

- Masked Image Modeling (MIM):
- Random patches are masked in the student but visible in the teacher.
- learning local context.

 $\mathcal{L}_{iBOT} = -$ 



• The student must predict missing patches,

$$-\sum_i p_{ti} \log p_{si}$$



Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the images from the same column (a, b, c and d) and show their first 3 components. Each component is matched to a different color channel. Same parts are matched between related images despite changes of pose, style or even objects. Background is removed by thresholding the first PCA component.

**DINO Loss (Image-Level Representation**)

**iBOT Loss (Patch-Level Representation**)

Sinkhorn-Knopp Centering (Inspired by SWAV)

KoLeo Regularizer

Untying head weights between both objectives to solve 1) underfitting issue in the patch-level classification task and 2) overfitting issue in the image-level classification task

**DINO Loss (Image-Level** Representation)

iBOT Loss (Patch-Level Representation)

Sinkhorn-Knopp Centering (Inspired by SWAV)

**KoLeo Regularizer** 

### Sinkhorn-Knopp Centering (Inspired by SwAV)

- Normalizes teacher outputs for better feature distribution.
- Prevents representation collapse.

### **KoLeo Regularizer**

• Spreads features uniformly to improve retrieval & instance recognition.

### 4-1. Efficient Implementation and Scaling: Memory & Compute Optimizations

Compared to the iBOT implementation, the DINOv2 code runs around  $2 \times faster using only 1/3 of the memory.$ 

- Custom FlashAttention: Reduces memory usage & speeds up self-attention calculations.
- Sequence Packing:
  - Concatenates small & large image crops into a single long sequence.
  - Uses block-diagonal attention masking for efficiency.
- Efficient Stochastic Depth: Skips unnecessary residual computations  $\rightarrow$  faster training.

4. Efficient Implementation and Scaling

### 4-2. Efficient Implementation and Scaling: Fully-Sharded Data Parallelism (FSDP)

- Instead of storing full model replicas per GPU, DINOv2 shards parameters across multiple GPUs.
- 50% lower communication costs compared to traditional Distributed Data Parallel (DDP).

ds parameters across multiple GPUs. tributed Data Parallel (DDP).

4. Efficient Implementation and Scaling

### 4-3. Efficient Implementation and Scaling: Knowledge Distillation for Smaller Models

- ViT-L models learn from a frozen ViT-g teacher.
- Removes need for training small models from scratch.
- Maintains high performance with lower compute cost.



| Arch     | Method             | INet-1k | Segm.    | $\mathrm{Depth}{\downarrow}$ | Classif. |
|----------|--------------------|---------|----------|------------------------------|----------|
| ViT-g/14 | Scratch            | 86.5    | 73.4     | 1.00                         | 92.1     |
| ViT-L/14 | $\mathbf{Scratch}$ | 84.5    | 72.2     | 1.10                         | 90.2     |
| ViT-L/14 | Distill            | 86.3    | 73.3     | 1.08                         | 91.2     |
|          |                    |         |          |                              |          |
| Arch     | Method             | Finegr. | Retriev. | ARSketch                     | Video    |
| ViT-g/14 | Scratch            | 78.3    | 75.2     | 77.0                         | 69.3     |
| ViT-L/14 | Scratch            | 75.8    | 71.3     | 69.5                         | 67.3     |
| ViT-L/14 | Distill            | 77.6    | 76.3     | <b>74.5</b>                  | 67.5     |

(a) Comparison on individual metrics

(b) Averaged metrics on 8 vision tasks

#### 4. Efficient Implementation and Scaling

## 5. Results



## 5-1. Results: ImageNet-1k Classification

|                        |                  |                           |              | kNN  |      | linear |             |  |  |  |  |  |
|------------------------|------------------|---------------------------|--------------|------|------|--------|-------------|--|--|--|--|--|
| Method                 | Arch.            | Data                      | Text sup.    | val  | val  | ReaL   | V2          |  |  |  |  |  |
| Weakly supervised      |                  |                           |              |      |      |        |             |  |  |  |  |  |
| CLIP                   | ViT-L/14         | WIT-400M                  | $\checkmark$ | 79.8 | 84.3 | 88.1   | 75.3        |  |  |  |  |  |
| CLIP                   | $ViT-L/14_{336}$ | <b>WIT-400M</b>           | $\checkmark$ | 80.5 | 85.3 | 88.8   | 75.8        |  |  |  |  |  |
| SWAG                   | ViT-H/14         | IG3.6B                    | $\checkmark$ | 82.6 | 85.7 | 88.7   | 77.6        |  |  |  |  |  |
| OpenCLIP               | ViT-H/14         | LAION-2B                  | $\checkmark$ | 81.7 | 84.4 | 88.4   | 75.5        |  |  |  |  |  |
| OpenCLIP               | ViT-G/14         | LAION-2B                  | $\checkmark$ | 83.2 | 86.2 | 89.4   | 77.2        |  |  |  |  |  |
| EVA-CLIP               | ViT-g/14         | $\operatorname{custom}^*$ | $\checkmark$ | 83.5 | 86.4 | 89.3   | 77.4        |  |  |  |  |  |
|                        |                  | Self-su                   | pervised     |      |      |        |             |  |  |  |  |  |
| MAE                    | ViT-H/14         | INet-1k                   | ×            | 49.4 | 76.6 | 83.3   | 64.8        |  |  |  |  |  |
| DINO                   | ViT-S/8          | INet-1k                   | ×            | 78.6 | 79.2 | 85.5   | 68.2        |  |  |  |  |  |
| SEERv2                 | RG10B            | IG2B                      | ×            | _    | 79.8 | _      | _           |  |  |  |  |  |
| MSN                    | ViT-L/7          | INet-1k                   | ×            | 79.2 | 80.7 | 86.0   | 69.7        |  |  |  |  |  |
| $\operatorname{EsViT}$ | Swin-B/W=14      | INet-1k                   | ×            | 79.4 | 81.3 | 87.0   | 70.4        |  |  |  |  |  |
| Mugs                   | ViT-L/16         | INet-1k                   | ×            | 80.2 | 82.1 | 86.9   | 70.8        |  |  |  |  |  |
| iBOT                   | ViT-L/16         | INet-22k                  | ×            | 72.9 | 82.3 | 87.5   | 72.4        |  |  |  |  |  |
|                        | ViT-S/14         | LVD-142M                  | Х            | 79.0 | 81.1 | 86.6   | 70.9        |  |  |  |  |  |
|                        | ViT-B/14         | LVD-142M                  | ×            | 82.1 | 84.5 | 88.3   | 75.1        |  |  |  |  |  |
| DINOVZ                 | ViT-L/14         | LVD-142M                  | ×            | 83.5 | 86.3 | 89.5   | 78.0        |  |  |  |  |  |
|                        | ViT-g/14         | LVD-142M                  | ×            | 83.5 | 86.5 | 89.6   | <b>78.4</b> |  |  |  |  |  |

Linear evaluation on ImageNet-1k of frozen pretrained features

+4.2% Top-1 Accuracy on ImageNet over iBOT.
Matches or surpasses OpenCLIP and EVA-CLIP

# 5-2. Results: Video and other image Classification

|                     |                                              | Ima                                 | age classifica                      | Vid                            | Video classification                |                                     |                                |  |  |  |
|---------------------|----------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------|-------------------------------------|-------------------------------------|--------------------------------|--|--|--|
| Feature             | Arch                                         | iNat2018                            | iNat2021                            | Places205                      | K400                                | UCF-101                             | SSv2                           |  |  |  |
| OpenCLIP            | ViT-G/14                                     | 73.0                                | 76.0                                | 69.8                           | 78.3                                | 90.7                                | 35.8                           |  |  |  |
| MAE<br>DINO<br>iBOT | ViT-H/14<br>ViT-B/8<br>ViT-L/16              | $31.0 \\ 59.6 \\ 66.3$              | $32.3 \\ 68.3 \\ 74.6$              | $52.4 \\ 60.4 \\ 64.4$         | $54.2 \\ 64.5 \\ 72.6$              | $70.6 \\ 85.0 \\ 88.6$              | 29.2<br>32.6<br><b>38.7</b>    |  |  |  |
| DINOv2              | ViT-S/14<br>ViT-B/14<br>ViT-L/14<br>ViT-g/14 | 69.0<br>76.4<br>80.4<br><b>81.6</b> | 74.2<br>81.1<br>85.1<br><b>85.7</b> | $62.9 \\ 66.2 \\ 67.3 \\ 67.5$ | 67.8<br>73.2<br>76.3<br><b>78.4</b> | 87.0<br>89.1<br>90.5<br><b>91.2</b> | $33.1 \\ 34.4 \\ 35.6 \\ 38.3$ |  |  |  |

Table 7: Linear evaluation on other image and video classification. The image benchmarks contain a large quantity of fine-grained examples about objects or scenes. The video benchmarks cover action classification and human-object interaction. All the features are frozen with a linear probe on top.

