DINOV2: Learning
Robust Visual Features
without Supervision




SSL revolutionized NLP

Proves that models can learn representations from raw
data without explicit labels

Success of foundation

1 u 1 ° M () t i Vati O n & gtggggr!grigrogkslzould work in computer

vision

Background

Goal: Vision Fountation
Model

Develop general-purpose visual features that work
across image distributions and tasks without finetuning.

1.Introduction



[-2. Challenges in Vision
Foundation Models

2. Prior SSL methods (e.g., DINO, iBOT) struggled

. Text-supervised with scalability and dataset quality
models (¢.2.CLIP)
rely on image-text pairs,
limiting their ability to Mostly trained on small Poor generalization
capture pixel-level details curated datasets (e.g.,

ImageNet-1k) beyond ImageNet

1.Introduction



1-3. Evolution From DINO to DINOv2

DINO (2021)

Introduced SSL via student-
teacher distillation.

Limitactions of DINO

Small dataset, no patch-level
learning, inefficient training.

1.Introduction



1-4. Key Contributions of
DINOv2

State-of-the-art

LVD-142M Advanced SSL Scalable training
. . . performance
dataset for techniques efficiency with ~eross multiple
better (DINO + iBOT + lower memory vision b
pretraining SWAV losses) usage benchmarks

1.Introduction



2. DINOV2: Data Pipeline

Building LVD-142M: A Curated Seli-Supervised Image Retrieval

Pretraining Dataset for Curation
 Assembled from a large pool of uncurated images by e Used a self-supervised ViT-H/16 model to extract
retrieving those similar to curated datasets like image embeddings.
ImageNet-22k e Cosine similarity + k-means clustering to retrieve
 Filtering process: diverse, high-quality images.
o Deduplication (removes near-duplicates to ensure e Trade-off: Using 4 nearest neighbors (N=4) balances
diversity) retrieval quality and dataset diversity.

o NSFW filtering (removes inappropriate content)
o Face blurring (enhances privacy)

Uncurated Data
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ﬁ Augmented Curated Data
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Deduplication
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3-1.
DINOV2’S
Architecture

. VISIOon
Transformer
(VI'T)

Why Vision Transformers?

e Unlike CNNs, ViTs process images like
sequences, capturing long-range
dependencies effectively.

o Self-attention in ViTs allows better feature
learning across an entire image.

How DINOv2 Uses ViTs:
e Uses a ViT-based architecture as the
backbone.
e Processes both global (image-level) and local
(patch-level) features.
e Enables self-supervised training via the
student-teacher framework.

3. Network Architecture and Design



3-2. Self-Supervised Learning Framework

Student-Teacher Framework (DINO/iBOT Inspired)

SGD UPDATE

Student model

EMA _pt LOG

Learns by matching the teacher’s
softmax outputs

Teacher model

Exponential Moving Average (EMA)
of the student

Training encourages feature consistency across different image augmentations

Self-Distillation Mechanism

3. Network Architecture and Design



3-3. Loss Functions Used

DINO Loss (Image-Level
Representation)

iBOT Loss (Patch-Level
Representation)

Sinkhorn-Knopp
Centering (Inspired by
SWAV)

KoLeo Regularizer

DINO Loss: Image-level objective

e Cross-entropy between student & teacher
feature distributions.

e Uses "prototype vectors" for contrastive
learning.

LpiNo = — Zpt log ps

3. Network Architecture and Design



3-3. Loss Functions Used

DINO Loss (Image-Level
Representation)

iBOT Loss (Patch-Level
Representation)

Sinkhorn-Knopp
Centering (Inspired by
SWAV)

Kol.eo Regularizer

iBOT Loss: Patch-Level Objective

e Masked Image Modeling (MIM):

e Random patches are masked in the
student but visible in the teacher.

e The student must predict missing patches,
learning local context.

Lipor = — Zpt*i log psi

Encoder

L :rqrh a
a *- - [ L L
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3-3. Loss Functions Used

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.

3. Network Architecture and Design



3-3. Loss Functions Used

DINO Loss (Image-Level . .
Representation) Untying head weights between both

objectives to solve
1) underfitting issue in the patch-level
:EOT LOSSt (F,atCh‘Level classification task and
cpresentation) 2) overfitting issue in the image-level

classification task

Sinkhorn-Knopp
Centering (Inspired by
SWAV)

Kol.eo Regularizer

3. Network Architecture and Design



3-3. Loss Functions Used

Representation Sinkhorn-Knopp Centering
’ (Inspired by SWAV)

e Normalizes teacher outputs for better
feature distribution.

iBOT Loss (Patch-Level e Prevents representation collapse.

Representation)

Sinkhorn-Knopp
Centering (Inspired by
SWAV) KoLeo Regularizer

e Spreads features uniformly to improve
retrieval & instance recognition.

KoLeo Regularizer

3. Network Architecture and Design



4-1. Efficient Implementation and Scaling:
Memory & Compute Optimizations

Compared to the iBOT implementation, the DINOv2 code runs around 2x faster using only 1/3 of the memory.

e Custom FlashAttention: Reduces memory usage & speeds up self-attention calculations.
e Sequence Packing:

o Concatenates small & large image crops into a single long sequence.

o Uses block-diagonal attention masking for efficiency.
e Efficient Stochastic Depth: Skips unnecessary residual computations - faster training.

4. Efficient Implementation and Scaling



4-2. Efficient Implementation and Scaling:
Fully-Sharded Data Parallelism (FSDP)

e Instead of storing full model replicas per GPU, DINOv2 shards parameters across multiple GPUs.
e 50% lower communication costs compared to traditional Distributed Data Parallel (DDP).

4. Efficient Implementation and Scaling



4-3. Efficient Implementation and Scaling:
Knowledge Distillation for Smaller Models

e ViT-L models learn from a frozen ViT-g teacher.
e Removes need for training small models from scratch.
e Maintains high performance with lower compute cost.

iNa18 —— ViT-L/14 Scratch
o Copy e ViT-L/14 Disill
81.6 = = ViT-g/14 Scraich
Arch Method INet-1k  Segm. Depth]  Classif.
ViT-g/14 Scratch 86.5 73.4 1.00 g92.1
ViT-L/14 Scratch 84.5 72.2 1.10 90.2
o 5 ViT-L/14 Distill 86.3 73.3 1.08 91.2
Arch Method Finegr. Retriev. @ARSketch  Video
ViT-g/14 Scratch 78.3 75.2 710 69.3
ViT-L/14  Scratch 75.8 Tl.3 69.5 67.3
ViT-L/14 Distill 77.6 76.3 74.5 67.5
(a) Comparison on individual metrics (b) Averaged metrics on 8 vision tasks

