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1-1.Motivation &
Background

SSL revolutionized NLP
Proves that models can learn representations from raw
data without explicit labels

Success of foundation
models in NLP
Suggests similar approaches could work in computer
vision

Goal: Vision Fountation
Model
Develop general-purpose visual features that work
across image distributions and tasks without finetuning.

Introduction1.



Text-supervised
models (e.g.CLIP)

1.

rely on image-text pairs,
limiting their ability to

capture pixel-level details

1-2. Challenges in Vision
Foundation Models

2. Prior SSL methods (e.g., DINO, iBOT) struggled
with scalability and dataset quality

Mostly trained on small
curated datasets (e.g.,

ImageNet-1k)

Poor generalization
beyond ImageNet

Introduction1.



1-3. Evolution From DINO to DINOv2

DINO (2021)
introduced SSL via student-
teacher distillation.

Limitations of DINO
Small dataset, no patch-level
learning, inefficient training.

Introduction1.



LVD-142M
dataset for

better
pretraining

State-of-the-art
performance

across multiple
vision

benchmarks

Advanced SSL
techniques

(DINO + iBOT +
SWAV losses)

Scalable training
efficiency with
lower memory

usage

1-4. Key Contributions of
DINOv2

Introduction1.



2. DINOv2: Data Pipeline
Building LVD-142M: A Curated
Pretraining Dataset

Assembled from a large pool of uncurated images by
retrieving those similar to curated datasets like
ImageNet-22k
Filtering process:

Deduplication (removes near-duplicates to ensure
diversity)
NSFW filtering (removes inappropriate content)
Face blurring (enhances privacy)

Self-Supervised Image Retrieval
for Curation

Used a self-supervised ViT-H/16 model to extract
image embeddings.
Cosine similarity + k-means clustering to retrieve
diverse, high-quality images.
Trade-off: Using 4 nearest neighbors (N=4) balances
retrieval quality and dataset diversity.

2. Data Processing



Why Vision Transformers?
Unlike CNNs, ViTs process images like
sequences, capturing long-range
dependencies effectively.
Self-attention in ViTs allows better feature
learning across an entire image.

How DINOv2 Uses ViTs:
Uses a ViT-based architecture as the
backbone.
Processes both global (image-level) and local
(patch-level) features.
Enables self-supervised training via the
student-teacher framework.

3-1.
DINOv2’s
Architecture
: Vision
Transformer
(ViT)

3. Network Architecture and Design



Self-Distillation Mechanism

Student model

Teacher model

3-2. Self-Supervised Learning Framework
Student-Teacher Framework (DINO/iBOT Inspired)

3. Network Architecture and Design

Exponential Moving Average (EMA) 
of the student

Learns by matching the teacher’s
softmax outputs

Training encourages feature consistency across different image augmentations



3-3. Loss Functions Used 

DINO Loss (Image-Level
Representation)

3. Network Architecture and Design

iBOT Loss (Patch-Level
Representation)

Sinkhorn-Knopp
Centering (Inspired by
SWAV)

KoLeo Regularizer

DINO Loss: Image-level objective

Cross-entropy between student & teacher
feature distributions.
Uses "prototype vectors" for contrastive
learning.



3-3. Loss Functions Used 

DINO Loss (Image-Level
Representation)

3. Network Architecture and Design

iBOT Loss (Patch-Level
Representation)

Sinkhorn-Knopp
Centering (Inspired by
SWAV)

KoLeo Regularizer

iBOT Loss: Patch-Level Objective

Masked Image Modeling (MIM):
Random patches are masked in the
student but visible in the teacher.
The student must predict missing patches,
learning local context.



3-3. Loss Functions Used 

3. Network Architecture and Design



iBOT Loss: Patch-Level Objective

Masked Image Modeling (MIM):
Random patches are masked in the
student but visible in the teacher.
The student must predict missing patches,
learning local context.