## 5-3. Results: Instance Recognition

|                     |                                              | Oxford                              |                                     | Pa                                  | Paris                               |  |                                     | Met                                 | AmsterTime                          |                                                    |
|---------------------|----------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------|
| Feature             | Arch                                         | М                                   | Η                                   | Μ                                   | Η                                   |  | GAP                                 | GAP-                                | ACC                                 | mAP                                                |
| OpenCLIP            | ViT-G/14                                     | 50.7                                | 19.7                                | 79.2                                | 60.2                                |  | 6.5                                 | 23.9                                | 34.4                                | 24.6                                               |
| MAE<br>DINO<br>iBOT | ViT-H/14<br>ViT-B/8<br>ViT-L/16              | $11.7 \\ 40.1 \\ 39.0$              | $2.2 \\ 13.7 \\ 12.7$               | $19.9 \\ 65.3 \\ 70.7$              | $4.7 \\ 35.3 \\ 47.0$               |  | $7.5 \\ 17.1 \\ 25.1$               | $23.5 \\ 37.7 \\ 54.8$              | $30.5 \\ 43.9 \\ 58.2$              | $\begin{array}{c} 4.2 \\ 24.6 \\ 26.7 \end{array}$ |
| DINOv2              | ViT-S/14<br>ViT-B/14<br>ViT-L/14<br>ViT-g/14 | 68.8<br>72.9<br><b>75.1</b><br>73.6 | 43.2<br>49.5<br><b>54.0</b><br>52.3 | 84.6<br>90.3<br><b>92.7</b><br>92.1 | 68.5<br>78.6<br><b>83.5</b><br>82.6 |  | 29.4<br>36.7<br><b>40.0</b><br>36.8 | 54.3<br>63.5<br>68.9<br><b>73.6</b> | 57.7<br>66.1<br>71.6<br><b>76.5</b> | 43.5<br>45.6<br><b>50.0</b><br>46.7                |

Table 9: Evaluation of frozen features on instance-level recognition. We consider 4 different benchmarks and report their main metrics.

- Ranks images based on cosine similarity between features
- Significant mAP improvements (+41% over SSL on Oxford-Hard), +34% over weaklysupervised models on Oxford-Hard).

## 5-4. Results: Semantic Segmentation & Depth Estimation

|          |              | AD]<br>(62 | E20k<br>2.9) | CityS<br>(86 | Scapes<br>3.9) | Pasc<br>(8 | al VOC<br>89.0) |          |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                     |                  |                                |       |
|----------|--------------|------------|--------------|--------------|----------------|------------|-----------------|----------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|---------------------|------------------|--------------------------------|-------|
| Method   | Arch.        | lin.       | +ms          | lin.         | +ms            | lin.       | +ms             |          |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                     |                  |                                |       |
| OpenCLIP | ViT-G/14     | 39.3       | 46.0         | 60.3         | 70.3           | 71.4       | 79.2            |          |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                     |                  |                                |       |
| MAE      | ViT-H/14     | 33.3       | 30.7         | 58.4         | 61.0           | 67.6       | 63.3            |          |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                     |                  |                                |       |
| DINO     | ViT-B/8      | 31.8       | 35.2         | 56.9         | 66.2           | 66.4       | 75.6            |          |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                     |                  |                                |       |
| iBOT     | ViT-L/16     | 44.6       | 47.5         | 64.8         | 74.5           | 82.3       | 84.3            |          |        | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     | _                   |                  |                                |       |
|          | ViT-S/14     | 44.3       | 47.2         | 66.6         | 77.1           | 81.1       | 82.6            | • Denth  | estima | Dept   | th estimation the structure of the struc | ition with<br>Is OnenC | 1 frozei<br>LIP and | n featur<br>d weakl | 'es<br>v-sunervi | ised feat                      | tures |
|          | ViT-B/14     | 47.3       | 51.3         | 69.4         | 80.0           | 82.5       | 84.9            | Depth    | Comma  |        | cperiorin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is opene               |                     |                     | y supervi        | Sed reat                       |       |
| DINOVZ   | ViT-L/14     | 47.7       | 53.1         | 70.3         | 80.9           | 82.1       | 86.0            |          |        | NYUd   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | KITTI               |                     | NYUd             | $\rightarrow$ SUN <sup>1</sup> | RGB-D |
|          | ViT-g/14     | 49.0       | 53.0         | 71.3         | 81.0           | 83.0       | 86.2            | (0.330)  |        |        | (2.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                     |                     | (0.421)          |                                |       |
| Sen      | nantic segme | entation   | n on AD      | E20K, C      | CityScape      | s M        | lethod          | Arch.    | lin. 1 | lin. 4 | DPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lin. 1                 | lin. 4              | DPT                 | lin. 1           | lin. 4                         | DPT   |
|          | and Pasca    | II VUC V   | vith fro     | zen feat     | ures           | ō          | penCLIP         | ViT-G/14 | 0.541  | 0.510  | 0.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.57                   | 3.21                | 2.56                | 0.537            | 0.476                          | 0.408 |
|          |              |            |              |              |                | M          | [AE             | ViT-H/14 | 0.517  | 0.483  | 0.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.66                   | 3.26                | 2.59                | 0.545            | 0.523                          | 0.506 |
|          |              |            |              |              |                | D          | INO             | ViT-B/8  | 0.555  | 0.539  | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.81                   | 3.56                | 2.74                | 0.553            | 0.541                          | 0.520 |
|          |              |            |              |              |                | iE         | BOT             | ViT-L/16 | 0.417  | 0.387  | 0.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.31                   | 3.07                | 2.55                | 0.447            | 0.435                          | 0.426 |
|          |              |            |              |              |                |            |                 | ViT-S/14 | 0.449  | 0.417  | 0.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.10                   | 2.86                | 2.34                | 0.477            | 0.431                          | 0.409 |
|          |              |            |              |              |                | Л          | INO9            | ViT-B/14 | 0.399  | 0.362  | 0.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.90                   | 2.59                | 2.23                | 0.448            | 0.400                          | 0.377 |
|          |              |            |              |              |                | D          | INOV2           | ViT-L/14 | 0.384  | 0.333  | 0.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.78                   | 2.50                | 2.14                | 0.429            | 0.396                          | 0.360 |
|          |              |            |              |              |                |            |                 | ViT-g/14 | 0.344  | 0.298  | 0.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.62                   | 2.35                | 2.11                | 0.402            | 0.362                          | 0.338 |

## 5-5. Qualitative Results



Figure 7: Segmentation and depth estimation with linear classifiers. Examples from ADE20K, NYUd, SUN RGB-D and KITTI with a linear probe on frozen OpenCLIP-G and DINOv2-g features.

## 5-5. Qualitative Results



Figure 8: Examples of out-of-distribution examples with frozen DINOv2-g features and a linear probe. 5. Empirical Results

## 5-5. Qualitative Results







### Sparse Matching

## 6. Conclusion

Scalable self-supervised model that matches or outperforms weaklysupervised models.

ImageNet pretraining.

Efficient training (FlashAttention, FSDP, knowledge distillation) enables scaling to billion-parameter models.