4. Efficient Implementation and Scaling



5. Results
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5-1. Results: ImageNet-1k Classification

kNN linear
Method Arch. Data Text sup. val val Real V2
Weakly supervised
CLIP ViT-L/14 WIT-400M v 79.8 84.3 88.1 75.3
CLIP ViT-L/14336 WIT-400M v 80.5 85.3 88.8 75.8
SWAG ViT-H/14 1G3.6B v 82.6 85.7 88.7 T77.6
OpenCLIP ViT-H/14 LAION-2B v 81.7 84.4 88.4 T75.5
OpenCLIP ViT-G/14 LAION-2B v 83.2 86.2 894 T77.2
EVA-CLIP ViT-g/14 custom™ v 83.5 86.4 89.3 774
Self-supervised

MAE ViT-H/14 INet-1k X 49.4 76.6 83.3 64.8
DINO ViT-S/8 INet-1k X 78.6 79.2 85.5 68.2
SEERv2 RG10B IG2B X — 79.8 — —
MSN ViT-L/7 INet-1k X 79.2 80.7 86.0 69.7
EsViT Swin-B/W=14 INet-1k X 79.4 81.3 &7.0 704
Mugs ViT-L/16 INet-1k X 80.2 82.1 86.9 70.8
iBOT ViT-L/16 INet-22k X 72.9 823 875 724

ViT-S/14 LVD-142M X 79.0 81.1 86.6 70.9
DINOv2 ViT-B/14 LVD-142M X 82.1 84.5 88.3 75.1

ViT-L/14 LVD-142M X 83.5 86.3 89.5 78.0

ViT-g/14 LVD-142M X 83.5 86.5 89.6 78.4

Linear evaluation on ImageNet-1k of frozen pretrained features

e +4.2% Top-1 Accuracy on

ImageNet over IBOT.

« Matches or surpasses OpenCLIP

and EVA-CLIP

5. Empirical Results



5-2. Results: Video and other image
Classification

Image classification Video classification
Feature Arch iNat2018 iNat2021 Places205 K400 UCF-101 SSv2
OpenCLIP ViT-G/14 73.0 76.0 69.8 78.3 90.7 35.8
MAE ViT-H/14 31.0 32.3 52.4 54.2 70.6 29.2
DINO ViT-B/8 59.6 68.3 60.4 64.5 85.0 32.6
iBOT ViT-L/16 66.3 74.6 64.4 72.6 88.6 38.7
ViT-S/14 69.0 74.2 62.9 67.8 87.0 33.1
ViT-B/14 76.4 81.1 66.2 73.2 89.1 34.4
DINOVZ i1, /14 80.4 85.1 67.3 763 905 356
ViT-g/14 81.6 85.7 67.5 78.4 91.2 38.3

Table 7: Linear evaluation on other image and video classification. The image benchmarks contain
a large quantity of fine-grained examples about objects or scenes. The video benchmarks cover action
classification and human-object interaction. All the features are frozen with a linear probe on top.

5. Empirical Results



5-3. Results: Instance Recognition

Oxford Paris Met AmsterTime

Feature Arch M H M H GAP GAP- ACC mAP
OpenCLIP ViT-G/14 50.7 19.7 79.2 60.2 6.5 23.9 34.4 24.6
MAE ViT-H/14 11.7 2.2 19.9 4.7 il 23.5 30.5 4.2
DINO ViT-B/8 40.1 13.7 65.3 35.3 17.1 37.7 43.9 24.6
iBOT ViT-L/16 39.0 12.7 70.7 47.0 25.1 54.8 58.2 26.7

ViT-S/14 68.8 43.2 84.6 68.5 29.4 54.3 Y 43.5
DINOv? ViT-B/14 72.9 49.5 90.3 78.6 36.7 63.5 66.1 45.6

ViT-L/14 75.1 54.0 92.7 83.5 40.0 68.9 71.6 50.0

ViT-g/14 73.6 52.3 92.1 82.6 36.8 73.6 76.5 46.7

Table 9: Evaluation of frozen features on instance-level recognition. We consider 4 different bench-

marks and report their main metrics.

e Ranks images based on cosine similarity between features
e Significant mMAP improvements (+41% over SSL on Oxford-Hard), +34% over weakly-
supervised models on Oxford-Hard).

5. Empirical Results



5-4. Results: Semantic Segmentation &
Depth Estimation

ADE20k CityScapes Pascal VOC
(62.9) (86.9) (89.0)
Method Arch. lin. +ms lin. +ms lin. +ms
OpenCLIP ViT-G/14 39.3 46.0 60.3 70.3 1.4  79.2
MAE ViT-H/14 33.3  30.7 584 61.0 67.6  63.3
DINO ViT-B/8 31.8  35.2 96.9  66.2 66.4  75.6
iBOT ViT-L/16 44.6  47.5 64.8 74.5 82.3  84.3 . . .
: Depth estimation with frozen features
ViT-S/14 4.3 4r2 666 771 8L.1 826 o pepth estimation outperiorms OpenCLIP and weakly-supervised features.
DINOv2 ViT-B/14 47.3 51.3 69.4 80.0 82.5  84.9
ViT-L/14 47.7 53.1 70.3  80.9 82.1  86.0 NYUd KITTI NYUd — SUN RGB-D
ViT-g/14 49.0 530  71.3 81.0 83.0 86.2 (0.330) (2.10) (0.421)
Semantic segmentation on ADE20K, CityScapes  Method Arch. lin. 1 lin.4 DPT lin. 1 lin. 4 DPT lin. 1 lin.4 DPT
and Pascal VOC with frozen features
OpenCLIP ViT-G/14 0.541 0.510 0.414 3.7  3.21  2.56 0.537 0.476  0.408
MAE ViT-H/14 0.517 0483 0.415 3.66 3.26 2.59 0.545 0.523  0.506
DINO ViT-B/8 0.555 0.539  0.492 3.81 3.56 2.74 0.553 0.541  0.520
iBOT ViT-L/16  0.417 0.387 0.358 3.31  3.07  2.55 0.447 0.435  0.426
ViT-S/14  0.449 0417 0.356 3.10 2.86 2.34 0.477 0.431  0.409
DINOv2 ViT-B/14 0.399 0362 0.317 290 259  2.23 0.448 0.400  0.377
ViT-L/14 0.384 0.333  0.293 278 250 2.14 0.429 0.396  0.360
ViT-g/14 0.344 0.298 0.279 2.62 235 2.11 0.402 0.362 0.338

5. Empirical Results



5-5. Qualitative Results

ADE20K

NYUd

SUN-RGBd

KITTI

Input ~ OpenCLIP-G  DINOv2-g Input OpenCLIP-G ~ DINOV2-g

Figure 7: Segmentation and depth estimation with linear classifiers. Examples from ADE20K,
NYUd, SUN RGB-D and KITTI with a linear probe on frozen OpenCLIP-G and DINOv2-g features. 5. Empirical Results



5-5. Qualitative Results

Figure 8: Examples of out-of-distribution examples with frozen DINOv2-g features and a linear probe.