3-3. Loss Functions Used 

DINO Loss (Image-Level
Representation)

3. Network Architecture and Design

iBOT Loss (Patch-Level
Representation)

Sinkhorn-Knopp
Centering (Inspired by
SWAV)

KoLeo Regularizer

Untying head weights between both
objectives to solve 
1) underfitting issue in the patch-level
classification task and
2) overfitting issue in the image-level
classification task



3-3. Loss Functions Used 

DINO Loss (Image-Level
Representation)

3. Network Architecture and Design

iBOT Loss (Patch-Level
Representation)

Sinkhorn-Knopp
Centering (Inspired by
SWAV)

KoLeo Regularizer

Sinkhorn-Knopp Centering
(Inspired by SwAV)

Normalizes teacher outputs for better
feature distribution.
Prevents representation collapse.

KoLeo Regularizer

Spreads features uniformly to improve
retrieval & instance recognition.



Custom FlashAttention: Reduces memory usage & speeds up self-attention calculations.
Sequence Packing:

Concatenates small & large image crops into a single long sequence.
Uses block-diagonal attention masking for efficiency.

Efficient Stochastic Depth: Skips unnecessary residual computations → faster training.

4-1. Efficient Implementation and Scaling:
Memory & Compute Optimizations

4. Efficient Implementation and Scaling

Compared to the iBOT implementation, the DINOv2 code runs around 2× faster using only 1/3 of the memory.



Instead of storing full model replicas per GPU, DINOv2 shards parameters across multiple GPUs.
50% lower communication costs compared to traditional Distributed Data Parallel (DDP).

4-2. Efficient Implementation and Scaling:
Fully-Sharded Data Parallelism (FSDP)

4. Efficient Implementation and Scaling



ViT-L models learn from a frozen ViT-g teacher.
Removes need for training small models from scratch.
Maintains high performance with lower compute cost.

4-3. Efficient Implementation and Scaling:
Knowledge Distillation for Smaller Models

4. Efficient Implementation and Scaling



5.  Results

5. Empirical Results



5-1.  Results: ImageNet-1k Classification 

5. Empirical Results

+4.2% Top-1 Accuracy on
ImageNet over iBOT.
Matches or surpasses OpenCLIP
and EVA-CLIP

Linear evaluation on ImageNet-1k of frozen pretrained features



5-2.  Results: Video and other image
Classification 

5. Empirical Results



5-3.  Results: Instance Recognition 

5. Empirical Results

Ranks images based on cosine similarity between features
Significant mAP improvements (+41% over SSL on Oxford-Hard), +34% over weakly-
supervised models on Oxford-Hard).



5-4.  Results: Semantic Segmentation &
Depth Estimation

5. Empirical Results

Semantic segmentation on ADE20K, CityScapes 
and Pascal VOC with frozen features

Depth estimation with frozen features
Depth estimation outperforms OpenCLIP and weakly-supervised features.



5-5. Qualitative Results

5. Empirical Results



5-5. Qualitative Results

5. Empirical Results



5-5. Qualitative Results

5. Empirical Results
Dense Matching Sparse Matching



6. Conclusion

Scalable self-supervised model that
matches or outperforms weakly-
supervised models.

Curated dataset (LVD-142M) improves
generalization over traditional
ImageNet pretraining.

Efficient training (FlashAttention,
FSDP, knowledge distillation) enables
scaling to billion-parameter models.

6. Conclusion



Thanks!
Q&A



Self-Supervised Learning from 
Images with a Joint- Embedding 
Predictive Architecture (IJEPA)

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal 
Vincent, Michael Rabbat, Yann LeCun, Nicolas Ballas

Presentation by Surbhi



Approaches for Visual Representation Learning

01 02



Approach - Joint Embedding Architecture

Image Credits: Chen et al., A Simple Framework for Contrastive Learning of Visual 
Representations, ICML 2020



Approach - Joint Embedding Architecture

Image Credits: Chen et al., A Simple Framework for Contrastive 
Learning of Visual Representations, ICML 2020

Features of high 
semantic level

Features excel off-the 
shelf (frozen eval.)