### Curated dataset (LVD-142M) improves generalization over traditional

6. Conclusion

# Than Is. Q&A



### Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture (IJEPA)

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, Nicolas Ballas

Presentation by Surbhi



### **Approach - Joint Embedding Architecture**



Image Credits: Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020

### **Approach - Joint Embedding Architecture**



Learning of Visual Representations, ICML 2020

#### **Approach - Generative Architecture**



Image Credits: He et al., Masked Autoencoders Are Scalable Vision Learners, arXiv 2021

 $D(\hat{y}, y)$ 

Y

Ŷ

### **Approach - Generative Architecture**



Image Credits: He et al., Masked Autoencoders Are Scalable Vision Learners, arXiv 2021

### **Joint Embedding Architecture**





### **Approaches for Visual Representation Learning**



(a) Joint-Embedding Architecture

(b) Generative Architecture

### Joint Embedding Predictive Architecture (JEPA)


## Image Joint Embedding Predictive Architecture (I-JEPA)



Image Credits: Meta Al Blog

## Method



GIF Credits: Google AI Blog

### **Context & Target Masking Strategy**



## **Context Masking Strategy**



## **Target Masking Strategy**

targets





## Predictor





Between predicted and target patch-level representations

### **Parameters**



## **Exponential Moving Average**



Photo Credits: Grill et al., Bootstrap your own latent space. A new approach to self supervised learning, 2020

## **Results (Image Classification Task)**

| Method                                      | Arch. Epochs |      | Top-1 |  |
|---------------------------------------------|--------------|------|-------|--|
| Methods without view data augmentations     |              |      |       |  |
| data2vec [8]                                | ViT-L/16     | 1600 | 77.3  |  |
|                                             | ViT-B/16     | 1600 | 68.0  |  |
| MAE [36]                                    | ViT-L/16     | 1600 | 76.0  |  |
|                                             | ViT-H/14     | 1600 | 77.2  |  |
|                                             | ViT-B/16     | 1600 | 70.4  |  |
| CAE [22]                                    | ViT-L/16     | 1600 | 78.1  |  |
|                                             |              | (00  | 72.0  |  |
|                                             | V11-B/16     | 600  | 72.9  |  |
| I-JEPA                                      | ViT-L/16     | 600  | 11.5  |  |
|                                             | ViT-H/14     | 300  | 79.3  |  |
|                                             | ViT-H/16448  | 300  | 81.1  |  |
| Methods using extra view data augmentations |              |      |       |  |
| SimCLR v2 [21]                              | RN152 (2×)   | 800  | 79.1  |  |
| DINO [18]                                   | ViT-B/8      | 300  | 80.1  |  |
| iBOT [79]                                   | ViT-L/16     | 250  | 81.0  |  |

Table 1. **ImageNet**. Linear-evaluation on ImageNet-1k (the ViT-H/16<sub>448</sub> is pretrained at a resolution of  $448 \times 448$ ). I-JEPA improves linear probing performance compared to other methods that do not rely on hand-crafted view data-augmentations during pretraining. Moreover, I-JEPA demonstrates good scalability — the larger I-JEPA model matches the performance of view-invariance approaches without requiring view data-augmentations.

| Method                                      | Arch.       | Epochs | Top-1 |  |
|---------------------------------------------|-------------|--------|-------|--|
| Methods without view data augmentations     |             |        |       |  |
| data2vec [8]                                | ViT-L/16    | 1600   | 73.3  |  |
| MAE [36]                                    | ViT-L/16    | 1600   | 67.1  |  |
|                                             | ViT-H/14    | 1600   | 71.5  |  |
|                                             | ViT-L/16    | 600    | 69.4  |  |
| I-JEPA                                      | ViT-H/14    | 300    | 73.3  |  |
|                                             | ViT-H/16448 | 300    | 77.3  |  |
| Methods using extra view data augmentations |             |        |       |  |
| iBOT [79]                                   | ViT-B/16    | 400    | 69.7  |  |
| BBIO GO                                     | ITT DIO     | 200    | 70.0  |  |

| DINO [18]      | ViT-B/8    | 300 | 70.0 |
|----------------|------------|-----|------|
| SimCLR v2 [35] | RN151 (2×) | 800 | 70.2 |
| BYOL [35]      | RN200 (2×) | 800 | 71.2 |
| MSN [4]        | ViT-B/4    | 300 | 75.7 |

Table 2. **ImageNet-1%**. Semi-supervised evaluation on ImageNet-1K using only 1% of the available labels. Models are adapted via fine-tuning or linear-probing, depending on whichever works best for each respective method. ViT-H/16<sub>448</sub> is pretrained at at a resolution of  $448 \times 448$ . I-JEPA pretraining outperforms MAE which also does not rely on hand-crafted data-augmentations during pretraining. Moreover, I-JEPA benefits from scale. A ViT-H/16 trained at resolution 448 surpasses previous methods including methods that leverage extra hand-crafted data-augmentations.

| Method        | Arch.          | CIFAR100       | Places205 | iNat18 |
|---------------|----------------|----------------|-----------|--------|
| Methods with  | out view data  | augmentation.  | \$        |        |
| data2vec [8]  | ViT-L/16       | 81.6           | 54.6      | 28.1   |
| MAE [36]      | ViT-H/14       | 77.3           | 55.0      | 32.9   |
| I-JEPA        | ViT-H/14       | 87.5           | 58.4      | 47.6   |
| Methods using | g extra view d | data augmentat | tions     |        |
| DINO [18]     | ViT-B/8        | 84.9           | 57.9      | 55.9   |
| iBOT [79]     | ViT-L/16       | 88.3           | 60.4      | 57.3   |

Table 3. Linear-probe transfer for image classification. Linearevaluation on downstream image classification tasks. I-JEPA significantly outperforms previous methods that also do not use augmentations (MAE and data2vec), and decreases the gap with the best view-invariance-based methods that leverage hand-crafted data augmentations during pretraining.

## **Results (Local Prediction Tasks)**

| Method                                  | Arch.          | <b>Clevr/Count</b> | Clevr/Dist |  |  |
|-----------------------------------------|----------------|--------------------|------------|--|--|
| Methods without view data augmentations |                |                    |            |  |  |
| data2vec [7]                            | ViT-L/16       | 85.3               | 71.3       |  |  |
| MAE [35]                                | ViT-H/14       | 90.5               | 72.4       |  |  |
| I-JEPA                                  | ViT-H/14       | 86.7               | 72.4       |  |  |
| Methods using                           | g extra data d | augmentations      |            |  |  |
| DINO [17]                               | ViT-B/8        | 86.6               | 53.4       |  |  |
| iBOT [75]                               | ViT-L/16       | 85.7               | 62.8       |  |  |

Table 4. Linear-probe transfer for low-level tasks. Linearevaluation on downstream low-level tasks consisting of object counting (Clevr/Count) and depth prediction (Clevr/Dist). The I-JEPA method effectively captures low-level image features during pretraining and outperforms view-invariance based methods on tasks such object counting and depth prediction. Performance on lower-level image tasks

#### I-JEPA outperforms joint embedding methods in low-level image tasks

### **Results - Scalability**



## **Predictor Visualizations**



## Ablations

#### **I-JEPA is non-generative**

| Targets               | Arch.    | Epochs | Top-1 |
|-----------------------|----------|--------|-------|
| Target-Encoder Output | ViT-L/16 | 500    | 66.9  |
| Pixels                | ViT-L/16 | 800    | 40.7  |

Table 7. Ablating targets. Linear evaluation on ImageNet-1K using only 1% of the available labels. The semantic level of the I-JEPA representations degrades significantly when the loss is applied in pixel space, rather than representation space, highlighting the importance of the target-encoder during pretraining.

Same method in pixel space performs much worse on semantic classification tasks.

 $\mathfrak{X}$ 

## Conclusion

#### Decoding I-JEPA predictor outputs to sketches



I-JEPA predictor captures both global semantics and spatial uncertainty.

Image Credits: Meta Al Blog

### **Further Work**



### **Thank You!**

## Happy Spring Break!

### DS-GA.3001 Embodied Learning and Vision Topic Presentation

Niu et al., "Learning predictable and robust neural representations by straightening image sequences", 2024.