5. Empirical Results



5-5. Qualitative Results

Dense Matching Sparse Matching

5. Empirical Results



6. Conclusion

Scalable self-supervised model that
matches or outperforms weakly-
supervised models.

Curated dataset (LVD-142M) improves
genceralization over traditional
ImageNet pretraining.

Eificient training (FlashAttention,
FSDP, knowledge distillation) enables
scaling to billion-parameter models.

6. Conclusion
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Self-Supervised Learning from
Images with a Joint- Embedding
Predictive Architecture (IJEPA)

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal
Vincent, Michael Rabbat, Yann LeCun, Nicolas Ballas



Approaches for Visual Representation Learning
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Approach - Joint Embedding Architecture

Maximize agreement

+— Representation —

Image Credits: Chen et al., A Simple Framework for Contrastive Learning of Visual
Representations, ICML 2020



Approach - Joint Embedding Architecture

Maximize agreement
Z; < > 2 j
a() la0)
h; <— Representation — h;

PROS

Features of high
semantic level

GP 4' Features excel off-the
'Q’ shelf (frozen eval.)

Image Credits: Chen et al., A Simple Framework for Contrastive
Learning of Visual Representations, ICML 2020



Approach - Generative Architecture

@—) decoder =-=---1 D(7,y)
y

|

x-encoder
encoder —» . decoder
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(b) Generative Architecture

input

[ =

Image Credits: He et al., Masked Autoencoders Are Scalable Vision
Learners, arXiv 2021



Approach - Generative Architecture

Features suitable for
lower level image tasks

J

General Approach (no
domain-specific hand-
crafted data
augmentations)

GP | Less sensitive to pre-
Q- train distribution

encoder —>» decoder

input target

[ |

Image Credits: He et al., Masked Autoencoders Are Scalable Vision
Learners, arXiv 2021




Joint Embedding Architecture

Requires hand-crafted
data augs

Highly sensitive to pre- [ |.,
train distribution (]
Suboptimal for low \ 1/ ﬂ

level image tasks 0

Limitations




Joint Embedding Architecture

Requires hand-crafted
data augs

Highly sensitive to pre-
train distribution

Suboptimal for low
level image tasks

Architecture

\l/ H

Limitations

©

Generative

Features of relatively
lower semantic level

Require more involved
adaptation
mechanism

Pluto is considered a
dwarf planet



Approaches for Visual Representation Learning

@—) predictor ---> D(§y,5y) ‘
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(c) Joint-Embedding Predictive Architecture




Joint Embedding Predictive Architecture (JEPA)

@—) predictor - - = D(8,sy)
%
I v

x-encoder y-encoder

O 0 @

Capture semantics
without relying on
hand-crafted data augs

Excel off-the-shelf
(frozen eval.)

Perform well in both
high-level and low-level
image tasks



Image Joint Embedding Predictive Architecture (I-JEPA)
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Method

Vision Transformer
Architecture

Context Encoder

Target Encoder

Predictor

GIF Credits: Google Al Blog



Context & Target Masking Strategy

original context targets




Context Masking Strategy
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Loss

Average L2 Distance
1 & 1 &
iV ZD (8y(2),8y(2)) = IV S: S: 18y, — 3%”3
i=1 1=1 j€B;

Between predicted and target patch-level representations



Parameters

\ 4

Predictor & Gradient based
Context Encoder optimization

B

Target Encoder Exponential Moving
Average
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Results (Image Classification Task)

Method Arch.

Methods without view data augmentations

Epochs Top-1

data2vec [¢] ViT-L/16 1600 71.3
ViT-B/16 1600 68.0
MAE [ 0] ViT-L/16 1600 76.0
ViT-H/14 1600 77.2
CAE [27] ViT-B/16 1600 70.4

VIiT-L/16 1600 78.1

ViT-B/16 600 729
I-JEPA ViT-L/16 600 S
ViT-H/14 300 79.3
ViT-H/1644s 300 81.1

Methods using extra view data augmentations

SimCLRv2([21] RNI152(2x) 800 79.1
DINO [1¥] ViT-B/8 300 80.1
iBOT [79] ViT-L/16 250 81.0

Table 1. ImageNet. Linear-evaluation on ImageNet-1k (the ViT-
H/1644s is pretrained at at a resolution of 448 x 448). I-JEPA im-
proves linear probing performance compared to other methods that
do not rely on hand-crafted view data-augmentations during pre-
training. Moreover, I-JEPA demonstrates good scalability — the
larger I-JEPA model matches the performance of view-invariance
approaches without requiring view data-augmentations.

Method Arch. Epochs Top-1

Method Arch. CIFAR100 Places205 iNatl8

Methods without view data augmentations

data2vec [¢] ViT-L/16 1600 73.3
VITLI6 1600 67.1
MAE ] VILH/I4 1600 715
VITL/I6 600 694
1JEPA VILH/I4 300 733

ViT-H/1644s 300 71.3

Methods using extra view data augmentations

iBOT [79] ViT-B/16 400 69.7
DINO [1¥] ViT-B/8 300 70.0
SimCLR v2 [35] RN151(2x) 800 70.2
BYOL [5] RN200 (2x) 800 71.2
MSN [4] ViT-B/4 300 75.7
Table 2. ImageNet-1%.  Semi-supervised evaluation on

ImageNet-1K using only 1% of the available labels. Models are
adapted via fine-tuning or linear-probing, depending on whichever
works best for each respective method. ViT-H/1644s is pretrained
at at a resolution of 448 x 448. I-JEPA pretraining outperforms
MAE which also does not rely on hand-crafted data-augmentations
during pretraining. Moreover, I-JEPA benefits from scale. A ViT-
H/16 trained at resolution 448 surpasses previous methods includ-
ing methods that leverage extra hand-crafted data-augmentations.

Methods without view data augmentations

data2vec [¢] ViT-L/16 81.6 54.6 28.1
MAE [36] ViT-H/14 71.3 55.0 329
I-JEPA ViT-H/14 87.5 58.4 47.6
Methods using extra view data augmentations

DINO[I¥]  ViT-B/8 849 57.9 559
iBOT [79] VIiT-L/16 88.3 60.4 573

Table 3. Linear-probe transfer for image classification. Linear-
evaluation on downstream image classification tasks. I-JEPA sig-
nificantly outperforms previous methods that also do not use aug-
mentations (MAE and data2vec), and decreases the gap with the
best view-invariance-based methods that leverage hand-crafted
data augmentations during pretraining.



Results (Local Prediction Tasks)

Method Arch. Clevr/Count Clevr/Dist

Performance on lower-level image tasks
Methods without view data augmentations

data2vec [/] VIT-L/16 85.3 71.3

MAE [7] ViT-H/14 90.5 724

I-JEPA VILH/14 867 72.4 o
Methods using extra data augmentations I “JEPA outperforms JOl nt
DINO[//]  ViTB/g 26.6 534 embedding methods in low-level
iBOT[/7]  ViT-L/16 85.7 62.8 image tasks

Table 4. Linear-probe transfer for low-level tasks. Linear-
evaluation on downstream low-level tasks consisting of object
counting (Clevr/Count) and depth prediction (Clevr/Dist). The I-
JEPA method effectively captures low-level image features dur-
ing pretraining and outperforms view-invariance based methods
on tasks such object counting and depth prediction.