PROS



Approach - Generative Architecture

Image Credits: He et al., Masked Autoencoders Are Scalable Vision 
Learners, arXiv 2021



Approach - Generative Architecture

Image Credits: He et al., Masked Autoencoders Are Scalable Vision 
Learners, arXiv 2021

Features suitable for 
lower level image tasks

General Approach (no 
domain-specific hand-
crafted data 
augmentations)

Less sensitive to pre-
train distribution



Limitations

Requires hand-crafted 
data augs

01

Highly sensitive to pre-
train distribution

02

Suboptimal for low 
level image tasks

03

Joint Embedding Architecture



Limitations

Requires hand-crafted 
data augs

01

Highly sensitive to pre-
train distribution

02

Suboptimal for low 
level image tasks

03

Features of relatively 
lower semantic level

01

Require more involved 
adaptation 

mechanism 

02

Pluto is considered a 
dwarf planet

03

Joint Embedding Architecture Generative 
Architecture



Approaches for Visual Representation Learning



Capture semantics 
without relying on 
hand-crafted data augs

Excel off-the-shelf 
(frozen eval.)

Perform well in both 
high-level and low-level 
image tasks 

Joint Embedding Predictive Architecture (JEPA)



Image Joint Embedding Predictive Architecture (I-JEPA)

Image Credits: Meta AI Blog



Method

01 Vision Transformer 
Architecture

Context Encoder02

Target Encoder03

GIF Credits: Google AI Blog

Predictor04



Context & Target Masking Strategy



Context Masking Strategy



Target Masking Strategy



Predictor

Input: 
Mask Tokens

- Shared learnable vector
- Positional Embedding



Loss

Average L2 Distance

Between predicted and target patch-level representations



Parameters

Predictor & 
Context Encoder

Gradient based 
optimization

Target Encoder Exponential Moving 
Average



Exponential Moving Average

Photo Credits: Grill et al., Bootstrap your own latent space. A new approach to self 
supervised learning, 2020



Results (Image Classification Task)



Results (Local Prediction Tasks)

Performance on lower-level image tasks

I-JEPA outperforms joint 
embedding methods in low-level 

image tasks



Results - Scalability

04

Scalable

02

Faster than iBOT

01

Very Efficient

03

Converges Faster



Predictor Visualizations



Ablations

Same method in pixel space 
performs much worse on semantic 
classification tasks.

I-JEPA is non-generative



Conclusion
Decoding I-JEPA predictor outputs to sketches

I-JEPA predictor captures both global semantics and spatial uncertainty.

Image Credits: Meta AI Blog



Further Work

Extension of I-JEPA to videosV-JEPA

Hierarchy JEPA, enhance JEPA’s extraction 
capabilityH-JEPA

Motion Content JEPA: Extension of JEPA to 
include motion informationMC-JEPA

Connecting JEPA with contrastive SSLC-JEPA



Thank You!

Happy Spring Break!
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DS-GA.3001 Embodied Learning and Vision
Topic Presentation

Niu et al., “Learning predictable and robust neural 
representations by straightening image sequences”, 2024.

Sal Yeung
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Abstract
Prediction is a fundamental capability of all living organisms, and has been
proposed as an objective for learning sensory representations. Recent work
demonstrates that in primate visual systems, prediction is facilitated by neural
representations that follow straighter temporal trajectories than their initial
photoreceptor encoding, which allows for prediction by linear extrapolation.
Inspired by these experimental findings, we develop a self-supervised learning
(SSL) objective that explicitly quantifies and promotes straightening. We
demonstrate the power of this objective in training deep feedforward neural
networks on smoothly-rendered synthetic image sequences that mimic
commonly-occurring properties of natural videos. The learned model contains
neural embeddings that are predictive, but also factorize the geometric,
photometric, and semantic attributes of objects. The representations also prove
more robust to noise and adversarial attacks compared to previous SSL
methods that optimize for invariance to random augmentations. Moreover,
these beneficial properties can be transferred to other training procedures by
using the straightening objective as a regularizer, suggesting a broader utility
of straightening as a principle for robust unsupervised learning.
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Introduction
“Straightness”: average cosine similarity between 2 successive 
difference vectors of any 3 temporally adjacent points