Sal Yeung



## Abstract

**Prediction** is a fundamental capability of all living organisms, and has been proposed as an objective for learning sensory representations. Recent work demonstrates that in primate visual systems, prediction is facilitated by neural representations that follow straighter temporal trajectories than their initial photoreceptor encoding, which allows for prediction by linear extrapolation. Inspired by these experimental findings, we develop a self-supervised learning (SSL) objective that explicitly quantifies and promotes straightening. We demonstrate the power of this objective in training deep feedforward neural networks on smoothly-rendered synthetic image sequences that mimic commonly-occurring properties of natural videos. The learned model contains neural embeddings that are predictive, but also factorize the geometric, photometric, and semantic attributes of objects. The representations also prove more robust to noise and adversarial attacks compared to previous SSL methods that optimize for invariance to random augmentations. Moreover, these beneficial properties can be transferred to other training procedures by using the straightening objective as a regularizer, suggesting a broader utility of straightening as a principle for robust unsupervised learning.



learned representation



# Introduction

"Straightness": average cosine similarity between 2 successive difference vectors of any 3 temporally adjacent points

Contributions:

- 1. SSL objective + *whitening* to prevent representation collapse
- 2. Downstream predictions on visual attributes
- 3. Class separability
- 4. Robustness to multi-view invariance

"Whitening": transformation of random vector to be uncorrelated [1]



 $z_1$ 







[1] Bardes et al., "VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning", ICLR, 2022

"Pixel intensity": dissimilarity between difference(t) of successive frames  $t \in T$ 

"Perceptual intensity"

- Neural network features
- 2. "Psychophysical AXB task", identify outlier given set of images (A, A or B, B)

Background

#### Hypotheses

- natural sequences that are highly <u>curved</u> in pixel space are straighter perceptually
- 2. artificial sequences that are straight in pixel space are more curved perceptually

$$f_{t+1} = f_t + (f_t - f_{t-1})$$





Fig. 1 | Quantifying straightness of image sequences in the intensity and perceptual domains. a, Visualization of a high-dimensional representation of a temporal sequence of images. We consider representations in two domains: the 'pixel-intensity' domain (axes correspond to pixel intensities in each frame) and the 'perceptual' domain (axes correspond to internal responses that underlie the perceptual judgments of human subjects). Each frame in the sequence corresponds to a point in the representational space. The discrete curvature at a given frame is equal to the angle between the segments connecting it to adjacent frames. We define the curvature of a sequence as the average of these angles. b, In the pixel-intensity domain, curvature can be calculated directly by computing the pixel-wise differences between successive frames and the angles between them. Note how this sequence of frames is curved in the intensity domain (difference images are dissimilar) but seems natural perceptually. In contrast, a linearly extrapolated frame in the intensity domain (bottom right) is perceptually unnatural.



#### **NATURE NEUROSCIENCE**

# Background



Fig. 3 | Curvature reduction for natural image sequences.

Fig. 4 | Curvature increase for artificial image sequences.



Hénaff et al., "Perceptual straightening of natural videos", Nature Neuroscience, 2019

Background

#### Biologically-inspired transformer model

- Center-surround filtering, local luminance and contrast gain control operations
- 1. Oriented filters, squared and combined responses over phase

#### Curvature of model features

- Biology network, more "straight curvatures" on natural videos
- Neural network, only seen in output layer



Fig. 6 | Changes in curvature induced by models of the visual system. a, Two-stage cascade model describing computations found in the retina, lateral

#### 🌾 NYU

Hénaff et al., "Perceptual straightening of natural videos", Nature Neuroscience, 2019

#### 1. <u>Temporal Invariance</u>

#### Existing SSL methods

- Contrastive
- Self distillation
- Correlation analysis (whitening)

#### Past

 Operates on static images, lost time varying features van Steenkiste et al., "Moving Off-the-Grid: Scene-Grounded Video Representations", 2024

#### Current

- Straightening captures all features in spatio temporal inputs
- Predict future states







Chen et al., "A Simple Framework for Contrastive Learning of Visual Representations", ICML, 2020 Grill et al., "Bootstrap your own latent: A new approach to self-supervised Learning", NeurIPS, 2020 Bardes et al., "VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning", ICLR, 2022

#### 2. Temporal Prediction

#### Past

- Contrastive prediction encoding
  - parametrization scales quadratically with feature dimension
- Linearized representation
  - auxiliary architectural components and loss

#### Current

- parameter-free
- predictions can adapt to different contexts



Figure 1: Overview of Contrastive Predictive Coding, the proposed representation learning approach. Although this figure shows audio as input, we use the same setup for images, text and reinforcement learning.

 $\mathcal{L}_{ ext{N}} = - \mathop{\mathbb{E}}\limits_{X} \left[ \log rac{f_k(x_{t+k}, c_t)}{\sum_{x_j \in X} f_k(x_j, c_t)} 
ight]$ 



Figure 1: (a) A video generated by translating a Gaussian intensity bump over a three pixel array (x,y,z), (b) the corresponding manifold parametrized by time in three dimensional space



Figure 2: The basic linear prediction architecture with shared weight encoders

8



Van den Oord et a., "Representation learning with contrastive predictive coding", arXiv, 2018 Henaff et al., "Data-efficient image recognition with contrastive predictive coding. In: Inter- national conference on machine learning", PMLR, 2020

3. Straightening and robustness

#### Past

- "Straightness" found in human, macaque physiology, but not in neural networks
- Tolerance to noise or perturbations
   => straightened responses [1, 2]

Current

- Reverse: straightened responses => tolerance to noise or perturbations









[1] Toosi et al., "Brain-like representational straightening of natural movies in robust feedforward neural networks", ICLR, 2023 [2] Harrington et al., "Exploring perceptual straightness in learned visual representations", ICLR, 2023

#### 3. Straightening and robustness

#### Past

- "Straightness" found in human, macaque physiology, but not in neural networks
- Tolerance to noise or perturbations
   => straightened responses [1, 2]

#### Current

- Reverse: straightened responses => tolerance to noise or perturbations





## Model

Straightness loss

- Applied to output layer // can be any (or several) layer(s) of network
- Straightness alone can have trivial solution

#### VICReg

- Variance, prevent different inputs from collapsing to same output
- Covariance, decorrelates pairs of output dimensions to minimize redundancies

$$\mathcal{L}_{\text{straightness}} = -\mathbb{E}\left[\frac{\langle \mathbf{z}_{t+1} - \mathbf{z}_t, \mathbf{z}_{t+2} - \mathbf{z}_{t+1} \rangle}{\|\mathbf{z}_{t+1} - \mathbf{z}_t\| \|\mathbf{z}_{t+2} - \mathbf{z}_{t+1}\|}\right]$$

$$\mathcal{L}_{\text{variance}} = \mathbb{E}\left[\frac{1}{d}\sum_{i=1}^{d} \max\left(0, 1 - S\left(z_t^i, \epsilon\right)\right)\right]$$

$$S(x, \epsilon) = \sqrt{\operatorname{Var}(x) + \epsilon} \quad d \text{ is the output dimensionality.}$$

$$\mathcal{L}_{\text{covariance}} = \mathbb{E}\left[\frac{1}{d}\sum_{i\neq j}[\operatorname{Cov}(\mathbf{z}_t)]_{i,j}^2\right]$$

$$\mathcal{L} = \mathcal{L}_{\text{straightness}} + \alpha \mathcal{L}_{\text{variance}} + \beta \mathcal{L}_{\text{covariance}}$$

$$Variance \quad invariance \quad Covariance \quad invariance \quad i$$



## Model

Straightness loss

- Applied to output layer // can be any (or several) layer(s) of network
- Straightness alone can have trivial solution

#### VICReg

- Variance, prevent different inputs from collapsing to same output
- Covariance, decorrelates pairs of output dimensions to minimize redundancies

$$\mathcal{L}_{\text{straightness}} = -\mathbb{E}\left[\frac{\langle \mathbf{z}_{t+1} - \mathbf{z}_t, \mathbf{z}_{t+2} - \mathbf{z}_{t+1} \rangle}{\|\mathbf{z}_{t+1} - \mathbf{z}_t\| \|\mathbf{z}_{t+2} - \mathbf{z}_{t+1}\|}\right]$$

$$\mathcal{L}_{\text{variance}} = \mathbb{E}\left[\frac{1}{d}\sum_{i=1}^{d} \max\left(0, 1 - S\left(z_t^i, \epsilon\right)\right)\right]$$

$$\overline{S(x, \epsilon)} = \sqrt{\operatorname{Var}(x) + \epsilon} \quad d \text{ is the output dimensionality},$$

$$\mathcal{L}_{\text{covariance}} = \mathbb{E}\left[\frac{1}{d}\sum_{i\neq j}[\operatorname{Cov}(\mathbf{z}_t)]_{i,j}^2\right]$$

$$\mathcal{L} = \mathcal{L}_{\text{straightness}} + \alpha \mathcal{L}_{\text{variance}} + \beta \mathcal{L}_{\text{covariance}}$$
For control experiments
$$\overline{L} = L_{\text{invariance}} + \lambda L_{\text{variance}} + \gamma L_{\text{covariance}}$$

$$L_{\text{invariance}} = \mathbb{E}\left[\frac{1}{d} \|\mathbf{z}_t - \mathbf{z}_{t_0}\|_F^2\right]$$