Results - Scalability

82 I-JEPA
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Predictor Visualizations




Ablations

I-JEPA is non-generative

Targets Arch, Epochs  Top-1
Target-Encoder Output  ViT-L/16 500  66.9
Pixels ViTL/16 800  40.7

Table 7. Ablating targets. Linear evaluation on ImageNet-1K
using only 1% of the available labels. The semantic level of the
[-JEPA representations degrades significantly when the loss 1s ap-
plied in pixel space, rather than representation space, highlighting
the importance of the target-encoder during pretraining.

\Ll//;

Same method in pixel space
performs much worse on semantic
classification tasks.



Conclusion

Decoding I-JEPA predictor outputs to sketches

Image Credits: Meta Al Blog



Further Work

Extension of I-JEPA to videos

Motion Content JEPA: Extension of JEPA to
include motion information

MC-JEPA

Hierarchy JEPA, enhance JEPA's extraction
capability

Connecting JEPA with contrastive SSL




Thank You!

Happy Spring Break!



DS-GA.3001 Embodied Learning and Vision
Topic Presentation

Niu et al,, “Learning predictable and robust neural
representations by straightening image sequences”, 2024.

Sal Yeung

NYU



Abstract "

Prediction

facilitated by neural
representations that follow straighter temporal trajectories than their initial

photoreceptor encoding, which allows for prediction by linear extrapolation.

pixel intensities

model contains ‘
neural embeddings that are predictive, but also factorize the geometric,

photometric, and semantic attributes of objects. The representations also prove
more robust to noise and adversarial attacks

arating hyperplane

-
3

dim.2

as a regularizer,

learned representation
NYU
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iIntroduction - [
T2 | enc Bl _ (Be41 — Bty Zer2 — Bes1)
: B Tze1 — zelllze2 — 2o
“Straightness”. average cosine similarity between 2 successive :
difference vectors of any 3 temporally adjacent points zr |enc
Contributions:
1. SSL objective + whitening to prevent representation collapse \ /
2. Downstream predictions on visual attributes ' 11
3. Class separability
4. Robustness to multi-view invariance
0123456789

“Whitening”: transformation of random vector to be uncorrelated [1]

NYU :

[1] Bardes et al., “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022



Frame(t+ 1)

Background ==
g B . /h, Difference(t) Difference(t + 1) \

“Pixel intensity”: dissimilarity between
difference(t) of successive frameste T

Frame(t—1) Frame(t) rame(t) + difference(t)

“Perceptual intensity”

Di 1
A Dimens/°" 2
1.  Neural network features k
u . n o H
2. psyC h O p hys | Ca | AX B ta S k ' | d e n t | fy Fig. 1| Quantifying igh of image inthe il ity and perceptual domains. a, Visualization of a high-dimensional representation of
. . . a temporal sequence of images. We consider representations in two domains: the ‘pixel-intensity’ domain (axes correspond to pixel intensities in each
O u tl | e r g |Ve n Set Of | m a g eS (A, A O r B, B) frame) and the ‘perceptual’ domain (axes correspond to internal responses that underlie the perceptual judgments of human subjects). Each frame in

the sequence corresponds to a point in the representational space. The discrete curvature at a given frame is equal to the angle between the segments
connecting it to adjacent frames. We define the curvature of a sequence as the average of these angles. b, In the pixel-intensity domain, curvature can be
calculated directly by computing the pixel-wise differences between successive frames and the angles between them. Note how this sequence of frames is

Hypot h eses curved in the intensity domain (difference images are dissimilar) but seems natural perceptually. In contrast, a linearly extrapolated frame in the intensity
domain (bottom right) is perceptually unnatural.

1.  natural sequences that are highly curved ., "
in pixel space are straighter perceptually TR AN s G imial B 1000 sl Darvstiveus”
2. artificial sequences that are straight in I
pixel space are more curved perceptually

ferr = fr + (fe — fi1)

Frame number
(]
Proportion correct

.

1 [ | 0 PC1
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Hénaff et al.,, “Perceptual straightening of natural videos”, Nature Neuroscience, 2019




Background

b Pixel-intensity space Perceptual space Pixel-intensity / space Perceptual Space
Curvature = 39° Curvature = 4° Curvature = 0 Curvature = 48
3 3
; :
PG PC1 PC1 PC1
Fig. 3 | Curvature reduction for natural image sequences. Fig. 4 | Curvature increase for artificial image sequences.
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Hénaff et al.,, “Perceptual straightening of natural videos”, Nature Neuroscience, 2019
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Hénaff et al.,, “Perceptual straightening of natural videos”, Nature Neuroscience, 2019



Related

1. Temporal Invariance

Existing SSL methods
- Contrastive
- Self distillation

- Correlation analysis (whitening)
.y ~~E»
Past t

- Operates on static images, lost time varying features ﬁ Shared

weights

y NR v
o
Current

- Straightening captures all features in spatio temporal inputs - ;
- Predict future states
<>

((/l Variance Invariance Covariance
NYU "

Chen et al,, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML, 2020
Grill et al., “Bootstrap your own latent: A new approach to self-supervised Learning”, NeurlPS, 2020
Bardes et al,, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022




Related

2. Temporal Prediction

Past
- Contrastive prediction encoding
- parametrization scales quadratically with
feature dimension
- Linearized representation
- auxiliary architectural components and loss
Current

- parameter-free
- predictions can adapt to different contexts

NYU

Predictions
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W e ..W S —
Figure 1: Overview of Contrastive Predictive Coding, the prop ion learning app

Although this figure shows audio as input, we use the same setup for i 1mages text and reinforcement

learning.
fk($t+k,0t)
Ly=—-E |log =———F"—"—
N X |: Ez]ex fk(“/'j?ct)

Trroe-Pixel Video

time.