Contributions:

1. SSL objective + whitening to prevent representation collapse 
2. Downstream predictions on visual attributes
3. Class separability
4. Robustness to multi-view invariance

“Whitening”: transformation of random vector to be uncorrelated [1]

[1] Bardes et al., “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022
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“Pixel intensity”: dissimilarity between 
difference(t) of successive frames t ∈ T

“Perceptual intensity”

1. Neural network features
2. “Psychophysical AXB task”, identify 

outlier given set of images (A, A or B, B)

Hypotheses

1. natural sequences that are highly curved 
in pixel space are straighter perceptually

2. artificial sequences that are straight in 
pixel space are more curved perceptually

Background

Hénaff et al., “Perceptual straightening of natural videos”, Nature Neuroscience, 2019
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Background

Hénaff et al., “Perceptual straightening of natural videos”, Nature Neuroscience, 2019
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Background

Hénaff et al., “Perceptual straightening of natural videos”, Nature Neuroscience, 2019

Biologically-inspired transformer model

1. Center-surround filtering, local 
luminance and contrast gain control 
operations

1. Oriented filters, squared and combined 
responses over phase

Curvature of model features

- Biology network, more “straight 
curvatures” on natural videos

- Neural network, only seen in output 
layer

lateral geniculate 
nucleus

primary visual 
cortex (area V1)
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1. Temporal Invariance

Existing SSL methods
- Contrastive
- Self distillation
- Correlation analysis (whitening)

Past 
- Operates on static images, lost time varying features

van Steenkiste et al., “Moving Off-the-Grid: 
Scene-Grounded Video Representations”, 2024

Current
- Straightening captures all features in spatio temporal inputs
- Predict future states

Related

Chen et al., “A Simple Framework for Contrastive Learning of Visual Representations”, ICML, 2020
Grill et al., “Bootstrap your own latent: A new approach to self-supervised Learning”, NeurIPS, 2020

Bardes et al., “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022
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Van den Oord et a., “Representation learning with contrastive predictive coding”, arXiv, 2018
Henaff et al., “Data-efficient image recognition with contrastive predictive coding. In: Inter- national conference on machine learning”, PMLR, 2020

2. Temporal Prediction

Past
- Contrastive prediction encoding

- parametrization scales quadratically with 
feature dimension

- Linearized representation
- auxiliary architectural components and loss

Current
- parameter-free 
- predictions can adapt to different contexts

Related
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3. Straightening and robustness

Past
- “Straightness” found in human, 

macaque physiology, but not in 
neural networks

- Tolerance to noise or perturbations
=> straightened responses [1, 2]

Current
- Reverse: straightened responses => 

tolerance to noise or perturbations

Related

[1] Toosi et al., “Brain-like representational straightening of natural movies in robust feedforward neural networks”, ICLR, 2023
[2] Harrington et al., “Exploring perceptual straightness in learned visual representations”, ICLR, 2023
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3. Straightening and robustness

Past
- “Straightness” found in human, 

macaque physiology, but not in 
neural networks

- Tolerance to noise or perturbations
=> straightened responses [1, 2]

Current
- Reverse: straightened responses => 

tolerance to noise or perturbations

Related

Madry et al., “Towards Deep Learning Models Resistant to Adversarial Attacks”, ICLR, 2018
Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, ICLR, 2015
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Straightness loss 

- Applied to output layer // can be any (or 
several) layer(s) of network

- Straightness alone can have trivial solution

VICReg

- Variance, prevent different inputs from 
collapsing to same output

- Covariance, decorrelates pairs of output 
dimensions to minimize redundancies

Model

Bardes et al., “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022
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Straightness loss 