**% NYU** 

## Data

Artificial videos

- temporally structured augmentations
- mimic natural transformations to static images

Reasons of not using natural videos

- Match image based SSL models
- Bad performance on recognition tasks due to insufficient object variety

#### Approach

- MNIST
  - Translation, rescaling, rotation
     Brightness, contrast, saturation, hue
- CIFAR
  - Translation, rescaling
  - Horizontal flips (all frames) Grayscale, solarization (per frame)



 $R = \frac{\left(\sum_{i} \lambda_{i}\right)^{2}}{\sum_{i} \lambda_{i}^{2}}$ , where  $\{\lambda_{i}\}$  are the eigenvalues of the covariance matrices

17








## Conclusion

#### Idea

- Biologically-inspired SSL objective
- Predictive neural representations

#### Advantages

- Easy and computationally less demanding
- Representational capacity and robustness
- Alternative for hand crafted augmentations

#### Extensions

- Multiple time scale
  - Hierarchical temporal structure for long horizon predictions
- Multiple network stages



## Moving Off-the-Grid: Scene-Grounded Video Representations

Y NY

Name: Anurup Naskar NetID: an4462

### **Traditional Vision Based Models**

#### Convolutional Neural Networks (CNNs)

CNNs learn hierarchical feature representations using spatially localized filters (kernels) that slide over the image in a fixed grid pattern. Each convolutional filter captures local patterns such as edges, textures, and objects, which are then combined at deeper layers to form more abstract representations. CNNs exhibit *translation invariance* due to weight sharing, meaning they can recognize objects regardless of their position in the image. However, they struggle with long-range dependencies and rely on pooling layers or downsampling techniques to aggregate global information.





## **Traditional Vision Based Models**

#### Vision Transformers (ViTs)

ViTs use self-attention instead of convolutions to model image representations. They divide an image into non-overlapping patches, which are then flattened and projected into a sequence of embeddings (tokens). A Transformer encoder applies *multi-head self-attention* to model relationships between tokens, allowing *global feature extraction* from the start. Compared to CNNs, ViTs capture long-range dependencies more effectively and enable more flexible representations. However, ViTs still maintain a fixed grid structure since tokens correspond to static image patches.





## **Research Gap In Traditional Vision Models**

- **Rigid Token Alignment:** Struggles to track moving objects, causing inconsistent representations.
- **Grid-Induced Bias:** Tokens are constrained to static locations, limiting motion adaptability.
- Limited Generalization: Fixed grids fail to capture spatio-temporal variations in videos.



## Objective

- MooG is a recurrent model designed for processing an arbitrary number of video frames while maintaining a consistent scene-grounded OTG representation.
- Takes as input a sequence of observed frames  $\{X_t\}_{t=1}^T$ , where  $X_t \in \mathbb{R}^{H \times W \times 3}$ .
- Iteratively encodes frames into a set of latent tokens.
- Separates the latent state into:

🧳 NYU

- Corrected states  $\{z_c^t\}_{t=1}^T$ , where  $z_c^t \in \mathbb{R}^{K \times D}$ , obtained by encoding input frames.
- Predicted states  $\{z_p^t\}_{t=1}^T$ , where  $z_p^t \in \mathbb{R}^{K \times D}$ , representing the model's internal prediction of the next frame.
- The recurrent structure allows tokens to track elements consistently across frames and anticipate their future locations.

| Encoder CNN: |              |              |  |  |
|--------------|--------------|--------------|--|--|
| Features     | Kernel       | stride       |  |  |
| 64           | $3 \times 3$ | $1 \times 1$ |  |  |
| 128          | $3 \times 3$ | $1 \times 1$ |  |  |
| 128          | 3 	imes 3    | $1 \times 1$ |  |  |
| 256          | 3 	imes 3    | $2 \times 2$ |  |  |
| 256          | 3 	imes 3    | $1 \times 1$ |  |  |
| 512          | $3 \times 3$ | $2 \times 2$ |  |  |

### **Training Objective**

- The model is trained for next-frame prediction given the previous frame and model state.
- Composed of three main networks:
  - **Predictor** (P): Predicts the next state from the previous corrected state.
  - **Decoder** (D): Decodes the predicted state to reconstruct the current frame.
  - Corrector (C): Encodes the current frame and corrects errors in the predicted state.

| Component | Туре    | Layers | QKV size      | Heads | MLP size |
|-----------|---------|--------|---------------|-------|----------|
| Corrector | XA & SA | 2      | $64 \times 8$ | 8     | 2048     |
| Predictor | SA      | 3      | $64 \times 4$ | 4     | 2048     |
| Decoder   | XA      | 6      | $64 \times 2$ | 2     | 2048     |



## Architecture





## **Predictor**

• Takes the previous corrected state  $z_c^{t-1}$  and generates the predicted state  $z_p^t$ :

$$z_p^t = z_c^{t-1} + P(kqv = z_c^{t-1})$$

- Functions as a self-attention transformer network.
- Initial corrected state  $z_c^0$  is initialized with Gaussian noise  $(\mathcal{N}(0, 10^{-4}))$ .
- Ensures permutation symmetry and prevents token specialization.



## Corrector

- Incorporates information from the current observation  $X_t$  to update  $z_p^t$  and form  $z_c^t$ .
- Uses a convolutional encoder E with Fourier positional embeddings.
- Outputs a feature grid  $F_t \in \mathbb{R}^{H' \times W' \times D}$ .
- Updates the state using cross-attention:

$$z_c^t = z_p^t + C(kv = F_t, q = z_p^t), \text{ where } F_t = E(X_t)$$

• The corrected state does not receive a direct loss; it serves as an improved estimate for the predictor.



## Decoder

- Takes the predicted state  $z_p^t$  and decodes it into an RGB image.
- Uses cross-attention with spatial queries for pixel-based readouts.
- Decodes only a sub-sampled version of the target image for computational efficiency:

$$\tilde{X}_t = D(kv = z_p^t, q = P)$$

• Decoder attention weights reveal relationships between spatial positions and latent tokens.



### **Loss Calculation**

- Uses an L2 loss on image pixels.
- For each frame, the loss is computed as:

 $L_t = L2(\tilde{X}_t, X_t)$ 

- The predicted state depends only on the previous frame and model state.
- Training involves unrolling the model over 8 frames.









## **Readout Decoders**



(a) Pixel readout (RGB, depth).

(b) Recurrent readout (points, boxes).



## **Qualitative Analysis**



(a) Pixel readout (RGB, depth).

**% NYU** 



The MooG attention map indicates that the visualized token tracks the scene element it binds to across the full range of motion. In contrast, the grid-based token attention map demonstrates how these tokens end up being associated with a specific image location that does not track the scene content.

#### **Qualitative Analysis**



PCA of MooG tokens unrolled over a batch of short sequences. The model was unrolled over a batch of 24 sequences, 12 frames each. Predicted states from all time steps and batch samples were concatenated and PCA analysis was performed on the entire set jointly. We then reshape the projected set back to its original shape and use the arg-max token to visualize the result in image space.