—
P
(@) ®)

Figure 1: (a) A video generated by translating a Gaussian intensity bump over a three pixel array
(z,y,2), (b) the corresponding manifold parametrized by time in three dimensional space

Figure 2: The basic linear prediction architecture with shared weight encoders
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Van den Oord et a., “Representation learning with contrastive predictive coding”, arXiv, 2018

Henaff et al., “Data-efficient image recognition with contrastive predictive coding. In: Inter- national conference on machine learning”, PMLR, 2020
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[1] Toosi et al.,, “Brain-like representational straightening of natural movies in robust feedforward neural networks”, ICLR, 2023
[2] Harrington et al.,, “Exploring perceptual straightness in learned visual representations”, ICLR, 2023



Related

Feasible -
Region

3. Straightening and robustness

Past
- “Straightness” found in human,
macaque physiology, but not in
neural networks Minimum

- Tolerance to noise or perturbations

=> straightened responses [1, 2] +.007 x
Current :
- Reverse: straightened responses => z sign(VaJ (0,2, 7))
tolerance to noise or perturbations “panda” “nematode”
57.7% confidence 8.2% confidence 99.3 % confidence
NYU o

Madry et al., “Towards Deep Learning Models Resistant to Adversarial Attacks”, ICLR, 2018
Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, ICLR, 2015



Straightness loss

- Applied to output layer // can be any (or
several) layer(s) of network

- Straightness alone can have trivial solution

VICReg

- Variance, prevent different inputs from
collapsing to same output

- Covariance, decorrelates pairs of output
dimensions to minimize redundancies

NYU

Bardes et al,, “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022
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S(z,e) = /Var(z) +€  dis the output dimensionality,
Lovrianee = E | Sigs{Covln)]2;]
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Straightness loss

Applied to output layer // can be any (or
several) layer(s) of network

Straightness alone can have trivial solution

VICReg

Variance, prevent different inputs from
collapsing to same output

Covariance, decorrelates pairs of output
dimensions to minimize redundancies

NYU

Bardes et al

Ziy1 — 2ty 2442 — 2ty
»Cstraightness =-E [ < 7 > ]
1Ze41 — 2¢|[|Ze42 — Zeta ||
_ . - -
»Cvariance =K [é Zi:l max (07 1-S5 (’#7 6))]
S(z,€) = y/Var(z) + €  dis the output dimensionality,
Ecovariance =E [% Zz;éj [COV(Zt)]%,j]

L= £straightness + &Lyariance + BLecovariance

For control experiments
L= Linvariance + )\Lvariance S ’YLcovariance-
1

Linvariance =K |: d

I — zton%]
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., “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”, ICLR, 2022



Data

Artificial videos
- temporally structured augmentations
- mimic natural transformations to static images

Reasons of not using natural videos
- Match image based SSL models
- Bad performance on recognition tasks due to
insufficient object variety

Approach
- MNIST
- Translation, rescaling, rotation
Brightness, contrast, saturation, hue
- CIFAR
- Translation, rescaling
- Horizontal flips (all frames)
Grayscale, solarization (per frame)

NYU

original image t=1 t=2

translation

rescaling
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Experiments
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Experiments
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Experiments
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Experiments
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Experiments

A B
loss 7
original image t=1 t=2 t=3 v
06 ® convolution + add identity :' E
translation u batch normalization = flatten i T
0.4 il
@ 7 relu ¥ fully-connectdd 5
8 4 pooling linear ! =
g 0.2 * identity | E
|
= ~ = straightening |
rescaling ﬁ—’= lh % ; | §
ﬁ n -0.2 T‘ e H‘M
P g 3 invariance | |
network stages
D E F :
1.0 1.0 3 0.25
= g > ; ; ©
§ straightening 8 oe straightening S oo
£ 08 invariance ‘g : invariance 8-
5] ©
8 06 3 06 g 015
s g T o010
'g' 0.4 ﬁ 0.4 8
2 o2 3 02 g 005
g e °
9 = o
0.0 0.0 = —— 2 o
clean 005 0.1 015 02 clean 0.1 02 0.3 0.4 8 005
s.d. of Gaussian noise L2 norm of attack budget = . RS $$
? o"\i&&o"\eo"{’:"\iﬁi@o AN \«°g ‘° «"’ééé F
F &P P F S S ? cP a Q‘+@‘<" K
) Qda‘abe@ OE P
& A S z\& &

‘4 NYU



Experiments
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Conclusion

|dea

- Biologically-inspired SSL objective
- Predictive neural representations

Advantages
- Easy and computationally less demanding
- Representational capacity and robustness

- Alternative for hand crafted augmentations

Extensions

- Multiple time scale
- Hierarchical temporal structure for long horizon predictions
- Multiple network stages

NYU
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Traditional Vision Based Models

Convolutional Neural Networks (CNNs)

CNNs learn hierarchical feature representations using spatially localized filters
(kernels) that slide over the image in a fixed grid pattern. Each convolutional
filter captures local patterns such as edges, textures, and objects, which are
then combined at deeper layers to form more abstract representations. CNNs
exhibit translation invariance due to weight sharing, meaning they can recognize
objects regardless of their position in the image. However, they struggle with
long-range dependencies and rely on pooling layers or downsampling techniques
to aggregate global information.

Featire Maps Feature Maps Feature Maps
Feature Maps B ises
M ]

1
Convolution Pooling Convolution Pooling
+Relu +Relu

"I Boat (0.09)
[JHouse (0.05)
[ Tree (0.9)

___Ocatoon

]

Fully Connected Layers

Output Layer
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Traditional Vision Based Models

Vision Transformers (ViTs)

ViTs use self-attention instead of convolutions to model image representations.
They divide an image into non-overlapping patches, which are then flattened
and projected into a sequence of embeddings (tokens). A Transformer encoder
applies multi-head self-attention to model relationships between tokens, allowing
global feature extraction from the start. Compared to CNNs, ViTs capture long-
range dependencies more effectively and enable more flexible representations.
However, ViTs still maintain a fixed grid structure since tokens correspond to
static image patches.

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

- O OO Y8 8 L
Tcﬁiﬂ]‘iﬂv‘l‘xﬂﬁmg [ Linear Projection of Flattened Patches ]
SEE g A A L
NYU ﬁ%g—»%ﬂlﬂ#@ﬂﬂﬁﬂ

Multi-Head
Attention

Embedded
Patches



Research Gap In Traditional Vision
Models

e Rigid Token Alignment: Struggles to track moving objects, causing
inconsistent representations.

e Grid-Induced Bias: Tokens are constrained to static locations, limiting
motion adaptability.

e Limited Generalization: Fixed grids fail to capture spatio-temporal
variations in videos.

NYU



Objective

MooG is a recurrent model designed for processing an arbitrary number
of video frames while maintaining a consistent scene-grounded OTG rep-
resentation.

Takes as input a sequence of observed frames {X;}._,, where X; € RE*Wx3,

Iteratively encodes frames into a set of latent tokens.
Separates the latent state into:

— Corrected states {z!}_,, where 2! € REX*XP obtained by encoding
input frames.

— Predicted states {z}}{_,, where 2!, € RE*P, representing the model’s
internal prediction of the next frame.

The recurrent structure allows tokens to track elements consistently across
frames and anticipate their future locations.

NYU

Encoder CNN:

Features Kernel stride
64 I3x3 1x1
128 X8 1Ix1l
128 gXae dIxl
256 3 X3 2x2
256 3% 1Ix1
312 3 X3 2x2



Training Objective

e The model is trained for next-frame prediction given the previous frame
and model state.

e Composed of three main networks:
— Predictor (P): Predicts the next state from the previous corrected

state.

— Decoder (D): Decodes the predicted state to reconstruct the current
frame.