- Applied to output layer // can be any (or 
several) layer(s) of network

- Straightness alone can have trivial solution

VICReg

- Variance, prevent different inputs from 
collapsing to same output

- Covariance, decorrelates pairs of output 
dimensions to minimize redundancies

Model

Bardes et al., “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022

For control experiments
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Artificial videos
- temporally structured augmentations
- mimic natural transformations to static images

Reasons of not using natural videos
- Match image based SSL models
- Bad performance on recognition tasks due to 

insufficient object variety

Approach
- MNIST

- Translation, rescaling, rotation
Brightness, contrast, saturation, hue

- CIFAR
- Translation, rescaling
- Horizontal flips (all frames)

Grayscale, solarization (per frame)

Data
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Experiments
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Experiments
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Experiments
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Experiments
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Experiments
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Experiments
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Idea 

- Biologically-inspired SSL objective
- Predictive neural representations

Advantages

- Easy and computationally less demanding
- Representational capacity and robustness
- Alternative for hand crafted augmentations

Extensions

- Multiple time scale
- Hierarchical temporal structure for long horizon predictions

- Multiple network stages

Conclusion



Moving Off-the-Grid: 
Scene-Grounded Video 
Representations

Name: Anurup Naskar
NetID: an4462  
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Traditional Vision Based Models



3

Traditional Vision Based Models



4

Research Gap In Traditional Vision 
Models
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Objective                                                     
Encoder CNN:                                                     
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Training Objective
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Architecture
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Predictor
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Corrector
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Decoder
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Loss Calculation
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Analysis
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Readout Decoders
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Qualitative 
Analysis

The MooG attention map indicates that the visualized token 
tracks the scene element it binds to across the full range of 
motion. In contrast, the grid-based token attention map 
demonstrates how these tokens end up being associated with a 
specific image location that does not track the scene content. 
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Qualitative Analysis

PCA of MooG tokens unrolled over a 
batch of short sequences. The model 
was unrolled over a batch of 24 
sequences, 12 frames each. Predicted 
states from all time steps and batch 
samples were concatenated and PCA 
analysis was performed on the entire 
set jointly. We then reshape the 
projected set back to its original shape 
and use the arg-max token to visualize 
the result in image space.
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Quantitative Analysis



17

Downstream readout performance 
from frozen representations
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Downstream readout performance 
trained in an end-to-end manner



19

 Depth comparison (End to end)                     Points comparison (End to end)
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No of Tokens
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Limitations
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Conclusion
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Thank You
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Appendix
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DayDreamer

Andrew Deur

World Models for Physical Robo 
Learning
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Background
Challenges in Robotic Learning
● Data Intensive: Robots require 

millions of interactions to learn 
simple behaviors

● Real-world learning is impractical 
due to time, wear-and-tear and 
safety constraints 

● Simulators are required to 
provide robots with sufficient 
training trials, but, they fail to 
capture real-world complexity. 
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World Models & Embodied Learning
Embodied Learning
● Robots learn through physical 

interactions with the real world rather 
than pre-collected datasets or 
simulations

Planning from Learned World Model
● Predict the consequences actions using 

a learned world model to plan as 
opposed to learning through random 
interactions
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DayDreamer Motivation
Built on DreamerV2 (Hafner et al.)
● Extends Dreamer from simulation to real-world 

robotics without pre-training
Imagined Rollouts using a World Model
● Instead of physically trying every action, learn a 

World Model and ‘imagine’ outcomes of different 
actions 
○ Greatly improves sample efficiency
○ Enables learning from real world interaction in 

faster than real time
○ Allows the robot to learn off-policy, improving 

exploration / exploitation tradeoff
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DayDreamer Approach Overview
Applies Dreamer to 
real-world robotics
● No simulation or 

pre-training. 
Learning is done 
directly on 
hardware with 
rewards from 
interaction with 
the environment
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World Model Architecture