### **Quantitative Analysis**



| Туре   | Туре | Layers | QKV size      | Heads | MLP size |
|--------|------|--------|---------------|-------|----------|
| Points | XA   | 3      | $64 \times 8$ | 8     | 2048     |
| Depth  | XA   | 3      | $64 \times 8$ | 8     | 2048     |
| Boxes  | XA   | 3      | $64 \times 8$ | 8     | 2048     |



## **Downstream readout performance from frozen representations**

|            | MOVi-E       |                 |              | DAVIS        | Waymo        |
|------------|--------------|-----------------|--------------|--------------|--------------|
| Name       | Points (†AJ) | Depth (↓AbsRel) | Boxes (†IoU) | Points (†AJ) | Boxes (†IoU) |
| MooG       | 0.839        | 0.0359          | 0.793        | 0.687        | 0.730        |
| Grid       | 0.769        | 0.0451          | 0.730        | 0.518        | 0.625        |
| Grid Rec.  | 0.778        | 0.0443          | 0.734        | 0.559        | 0.629        |
| DINOv1 (B) | 0.518        | 0.0371          | 0.724        | 0.409        | 0.566        |
| DINOv2 (B) | 0.544        | 0.0370          | 0.738        | 0.402        | 0.559        |
| VMAEv2 (S) | 0.595        | 0.0567          | 0.700        | 0.365        | 0.567        |
| VMAEv2 (B) | 0.681        | 0.0458          | 0.736        | 0.434        | 0.611        |
| VMAEv2 (G) | 0.822        | <b>0.0311</b>   | <b>0.793</b> | <b>0.720</b> | 0.708        |



### Downstream readout performance trained in an end-to-end manner

|                  |              | MOVi-E          |              | Davis        | Waymo        |
|------------------|--------------|-----------------|--------------|--------------|--------------|
| Name             | Points (†AJ) | Depth (↓AbsRel) | Boxes (†IoU) | Points (†AJ) | Boxes (†IoU) |
| MooG             | 0.886        | 0.0263          | 0.803        | 0.778        | 0.719        |
| Grid<br>Grid Baa | 0.860        | 0.0264          | 0.775        | 0.644        | 0.615        |
| Ghu Kec.         | 0.902        | 0.0255          | 0.000        | 0.779        | 0.075        |
| DINOv1           | 0.698        | 0.0381          | 0.728        | 0.578        | 0.557        |
| DINOv2           | 0.732        | 0.0439          | 0.734        | 0.656        | 0.607        |



#### **Depth comparison (End to end)**

#### **Points comparison (End to end)**

| Name           | Waymo (↓AbsRel) |  |  |
|----------------|-----------------|--|--|
| MooG           | 0.094           |  |  |
| DPT (ViT-L/16) | 0.161           |  |  |
| DPT (ViT-E/14) | 0.158           |  |  |
| DPT (ViT-22b)  | 0.154           |  |  |

| Name    | Davis-8 (†AJ) | Davis-full (†AJ) |
|---------|---------------|------------------|
| MooG    | 0.824         | 0.510            |
| TAP-Net | 0.687         | 0.392            |
| TAPIR   | 0.823         | 0.580            |



## **No of Tokens**





**%** NYU

### Limitations

- Task Generalization: Evaluations focused on readout tasks (e.g., object tracking, depth prediction), but effectiveness for tasks like semantic segmentation, classification, and generation remains unclear.
- Handling Scene Changes: OTG representations may struggle with disappearing or reappearing scene elements, unlike grid-based representations that change more gradually.



## Conclusion

- Traditional vision models (CNNs, ViTs) rely on fixed *on-the-grid* architectures tied to pixel grids.
- The real world does not exist on a pixel grid—rigid architectures limit adaptability to motion and scene changes.
- **MooG** enables representations to move *off-the-grid*, binding to scene elements dynamically.
- Demonstrates effectiveness in tasks requiring *motion understanding* and *scene geometry*.
- Current model is simple: deterministic, lacks uncertainty modeling, and uses an L2 pixel loss.



## **Thank You**



## Appendix

#### Self-attention

- For every  $oldsymbol{x} \in \{oldsymbol{x}_m\}_{m=1}^M = oldsymbol{X}$  , compute  $oldsymbol{\cdot}$  query  $oldsymbol{q} = oldsymbol{W}_{oldsymbol{q}}oldsymbol{x}$ 
  - $\cdot$  key  $k = W_k x$   $K = W_k X$
  - $\cdot$  value  $v = W_v x$   $V = W_v X_v$
- Compute the query-key match  $oldsymbol{r} = oldsymbol{K}^ op oldsymbol{q}$
- The context vector  $oldsymbol{c} = oldsymbol{V}oldsymbol{a}$ • where  $oldsymbol{a} = ext{softargmax}_eta(oldsymbol{r})$



Multi-headed attention: multiple replicas of the simple attention circuit.



#### Cross-attention

- For every  $oldsymbol{y} \in \{oldsymbol{y}_n\}_{n=1}^N$  , compute  $oldsymbol{\cdot}$  query  $oldsymbol{q} = oldsymbol{W}_{oldsymbol{q}}oldsymbol{y}$ 
  - $m{\cdot}$  key  $m{k} = W_{m{k}}x$   $m{K} = W_{m{k}}X$

$$m{\cdot}$$
 value  $v=W_vx$   $V=W_vX$ 

- Compute the query-key match  $\, oldsymbol{r} = oldsymbol{K}^{ oldsymbol{ oldsymbol{ extsf{ ex} extsf{ extsf{ extsf{ extsf ex} extsf{ extsf extsf{ extsf extsf{$
- The context vector  $\,oldsymbol{c} = oldsymbol{V}oldsymbol{a}$
- where  $oldsymbol{a} = \mathrm{softargmax}_eta(oldsymbol{r})$



Multi-headed attention: multiple replicas of the simple attention circuit.



















### Self-Supervised Depth





# DayDreamer

World Models for Physical Robo Learning

Andrew Deur

## Background

#### **Challenges in Robotic Learning**

- Data Intensive: Robots require millions of interactions to learn simple behaviors
- Real-world learning is impractical due to time, wear-and-tear and safety constraints
- Simulators are required to provide robots with sufficient training trials, but, they fail to capture real-world complexity.











## **World Models & Embodied Learning**

#### **Embodied Learning**

 Robots learn through physical interactions with the real world rather than pre-collected datasets or simulations

#### Planning from Learned World Model

• Predict the consequences actions using a learned world model to plan as opposed to learning through random interactions





## **DayDreamer Motivation**

#### Built on DreamerV2 (Hafner et al.)

- Extends Dreamer from simulation to real-world robotics without pre-training
  Imagined Rollouts using a World Model
- Instead of physically trying every action, learn a World Model and 'imagine' outcomes of different actions
  - Greatly improves sample efficiency
  - Enables learning from real world interaction in faster than real time
  - Allows the robot to learn off-policy, improving exploration / exploitation tradeoff





## **DayDreamer Approach Overview**

## Applies Dreamer to real-world robotics

 No simulation or pre-training. Learning is done directly on hardware with rewards from interaction with the environment




## **World Model Architecture**

## Recurrent State Space Model (RSSM)

- Combines deterministic and stochastic components to model dynamics
- Stochastic latent state models uncertainty in robot sensor subject to random noise
- Improves handling of partial observability

 $a_1$   $a_2$   $s_1$   $a_2$   $s_2$   $s_3$   $a_3$   $a_2$   $a_3$   $a_3$   $a_4$   $a_2$   $a_3$   $a_4$   $a_5$   $a_5$ 

RSSM

•  $h_t = f(h_{t-1}, s_{t-1}, a_{t-1})$ 

Stochastic State

•  $s_t \sim p(s_t \mid h_t)$ 

## **Observation Model**

- $o_t \sim p(o_t | h_t, s_t)$ Reward Model:
- $r_t \sim p(r_t \mid h_t, s_t)$





## World Model Architecture (cont.)

## **Encoder Network**

- Fuses sensors of different modalities, x<sub>t</sub> **Dynamics Network**
- Predicts sequence of stochastic representations, z<sub>t</sub>

## Decoder Network

- Reconstructs input from z<sub>t</sub>
- **Reward Network**
- Predict reward from z<sub>t</sub> for training rollouts





# **World Model Learning**

## **Discrete Latent Code Predictions Z**<sub>t</sub>

- World Model makes predictions in latent space to reduces computation and accumulating errors
  - Fast simulator of the environment that the robot learns autonomously

### **Replay Buffer**

- Learns world model from buffer of past experiences
- Decouples learning from data collection to enable fast training without waiting for environment
- World Model is learned off-policy, improving exploration





## **Behavior Model Architecture**

## **Actor Critic Learning**

- World Model represents task-agnostic knowledge about environment dynamics
- Actor Critic Networks learns behaviors to accomplish task at hand
- Behaviors learned on rollouts predicted in latent space of world model, without decoding back to parameter space





# **Behavior Model Architecture (cont.)**

### Actor Network

• Learns a distribution over successful actions for each latent model state to maximize future predicted rewards

$$\pi \sim (a_t \mid z_t)$$

- Policy gradients estimated using Reinforce for discrete control and reparametrization for continuous control
- High entropy is also incentivized to prevent collapsing to deterministic policy.

$$\mathcal{L}(\pi) \doteq -\operatorname{E}\left[\sum_{t=1}^{H} \ln \pi(a_t \mid s_t) \operatorname{sg}(V_t^{\lambda} - v(s_t)) + \eta \operatorname{H}\left[\pi(a_t \mid s_t)\right]\right]$$



## **Behavior Model Architecture (cont.)**

### **Critic Network**

• Trained to regress the return of the trajectory. Learned through temporal-difference learning to allow taking into account rewards beyond planning horizon H = 16 steps

$$v(z_t)$$

•  $\lambda$ -returns averaging over all N  $\in$  [1, H-1] to avoid choosing arbitrary N for TD learning. Slowly updating target critic used for computing  $\lambda$ -returns.

$$V_t^{\lambda} \doteq r_t + \gamma \Big( (1 - \lambda) v(s_{t+1}) + \lambda V_{t+1}^{\lambda} \Big), \quad V_H^{\lambda} \doteq v(s_H).$$



# **Implementation Details**

### **Asynchronous Training**

• Robot collects data in real time, storing it in replay buffer while training model and policy in parallel—no idle waiting.