— Corrector (C): Encodes the current frame and corrects errors in
the predicted state.

Component Type Layers QKVsize Heads MLP size

Corrector XA & SA 2 64 x 8 8 2048
Predictor SA 3 64 x 4 4 2048
Decoder XA 6 64 x 2 2 2048
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Architecture

L

predict predict
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. L’ : i -

predicted state

encode +
correct
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corrected state

predict
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predicted state

encode +
correct

decode

predicted state
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Predictor

e Takes the previous corrected state z~! and generates the predicted state
28;
z:, =271 + P(kqu = 2t 1)

e Functions as a self-attention transformer network.
e Initial corrected state 2? is initialized with Gaussian noise (NV(0,107%)).

e Ensures permutation symmetry and prevents token specialization.

NYU



Corrector

e Incorporates information from the current observation X; to update z;,
and form 2.

e Uses a convolutional encoder F with Fourier positional embeddings.
e Outputs a feature grid F, € RH' xW'xD,

e Updates the state using cross-attention:

z.=12,+C(kv=F;,q=2z), where F; =FE(X;)

e The corrected state does not receive a direct loss; it serves as an improved
estimate for the predictor.

NYU



Decoder

Takes the predicted state zf) and decodes it into an RGB image.

Uses cross-attention with spatial queries for pixel-based readouts.

Decodes only a sub-sampled version of the target image for computational
efficiency:

X, = D(kv = zf,,q =.P)

Decoder attention weights reveal relationships between spatial positions
and latent tokens.

NYU



Loss Calculation

Uses an L2 loss on image pixels.

For each frame, the loss is computed as:

Lt —_ LZ(Xt, Xt)

The predicted state depends only on the previous frame and model state.

Training involves unrolling the model over 8 frames.

NYU



Analysis
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Readout Decoders

Coords Visibility

MLP MLPJ
| Transformer 2 | Embed Transformer el Transformer
(cross-attn. only) o (cross-attn. only) u (cross-attn. only)
Xy J
L : *
random offset') I {orhoxes) m
[z, 2] (2P, 21 [z2°, 227
(a) Pixel readout (RGB, depth). (b) Recurrent readout (points, boxes).
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Qualitative
Analysis

Transformer
(cross-attn. only)

Spatial queries
(subsampled, (
random offset)

[zP, 2]

(a) Pixel readout (RGB, depth).
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MooG
Token

Grid
Token

GT

Prediction

The MooG attention map indicates that the visualized token
tracks the scene element it binds to across the full range of
motion. In contrast, the grid-based token attention map
demonstrates how these tokens end up being associated with a
specific image location that does not track the scene content.




Qualitative Analysis

NYU

PCA of MooG tokens unrolled over a
batch of short sequences. The model
was unrolled over a batch of 24
sequences, 12 frames each. Predicted
states from all time steps and batch
samples were concatenated and PCA
analysis was performed on the entire
set jointly. We then reshape the
projected set back to its original shape
and use the arg-max token to visualize
the result in image space.



Quantitative Analysis

Type  Type Layers QKVsize Heads MLP size

Points XA 3 64 x 8 8 2048
Depth XA 3 64 x 8 8 2048

Boxes XA 3 64 x 8 8 2048
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Downstream readout performance
from frozen representations

MOVi-E DAVIS Waymo
Name Points (AJ) Depth (JAbsRel) Boxes ({IoU) Points (fAJ) Boxes (1IoU)
MooG 0.839 0.0359 0.793 0.687 0.730
Grid 0.769 0.0451 0.730 0.518 0.625
Grid Rec. 0.778 0.0443 0.734 0.559 0.629
DINOv1 (B) 0.518 0.0371 0.724 0.409 0.566
DINOvV2 (B) 0.544 0.0370 0.738 0.402 0.559
VMAEV2 (S) 0.595 0.0567 0.700 0.365 0.567
VMAEV2 (B) 0.681 0.0458 0.736 0.434 0.611
VMAEV2 (G) 0.822 0.0311 0.793 0.720 0.708
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Downstream readout performance
trained in an end-to-end manner

MOVi-E Davis Waymo
Name Points (TAJ) Depth (JAbsRel) Boxes (1IoU) Points (TAJ) Boxes (TIoU)
MooG 0.886 0.0263 0.803 0.778 0.719
Grid 0.860 0.0264 0.775 0.644 0.615
Grid Rec. 0.902 0.0233 0.806 0.779 0.675
DINOv1 0.698 0.0381 0.728 0.578 0.557
DINOv2 0.732 0.0439 0.734 0.656 0.607
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Depth comparison (End to end)

Points comparison (End to end)

Name Davis-8 (TAJ) Davis-full (TAJ)

Name Waymo ({AbsRel)
MooG 0.094
DPT (ViT-L/16) 0.161
DPT (ViT-E/14) 0.158
DPT (ViT-22b) 0.154

ANYU

MooG 0.824 0.510
TAP-Net 0.687 0.392
TAPIR 0.823 0.580



No of Tokens

0.8 -
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Avg. Jaccard
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0.0~
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# Readout Layers
. 1
I 3

MOVi-E DAVIS-8
Dataset

Avg. Jaccard

# Tokens
N 512
w1024
B 2048

MOVi-E DAVIS-8
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Limitations

e Task Generalization: Evaluations focused on readout tasks (e.g., ob-
ject tracking, depth prediction), but effectiveness for tasks like semantic
segmentation, classification, and generation remains unclear.

e Handling Scene Changes: OTG representations may struggle with dis-
appearing or reappearing scene elements, unlike grid-based representations
that change more gradually.
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Conclusion

e Traditional vision models (CNNs, ViTs) rely on fixed on-the-grid archi-
tectures tied to pixel grids.

e The real world does not exist on a pixel grid—rigid architectures limit
adaptability to motion and scene changes.

e MooG enables representations to move off-the-grid, binding to scene ele-
ments dynamically.

e Demonstrates effectiveness in tasks requiring motion understanding and
scene geometry.

e Current model is simple: deterministic, lacks uncertainty modeling, and
uses an L2 pixel loss.
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Appendix

Self-attention

M

m—1 = X, compute

* Forevery & € {ZBm
s query J — WqCU
ckey Kk=Wirx K=WrX

* value U = WUQZ V = WUX
 Compute the query-key match 7 = KTq
* The context vector ¢ = V a
- where a = softargmax(7)
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Cross-attention

* Forevery Y € {yn}?‘]jzl, compute
* queryq = qu
* key k:Wkw K:WkX

* value U = quw V = WUX

« Compute the query-key match 7 = K'

* The context vector ¢ = V a
- where @ = softargmax;(r)
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Self-Supervised Depth

* Appearance matching loss

1- SSIM(Il I’)
Cl
P NZ

YR

* Disparity smoothness loss
| —||a, 1t —||a, 1t
C53=NZ|6zdgj|e ||a¢ItJ|I+|6yd£j|e ”ayItJ“,
2,0

* Left-right disparity Vi
consistencv Ioss
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Learning

Andrew Deur



Background

Challenges in Robotic Learning

e Data Intensive: Robots require
millions of interactions to learn
simple behaviors

e Real-world learning is impractical
due to time, wear-and-tear and
safety constraints

e Simulators are required to
provide robots with sufficient
training trials, but, they fail to
capture real-world complexity.