Deterministic State 
● ht = f(ht-1 ,st-1 ,at-1)

Stochastic State
● st ~ p(st | ht)

Observation Model
● ot ~ p(ot | ht , st)

Reward Model:
● rt ~ p(rt | ht , st)

RSSM

Stochastic Model

Recurrent State Space Model 
(RSSM)
● Combines deterministic 

and stochastic components 
to model dynamics

● Stochastic latent state 
models uncertainty in robot 
sensor subject to random 
noise

● Improves handling of 
partial observability 
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World Model Architecture (cont.)
Encoder Network
● Fuses sensors of different modalities, xt  

Dynamics Network
● Predicts sequence of stochastic 

representations, zt 
Decoder Network
● Reconstructs input from zt 

Reward Network
● Predict reward from zt for training 

rollouts
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World Model Learning
Discrete Latent Code Predictions Zt
● World Model makes predictions in latent space to 

reduces computation and accumulating errors
○ Fast simulator of the environment that the robot 

learns autonomously

Replay Buffer 
● Learns world model from buffer of past experiences
● Decouples learning from data collection to enable fast 

training without waiting for environment
● World Model is learned off-policy, improving exploration
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Behavior Model Architecture
Actor Critic Learning
● World Model represents 

task-agnostic knowledge about 
environment dynamics

● Actor Critic Networks learns 
behaviors to accomplish task at 
hand

● Behaviors learned on rollouts 
predicted in latent space of world 
model, without decoding back to 
parameter space
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Behavior Model Architecture (cont.)
Actor Network
● Learns a distribution over successful actions for each latent model 

state to maximize future predicted rewards 

𝜋 ~ (at | zt)

● Policy gradients estimated using Reinforce for discrete control and 
reparametrization for continuous control 

● High entropy is also incentivized to prevent collapsing to deterministic 
policy.
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Behavior Model Architecture (cont.)
Critic Network
● Trained to regress the return of the trajectory. Learned through 

temporal-difference learning to allow taking into account rewards 
beyond planning horizon H = 16 steps

v(zt)

● 𝜆-returns averaging over all N ∈ [1, H-1] to avoid choosing arbitrary N for 
TD learning. Slowly updating target critic used for computing 𝜆-returns.
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Implementation Details

Stochastic Backpropagation 
● World model learns distributions over latent states ,so standard 

backpropagation can’t be used for training. 
● Uses reparameterization trick so gradients can flow through probability 

distributions.

Asynchronous Training
● Robot collects data in real time, storing it 

in replay buffer while training model and 
policy in parallel—no idle waiting.
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Implementation Details

Same Hyperparameters Across 
Robots and Tasks
● Same learning rate, network sizes, 

etc. across all robots and tasks,
● Underscores robust, task-agnostic 

generalization of DayDreamer
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Experiments Overview
Experiment Name Input Space Action Space Reward Type Training Time

1 - Quadruped 
Walking

Proprioceptive Readings Continuous Dense 1 hour

2 - UR5 Multi-Object 
Visual Pick and 
Place

RGB Image, 
Proprioceptive Readings

Discrete Sparse 8 hours

3 - XArm Visual 
Pick and Place

RGB Image, Depth Map, 
Proprioceptive Readings

Discrete Sparse 10 hours

4 - Sphero 
Navigation

RGB Image Continuous Dense 2 hours
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Quadruped Walking
cDayDreamer learns to get up, stand and 

walk within 1 hour. 
● Learns without environment 

re-starts
● 10 minutes of additional online 

learning and it can withstand 
pushes

SAC learns to roll off its back
● Can’t stand up or walk due to 

limited training budget
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UR5 Multi-Object Visual Pick & Place
DayDreamer achieves human level 
performance within 8 hours 
● Challenging due to sparse 

rewards, struggles to learn for 
first 2 hours

Rainbow and PPO only learn short 
sighted behaviors and drop items in 
same bin
● Rainbow and PPO fail because they 