### **Stochastic Backpropagation**

- World model learns distributions over latent states ,so standard backpropagation can't be used for training.
- Uses reparameterization trick so gradients can flow through probability distributions.





## **Implementation Details**

## Same Hyperparameters Across Robots and Tasks

- Same learning rate, network sizes, etc. across all robots and tasks,
- Underscores robust, task-agnostic generalization of DayDreamer

| Name                   | Symbol | Value           |
|------------------------|--------|-----------------|
| General                |        |                 |
| Replay capacity (FIFO) |        | 106             |
| Start learning         |        | 104             |
| Batch size             | B      | 32              |
| Batch length           | T      | 32              |
| MLP size               |        | $4 \times 512$  |
| Activation             | 0      | LayerNorm + ELU |
| World Model            |        |                 |
| RSSM size              |        | 512             |
| Number of latents      | _      | 32              |
| Classes per latent     |        | 32              |
| KL balancing           | _      | 0.8             |
| Actor Critic           |        |                 |
| Imagination horizon    | Н      | 15              |
| Discount               | γ      | 0.95            |
| Return lambda          | À      | 0.95            |
| Target update interval |        | 100             |
| All Optimizers         |        |                 |
| Gradient clipping      |        | 100             |
| Learning rate          |        | $10^{-4}$       |
| Adam epsilon           | ε      | 10-6            |



## **Experiments Overview**

| Experiment Name                                  | Input Space                                      | Action Space | Reward Type | Training Time |
|--------------------------------------------------|--------------------------------------------------|--------------|-------------|---------------|
| 1 - Quadruped<br>Walking                         | Proprioceptive Readings                          | Continuous   | Dense       | 1 hour        |
| 2 - UR5 Multi-Object<br>Visual Pick and<br>Place | RGB Image,<br>Proprioceptive Readings            | Discrete     | Sparse      | 8 hours       |
| 3 - XArm Visual<br>Pick and Place                | RGB Image, Depth Map,<br>Proprioceptive Readings | Discrete     | Sparse      | 10 hours      |
| 4 - Sphero<br>Navigation                         | RGB Image                                        | Continuous   | Dense       | 2 hours       |



# **Quadruped Walking**

**DayDreamer** learns to get up, stand an walk within 1 hour.

- Learns without environment re-starts
- 10 minutes of additional online learning and it can withstand pushes

**SAC** learns to roll off its back

• Can't stand up or walk due to limited training budget



### A1 Quadruped Walking



## **UR5 Multi-Object Visual Pick & Place**

**DayDreamer** achieves human level performance within 8 hours

• Challenging due to sparse rewards, struggles to learn for first 2 hours

**Rainbow and PPO** only learn short sighted behaviors and drop items in same bin

• Rainbow and PPO fail because they require quantities of data that are infeasible to collect in real world





## **XArm Visual Pick and Place**

**DayDreamer** achieves human level performance within 10 hours

- Exhibited multimodal behaviors, using string to pull object out of corners
- **Rainbow** fails to learn how to accomplish this task





NYU





Hours

17

## **XArm Visual Pick and Place Adaptation**

## **Continual Learning**

- Extreme lighting changes, particularly shadows after sunrise, cause performance to collapse
- DayDreamer adapts and recovers to previous performance after 5 hours of additional training
  - Less than learning the task from scratch





# **Sphero Navigation**

**DayDreamer** matches performance with model designed for this specific problem space within 2 hours

 Infers heading direction from history of observations because it only has access to image observations

**DrQv2** is a model-free algorithm specifically designed for continuous control from pixels alone



### Sphero Navigation

19





# **Practical Applications & Implications**

- **Direct, Embodied Learning:** Trains in the real world—no simulators or pre-training. Its learned world model supports adaptive "dreaming" for robust planning.
- **Continual, Multi-Task Potential:** Handles locomotion, manipulation, and navigation with minimal tuning, enabling ongoing adaptation across tasks.
- High Sample Efficiency: Consistently surpasses
  other RL methods under the same training budget.











# **Conclusion & Future Work**

## Conclusion

- Learns complex tasks in hours on real hardware—no simulator needed.
- A single approach solves locomotion, manipulation, and navigation efficiently.

### Future Work



- Extend to multi-task learning, longer training, and full autonomy.
- Integrate advanced exploration, safety constraints, or expert data; open-source fosters broader adoption.







#### World Models UniSim: Learning Interactive Real-World Simulators

Sidhartha Reddy Potu

March 19, 2025

(ロ) (型) (E) (E) (E) (O)()

#### Introduction & Motivation

UniSim is an action-conditioned video prediction model based on diffusion.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Learns directly from visual & textual data.
- Overcomes limitations of traditional simulators (complexity).
- > Applications: robotics control, instructional video generation.
- Leverages real-world video data for realistic, interactive simulation.

#### Related Work & Background

- Language models excel at text, not physical tasks.
- Video generation models focus on media, not multi-turn interactions.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Image-based world models target games and simple simulations.
- Existing methods lack interactive control; UniSim fills that gap.

#### **UniSim Dataset**

#### UniSim is trained on diverse datasets:

|                     | Dataset                                               | # Examples | Weight |
|---------------------|-------------------------------------------------------|------------|--------|
| Simulation          | Habitat HM3D (Ramakrishnan et al., 2021)              | 710        | 0.1    |
| Simulation          | Language Table sim (Lynch & Sermanet, 2020)           | 160k       | 0.05   |
|                     | Bridge Data (Ebert et al., 2021)                      | 2k         | 0.05   |
| Paul Pohot          | RT-1 data (Brohan et al., 2022)                       | 70k        | 0.1    |
| Keal Kobol          | Language Table real (Lynch & Sermanet, 2020)          | 440k       | 0.05   |
|                     | Miscellaneous robot videos                            | 133k       | 0.05   |
|                     | Ego4D (Grauman et al., 2022)                          | 3.5M       | 0.1    |
| Human activities    | Something-Something V2 (Goyal et al., 2017)           | 160k       | 0.1    |
| Human activities    | EPIC-KITCHENS (Damen et al., 2018)                    | 25k        | 0.1    |
|                     | Miscellaneous human videos                            | 50k        | 0.05   |
| Panorama scan       | Matterport Room-to-Room scans (Anderson et al., 2018) | 3.5M       | 0.1    |
| Internet text-image | LAION-400M (Schuhmann et al., 2021)                   | 400M       | 0.05   |
| internet text-image | ALIGN (Jia et al., 2021)                              | 400M       | 0.05   |
| Internet video      | Miscellaneous videos                                  | 13M        | 0.05   |

Figure: Diverse datasets used to train UniSim

### Conditioning on Multiple Modalities

UniSim processes multiple diverse modalities from various datasets: Modalities as Conditioning Inputs:

- Simulation Data: Continuous control actions (e.g., Habitat, Language Table data).
- **Real Robot Data**: High-level task descriptions and discretized low-level controls.
- Human Activity Videos: Text-based action labels from activity recognition datasets.
- Panorama Scans: Camera pose information converted to actions (e.g., turning directions).
- **Internet Text-Image Data**: Captions treated as actions for single-frame images.

#### **Unified Modality Alignment:**

- ▶ Text tokens processed into continuous representations using T5 embeddings.
- Low-level robot actions concatenated with language embeddings to create a unified action space.

### UniSim Overview

- Video diffusion model predicting future frames.
- Conditioned on past observations and actions.
- Multimodal inputs (vision, language, motor controls).