NYU :




World Models & Embodied Learning

Embodied Learning

e Robots learn through physical Real World
interactions with the real world rather ¥
than pre-collected datasets or

simulations

Replay Buffer

Planning from Learned World Model
e Predict the consequences actions using
a learned world model to plan as
opposed to learning through random

INnteractions

NYU

Actor Critic World Model



DayDreamer Motivation

Built on DreamerV2 (Hafner et al.)
e Extends Dreamer from simulation to real-world
robotics without pre-training
Imagined Rollouts using a World Model
e |Instead of physically trying every action, learn a
World Model and ‘imagine’ outcomes of different
actions
o Greatly improves sample efficiency
o Enables learning from real world interaction in
faster than real time
o Allows the robot to learn off-policy, improving
exploration / exploitation tradeoff

NYU



DayDreamer Approach Overview

Applies Dreamer to
real-world robotics
e No simulation or

pre-training.
Learning is done
directly on
hardware with
rewards from
Interaction with
the environment

NYU :



World Model Architecture

Recurrent State Space Model RSSM
(RSSM)

e Combines deterministic
and stochastic components
to model dynamics

e Stochastic latent state
models uncertainty in robot ¢
sensor subject to random
noise

e Improves handling of
partial observability

Deterministic State
e h =fh_s,.a
—Stochastic State
e s.~pls|hy
Observation Model
e o ~p(olh,s)
Reward Model:

e r ~p(r.|h,s)

t - t-'l)

NYU c
Stochastic Model



World Model Architecture (cont.)

Encoder Network °
e Fuses sensors of different modalities, x, Ay - c&
Dynamics Network
e Predicts sequence of stochastic
representations, z,
Decoder Network
e Reconstructs input from z,
Reward Network
e Predict reward from z, for training
rollouts

NYU "



World Model Learning

Discrete Latent Code Predictions Z,

e World Model makes predictions in latent space to RealWorld  Replay Buffer

reduces computation and accumulating errors

o Fast simulator of the environment that the robot
learns autonomously

4
Replay Buffer = — ‘
e Learns world model from buffer of past experiences Actor Critic  World Model
e Decoupleslearning from data collection to enable fast
training without waiting for environment
e \World Model is learned off-policy, improving exploration

NYU g



Behavior Model Architecture

Actor Critic Learning 5 & &
e \World Model represents (‘
h1

task-agnostic knowledge about /

environment dynamics
2

e Actor Critic Networks learns
behaviors to accomplish task at
hand

e Behaviors learned on rollouts
predicted in latent space of world
model, without decoding back to
parameter space

NYU ’




Behavior Model Architecture (cont.)

Actor Network
e |earns a distribution over successful actions for each latent model
state to maximize future predicted rewards

7~ (a,|z)

e Policy gradients estimated using Reinforce for discrete control and
reparametrization for continuous control
e High entropy is also incentivized to prevent collapsing to deterministic

policy.

L(r) = —E[Zil In7(a, ‘ se) sg(V — v(s)) + UH[W(at ‘ St)”
ENyYu o



Behavior Model Architecture (cont.)

Critic Network
e Trained to regress the return of the trajectory. Learned through
temporal-difference learning to allow taking into account rewards
beyond planning horizon H =16 steps

v(z,)

e JA-returns averaging over all N € [1, H-1] to avoid choosing arbitrary N for
TD learning. Slowly updating target critic used for computing A-returns.

VA =r (1= No(serr) + AVA ), Vi = v(sm).
ENyYu m



Implementation Details

Asynchronous Training <J> % |<J>
e Robot collects data in real time, storing it @ alzf®.X) " @wq)
in replay buffer while training model and ‘ @ "<>'<>\‘@NI,(5)

policy in parallel—no idle waiting.

O Deterministic node

ndom node

Stochastic Backpropagation O e
e \World model learns distributions over latent states ,so standard
backpropagation can’t be used for training.
e Uses reparameterization trick so gradients can flow through probability
distributions.
@A NYU 2



Implementation Details

Same Hyperparameters Across
Robots and Tasks
e Same learning rate, network sizes,
etc. across all robots and tasks,
e Underscores robust, task-agnostic
generalization of DayDreamer

ANYU

Name Symbol Value
General

Replay capacity (FIFO) — 10°
Start learning — 10*
Batch size B 32
Batch length T 32
MLP size - 4 x 512
Activation — LayerNorm + ELU
World Model

RSSM size - 512
Number of latents - 32
Classes per latent - 32
KL balancing — 0.8
Actor Critic

Imagination horizon H 15
Discount Y 0.95
Return lambda A 0.95
Target update interval - 100
All Optimizers

Gradient clipping — 100
Leaming rate — 104
Adam epsilon 106

13



Experiments Overview

Experiment Name

1 - Quadruped
Walking

2 - URS5 Multi-Object
Visual Pick and
Place

3 - XArm Visual
Pick and Place

4 - Sphero
Navigation

ANYU

Input Space

Proprioceptive Readings

RGB Image,
Proprioceptive Readings

RGB Image, Depth Map,
Proprioceptive Readings

RGB Image

Action Space

Continuous

Discrete

Discrete

Continuous

Reward Type

Dense

Sparse

Sparse

Dense

Training Time

1 hour

8 hours

10 hours

2 hours

14



DayDreamer learns to get up, stand angl =
walk within 1 hour.
e |earns without environment

re-starts . Al Quadruped Walking
e 10 minutes of additional online

learning and it can withstand o 11- - g/:iamer
pushes S 9-
i
SAC learns to roll off its back > 7 7
e Can'tstand up or walk due to < .

limited training budget . . . .
0 20 40 60

NYU Minutes N



URS Multi-Object Vlsual Ple & Place

DayDreamer achieves human level
performance within 8 hours
e Challenging due to sparse
rewards, struggles to learn for
first 2 hours

Rainbow and PPO only learn short URS5 Visual Pick Place
sighted behaviors and drop items in g4
. = Human
same bin €34 —______i5E=R
. . S —— Dreamer
e Rainbow and PPO fail because they w 2t p it
require quantities of data that are £ 1 J— PPO
. . . (D)
infeasible to collect in real world =
o -

+ o 5 4 6 8



XArm Visual Pick and Place ., . ... pick piace

, o 4
DayDreamer achieves human level 5 Humbn
performance within 10 hours é R I Ee— — T
e Exhibited multimodal behaviors, using = o |~ Dreamer
string to pull object out of corners 2 — Rainbow
O 1 1
)
Rainbow fails to learn how to accomplish -8 0

this task

o
w
(o)}
O

17
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XArm Visual Pick and Place Adaptation

Continual Learning
e Extreme lighting changes,

XArm Visual Pick Place

particularly shadows after
sunrise, cause performance to
collapse

e DayDreamer adapts and
recovers to previous

100 Drea.mer
~ = sunrise
7.5 1 =- recovery

|
I
I
I
|
|
|
i
!