require quantities of data that are 
infeasible to collect in real world
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XArm Visual Pick and Place
DayDreamer achieves human level 
performance within 10 hours 
● Exhibited multimodal behaviors, using 

string to pull object out of corners

Rainbow fails to learn how to accomplish 
this task
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XArm Visual Pick and Place Adaptation
Continual Learning
● Extreme lighting changes, 

particularly shadows after 
sunrise, cause performance to 
collapse

● DayDreamer adapts and 
recovers to previous 
performance after 5 hours of 
additional training
○ Less than learning the 

task from scratch
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Sphero Navigation
DayDreamer matches performance 
with model designed for this specific 
problem space within 2 hours 
● Infers heading direction from 

history of observations because it 
only has access to image 
observations

DrQv2 is a model-free algorithm 
specifically designed for continuous 
control from pixels alone
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Practical Applications & Implications
● Direct, Embodied Learning: Trains in the real 

world—no simulators or pre‐training. Its learned 
world model supports adaptive “dreaming” for 
robust planning.

● Continual, Multi‐Task Potential: Handles 
locomotion, manipulation, and navigation with 
minimal tuning, enabling ongoing adaptation 
across tasks.

● High Sample Efficiency: Consistently surpasses 
other RL methods under the same training budget.
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Conclusion & Future Work

Future Work

● Extend to multi‐task learning, longer training, and full autonomy.
● Integrate advanced exploration, safety constraints, or expert data; 

open‐source fosters broader adoption.

Conclusion
● Learns complex tasks in hours on real 

hardware—no simulator needed.
● A single approach solves locomotion, 

manipulation, and navigation efficiently.
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Questions 



World Models
UniSim: Learning Interactive Real-World Simulators

Sidhartha Reddy Potu

March 19, 2025



Introduction & Motivation

▶ UniSim is an action-conditioned video prediction model based on diffusion.

▶ Learns directly from visual & textual data.

▶ Overcomes limitations of traditional simulators (complexity).

▶ Applications: robotics control, instructional video generation.

▶ Leverages real-world video data for realistic, interactive simulation.



Related Work & Background

▶ Language models excel at text, not physical tasks.

▶ Video generation models focus on media, not multi-turn interactions.

▶ Image-based world models target games and simple simulations.

▶ Existing methods lack interactive control; UniSim fills that gap.



UniSim Dataset

UniSim is trained on diverse datasets:

Figure: Diverse datasets used to train UniSim



Conditioning on Multiple Modalities
UniSim processes multiple diverse modalities from various datasets:
Modalities as Conditioning Inputs:

▶ Simulation Data: Continuous control actions (e.g., Habitat, Language Table
data).

▶ Real Robot Data: High-level task descriptions and discretized low-level controls.

▶ Human Activity Videos: Text-based action labels from activity recognition
datasets.

▶ Panorama Scans: Camera pose information converted to actions (e.g., turning
directions).

▶ Internet Text-Image Data: Captions treated as actions for single-frame images.

Unified Modality Alignment:

▶ Text tokens processed into continuous representations using T5 embeddings.

▶ Low-level robot actions concatenated with language embeddings to create a
unified action space.



UniSim Overview
▶ Video diffusion model predicting future frames.
▶ Conditioned on past observations and actions.
▶ Multimodal inputs (vision, language, motor controls).

Figure: UniSim Training and Inference



UniSim Architecture

Figure: UniSim Architecture

UniSim is an action-conditioned video prediction model parameterized using diffusion models.
Given a history ht−1 and action at−1, the model predicts the next observation frames ot :

p(ot | ht−1, at−1)

Where:

▶ ht−1: Observations from the past (previous frames)

▶ at−1: Action input (e.g., “move left,” “pick up object”)



Architechture Cont’d

Figure: 3D-UNet

▶ Each block is a 4D tensor: frames × height × width × channels.

▶ Spatial attention treats the frame axis as a batch dimension.