Figure 1: A universal simulator (UniSim). The simulator of the real-world learns from broad data with diverse information including objects, scenes, human activities, motions in navigation and manipulation, panorama scans, and simulations and renderings.

Figure: UniSim Training and Inference

### **UniSim Architecture**



Figure: UniSim Architecture

UniSim is an action-conditioned video prediction model parameterized using diffusion models. Given a history  $h_{t-1}$  and action  $a_{t-1}$ , the model predicts the next observation frames  $o_t$ :

$$p(o_t \mid h_{t-1}, a_{t-1})$$

#### Where:

- $h_{t-1}$ : Observations from the past (previous frames)
- ▶ *a*<sub>t-1</sub>: Action input (e.g., "move left," "pick up object")

#### Architechture Cont'd





- Each block is a 4D tensor: frames  $\times$  height  $\times$  width  $\times$  channels.
- Spatial attention treats the frame axis as a batch dimension.
- Temporal attention operates over frames, treating spatial (h, w, c) as batch tokens.
- Relative position embeddings preserve frame order.

### Architecture Cont'd



Figure: Video U-Net space-time separable block

- UniSim uses a history-conditioned base model at [16, 24, 40] resolution with temporal attention.
- Two cascaded super-resolution models upscale from [24, 40] to [48, 80] and then to [192, 320].
- The base model is conditioned on history by concatenating 4 previous frames channelwise with the U-Net's noise input.
- ▶ Temporal convolution is used in the super-resolution models for efficiency.

#### Training Objective

UniSim predicts future frames using a video diffusion model: **Diffusion Model Objective:** 

$$L_{\mathsf{MSE}} = \|\epsilon - \epsilon_{\theta}(\sqrt{1 - \beta^{(k)}}o_t + \sqrt{\beta^{(k)}}\epsilon, k \mid h_{t-1}, a_{t-1})\|^2$$

**Classifier-Free Guidance:** 

$$\hat{\epsilon}_{ heta}(o_t^{(k)}, k \mid h_{t-1}, a_{t-1}) = (1+\eta) \, \epsilon_{ heta}(o_t^{(k)}, k \mid h_{t-1}, a_{t-1}) - \eta \, \epsilon_{ heta}(o_t^{(k)}, k \mid h_{t-1})$$

where  $\eta$  is the guidance scale. **Denoising step:** 

$$o_t^{(k-1)} = \alpha^{(k)} \left( o_t^{(k)} - \gamma^{(k)} \epsilon_\theta(o_t^{(k)}, k | h_{t-1}, a_{t-1}) \right) + \xi, \quad \xi \sim \mathcal{N}(0, \sigma_k^2 I)$$

#### Downstream use cases



Figure 3: Action-rich simulations. UniSim can support manipulation actions such as "cut carrots", "wash hands", and "pickup bowl" from the same initial frame (top left) and other navigation actions.

Figure: Action rich, diverse long sequences

#### Downstream use cases



Figure 5: Diverse and stochastic simulations. On the left, we use text to specify the object being revealed by suffixing "uncovering" with the object name. On the right, we only specify "put cup" or "put pen", and cups and pens of different colors are sampled as a result of the stochastic sampling process during video generation.

Figure: Different simulation

### Generating Synthetic Data

- Use placeholder frames (e.g., white images) with strong text guidance.
- Generate 4 videos per text from ActivityNet Captions.
- Fine-tune PaLI-X on 4× data.
- The generated videos align semantically well than AcitvityNet Caption(their claim, no examples).
- Helpful in generating rare event data.

Activity MSR-VTT VATEX SMIT

| No finetune | 15.2  | 21.91 | 13.31 | 9.22  |
|-------------|-------|-------|-------|-------|
| Activity    | 54.90 | 24.88 | 36.01 | 16.91 |
| Simulator   | 46.23 | 27.63 | 40.03 | 20.58 |

Table 4: VLM trained in UniSim to perform video captioning tasks. CIDEr scores for PaLI-X finetuned only on simulated data from UniSim compared to no finetuning and finetuning on true video data from ActivityNet Captions. Finetuning only on simulated data has a large advantage over no finetuning and transfers better to other tasks than finetuning on true data.

### Long-Horizon Simulations



Figure 4: **Long-horizon simulations.** UniSim sequentially simulates 8 interactions autoregressively. The simulated interactions maintain temporal consistency across long-horizon interactions, correctly preserving objects and locations (can on counter in column 2-7, orange in drawer in column 4-5).

### Long-Horizon Simulations



Figure: A VLM policy generating long-horizon actions, simulated video plans, and real-robot execution.

| Model         | RDG (moved)   | RDG (all)                |
|---------------|---------------|--------------------------|
| VLM-BC        | $0.11\pm0.13$ | $0.07\pm0.11$            |
| Sim-Hindsight | $0.34\pm0.13$ | $\textbf{0.34} \pm 0.13$ |

Table: Evaluation of long-horizon actions.

#### Long-Horizon Simulations

- Generate long-horizon trajectories with UniSim.
- Use the final frame of the short-horizon trajectory as the initial state.
- Move some blocks, then use a VLM to generate language instructions.
- Use these instructions to generate long-horizon data.
- Train the VLM policy using the generated data.
- > An inverse dynamics model produces low-level actions for robot execution.

### Sim-to-Real: RL with UniSim



Simulated rollout from  $\Delta x$ ,  $\Delta y$ moving diagonally

Real-robot execution of "move blue cube to green circle"



Figure 8: **[Top] Simulation from low-level controls.** UniSim supports low-level control actions as inputs to move endpoint horizontally, vertically, and diagonally. **[Bottom] Real-robot execution of an RL policy** trained in simulation and zero-shot onto the real Language Table task. The RL policy can successfully complete the task of "moving blue cube to green circle".

|              | Succ. rate (all) | Succ. rate (pointing) |
|--------------|------------------|-----------------------|
| VLA-BC       | 0.58             | 0.12                  |
| Simulator-RL | 0.81             | 0.71                  |

Table: Performance of RL policy trained with UniSim and evaluated on real-robot tasks.

#### Sim to Real

- UniSim is used as a realistic simulator for training RL policies.
- Compared to a baseline trained via behavior cloning, the RL policy is fine-tuned using REINFORCE on simulated rollouts (reward signals based on progress toward the goal).
- Low-level action predictions are generated from observations; the simulator produces video trajectories from which rewards are derived.
- The RL policy trained in UniSim outperforms the behavior cloning baseline and is deployed directly on the real robot.

#### Ablation

| Condition | $FID\downarrow$ | $FVD\downarrow$ | IS $\uparrow$ | $\text{CLIP}\uparrow$ |
|-----------|-----------------|-----------------|---------------|-----------------------|
| 1 frame   | 59.47           | 315.69          | 3.03          | 22.55                 |
| 4 distant | 34.89           | 237             | 3.43          | 22.62                 |
| 4 recent  | 34.63           | 211.3           | 3.52          | 22.63                 |

Table 1: Ablations of history conditioning using FVD, FID, and Inception score, and CLIP score on Ego4D. Conditioning on multiple frames is better than on a single frame, and recent history has an edge over distant history.

| Model size | $ $ FVD $\downarrow$ | CLIP $\uparrow$ |
|------------|----------------------|-----------------|
| 500M       | 277.85               | 22.08           |
| 1.6B       | 224.61               | 22.27           |
| 5.6B       | 211.30               | 22.63           |

| Dataset             | $FVD\downarrow$ | $\text{CLIP} \uparrow$ |
|---------------------|-----------------|------------------------|
| Internet only       | 219.62          | 22.27                  |
| Without internet    | 307.80          | 21.99                  |
| Universal simulator | <b>211.30</b>   | <b>22.63</b>           |
Video examples and Failures

Unisim: universal-simulator.github.io/unisim/



## Limitations

- Hallucinations
- Limited temporal memory only 4 frames
- struggles with out of distribution
- Not a truly universal model. only uses visual changes. not able to tell forces, touch.

## **Genie: Generative Interactive Environments**

Video as the New Language for Real-World Decision Making

Genie 2: A Large-Scale Foundation World Model

SORA: Video Generation Models as World Simulators

## References

- Jonathan Ho et al., *Imagen Video: High Definition Video Generation with Diffusion Models.*
- Jonathan Ho et al., *Video Diffusion Models*.
- **Ö**zgün Çiçek et al., *3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.*