▶ Temporal attention operates over frames, treating spatial (h, w, c) as batch
tokens.

▶ Relative position embeddings preserve frame order.



Architecture Cont’d

Figure: Video U-Net space-time separable block

▶ UniSim uses a history-conditioned base model at [16, 24, 40] resolution with
temporal attention.

▶ Two cascaded super-resolution models upscale from [24, 40] to [48, 80] and then
to [192, 320].

▶ The base model is conditioned on history by concatenating 4 previous frames
channelwise with the U-Net’s noise input.

▶ Temporal convolution is used in the super-resolution models for efficiency.



Training Objective

UniSim predicts future frames using a video diffusion model:
Diffusion Model Objective:

LMSE = ∥ϵ− ϵθ(
√

1− β(k)ot +
√
β(k)ϵ, k | ht−1, at−1)∥2

Classifier-Free Guidance:

ϵ̂θ(o
(k)
t , k | ht−1, at−1) = (1 + η) ϵθ(o

(k)
t , k | ht−1, at−1)− η ϵθ(o

(k)
t , k | ht−1)

where η is the guidance scale. Denoising step:

o
(k−1)
t = α(k)

(
o
(k)
t − γ(k)ϵθ(o

(k)
t , k |ht−1, at−1)

)
+ ξ, ξ ∼ N (0, σ2

k I )



Downstream use cases

Figure: Action rich, diverse long sequences



Downstream use cases

Figure: Different simulation



Generating Synthetic Data

▶ Use placeholder frames (e.g., white
images) with strong text guidance.

▶ Generate 4 videos per text from
ActivityNet Captions.

▶ Fine-tune PaLI-X on 4× data.

▶ The generated videos align semantically
well than AcitvityNet Caption(their claim,
no examples).

▶ Helpful in generating rare event data.



Long-Horizon Simulations



Long-Horizon Simulations

Figure: A VLM policy generating long-horizon actions, simulated video plans, and real-robot
execution.

Model RDG (moved) RDG (all)

VLM-BC 0.11 ± 0.13 0.07 ± 0.11
Sim-Hindsight 0.34 ± 0.13 0.34 ± 0.13

Table: Evaluation of long-horizon actions.



Long-Horizon Simulations

▶ Generate long-horizon trajectories with UniSim.

▶ Use the final frame of the short-horizon trajectory as the initial state.

▶ Move some blocks, then use a VLM to generate language instructions.

▶ Use these instructions to generate long-horizon data.

▶ Train the VLM policy using the generated data.

▶ An inverse dynamics model produces low-level actions for robot execution.



Sim-to-Real: RL with UniSim

Succ. rate (all) Succ. rate (pointing)

VLA-BC 0.58 0.12
Simulator-RL 0.81 0.71

Table: Performance of RL policy trained with UniSim and evaluated on real-robot tasks.



Sim to Real

▶ UniSim is used as a realistic simulator for training RL policies.

▶ Compared to a baseline trained via behavior cloning, the RL policy is fine-tuned
using REINFORCE on simulated rollouts (reward signals based on progress toward
the goal).

▶ Low-level action predictions are generated from observations; the simulator
produces video trajectories from which rewards are derived.

▶ The RL policy trained in UniSim outperforms the behavior cloning baseline and is
deployed directly on the real robot.



Ablation



Video examples and Failures

Unisim: universal-simulator.github.io/unisim/

https://universal-simulator.github.io/unisim/


Limitations

▶ Hallucinations

▶ Limited temporal memory only 4 frames

▶ struggles with out of distribution

▶ Not a truly universal model. only uses visual changes. not able to tell forces,
touch.



Future Work

Genie: Generative Interactive Environments

Video as the New Language for Real-World Decision Making

Genie 2: A Large-Scale Foundation World Model

SORA: Video Generation Models as World Simulators

https://arxiv.org/abs/2402.15391
https://arxiv.org/pdf/2402.17139
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://openai.com/index/video-generation-models-as-world-simulators/
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