Objects / Minute
un
o

O-O T T 1 1

performance after 5 hours of
additional training
o Lessthan learning the
task from scratch

0 5 10 15
Hours

NYU s



Sphero Navigation

DayDreamer matches performance
with model designhed for this specific
problem space within 2 hours
e Infers heading direction from
history of observations because it
only has access to image
observations

Sphero Navigation

0.9 - - Dreamer
= DrQv?2

o
~
1

DrQv2 is a model-free algorithm
specifically designed for continuous
control from pixels alone

Avg Dist to Goal
o O
w U

=
=
1

NYU 0 40 80 120 1
Minutes



Practical Applications & Implications

e Direct, Embodied Learning: Trains in the real
. . . o n«;‘:’l.‘
world—no simulators or pre-training. Its learned  fu3

W

world model supports adaptive “dreaming” for
robust planning.

e Continual, Multi-Task Potential: Handles
locomotion, manipulation, and navigation with
minimal tuning, enabling ongoing adaptation
across tasks.

e High Sample Efficiency: Consistently surpasses
other RL methods under the same training budget.

A NYU 20




Conclusion & Future Work

Conclusion
e |earnscomplex tasks in hours on real
hardware—no simulator needed.
e A single approach solves locomotion,
manipulation, and navigation efficiently.

Future Work

e Extend to multi-task learning, longer training, and full autonomy.
e Integrate advanced exploration, safety constraints, or expert data;
open-source fosters broader adoption.

NYU 2



Questions
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World Models

UniSim: Learning Interactive Real-World Simulators

Sidhartha Reddy Potu

March 19, 2025



Introduction & Motivation

UniSim is an action-conditioned video prediction model based on diffusion.

Learns directly from visual & textual data.

>
>
» Overcomes limitations of traditional simulators (complexity).
» Applications: robotics control, instructional video generation.
>

Leverages real-world video data for realistic, interactive simulation.



Related Work & Background

> Language models excel at text, not physical tasks.

» Video generation models focus on media, not multi-turn interactions.
P Image-based world models target games and simple simulations.

» Existing methods lack interactive control; UniSim fills that gap.



UniSim Dataset

UniSim is trained on diverse datasets:

Dataset # Examples Weight
. . Habitat HM3D (Ramakrishnan et al., 2021) 710 0.1
Simulation X
Language Table sim (Lynch & Sermanet, 2020) 160k 0.05
Bridge Data (Ebert et al., 2021) 2k 0.05
RT-1 data (Brohan et al., 2022) 70k 0.1
Real Robot Language Table real (Lynch & Sermanet, 2020) 440k 0.05
Miscellaneous robot videos 133k 0.05
Ego4D (Grauman et al., 2022) 3.5M 0.1
Human activities Something-Something V2 (Goyal et al., 2017) 160k 0.1
EPIC-KITCHENS (Damen et al., 2018) 25k 0.1
Miscellaneous human videos 50k 0.05
Panorama scan Matterport Room-to-Room scans (Anderson et al., 2018) 3.5M 0.1
Internet text-image LAION-400M (Schuhmann et al., 2021) 400M 0.05
ALIGN (Jia et al., 2021) 400M 0.05
Internet video Miscellaneous videos 13M 0.05

Figure: Diverse datasets used to train UniSim



Conditioning on Multiple Modalities

UniSim processes multiple diverse modalities from various datasets:
Modalities as Conditioning Inputs:

» Simulation Data: Continuous control actions (e.g., Habitat, Language Table
data).

> Real Robot Data: High-level task descriptions and discretized low-level controls.

» Human Activity Videos: Text-based action labels from activity recognition
datasets.

» Panorama Scans: Camera pose information converted to actions (e.g., turning
directions).

> Internet Text-lmage Data: Captions treated as actions for single-frame images.

Unified Modality Alignment:
> Text tokens processed into continuous representations using T5 embeddings.

» Low-level robot actions concatenated with language embeddings to create a
unified action space.



UniSim Overview

» Video diffusion model predicting future frames.
» Conditioned on past observations and actions.
» Multimodal inputs (vision, language, motor controls).

Internet texts, images, videos

Internet &
robots

Human '}
manipulation”|

e
?‘ Simulated
N ‘manipulation

Figure 1: A universal simulator (UniSim). The simulator of the real-world learns from broad data with diverse
information including objects, scenes, human activities, motions in navigation and manipulation, panorama
scans, and simulations and renderings.

Figure: UniSim Training and Inference



UniSim Architecture

a

Figure: UniSim Architecture

UniSim is an action-conditioned video prediction model parameterized using diffusion models.
Given a history h;_1 and action a;_1, the model predicts the next observation frames o;:

P(Ot | he—1, at—l)
Where:

» h,_1: Observations from the past (previous frames)

» a;_1: Action input (e.g., “move left,” “pick up object”)



Architechture Cont'd

(20, 0e) N, My NL2xM X

Figure: 3D-UNet

» Each block is a 4D tensor: frames x height x width x channels.
> Spatial attention treats the frame axis as a batch dimension.

» Temporal attention operates over frames, treating spatial (h, w, c) as batch
tokens.

P> Relative position embeddings preserve frame order.



Architecture Cont'd

Frame 1 Frame 2 Frame 3 Frame N

Spatial Conv Spatial Conv. Spatial Conv Spatial Conv

| A

Spatial Attention Spatial Attention Spatial Attention Spatial Attention |

| [

Temporal Attention / Convolution |

Figure: Video U-Net space-time separable block

» UniSim uses a history-conditioned base model at [16, 24, 40] resolution with
temporal attention.

» Two cascaded super-resolution models upscale from [24, 40] to [48, 80] and then
to [192, 320].

» The base model is conditioned on history by concatenating 4 previous frames
channelwise with the U-Net’s noise input.

» Temporal convolution is used in the super-resolution models for efficiency.



Training Objective

UniSim predicts future frames using a video diffusion model:
Diffusion Model Objective:

Luse = lle = (V1 = B®or + VBRI e, k | hey, ae-1)|?
Classifier-Free Guidance:
to(of) k| hez.ae1) = (Lt m) (ol k | heos, ae1) = meo(of) k | heoa)
where 7 is the guidance scale. Denoising step:

ogkfl) — o (ogk) - W(k)ee(ogk)7 k|he—1, atfl)) +& £~ N(0,0%))



Downstream use cases

‘Wash
hands

Pick up
bowl

Cut
carrots

hand

»

Figure 3: Action-rich simulations. UniSim can support manipulation actions such as “cut carrots”, “wash
hands”, and “pickup bow]” from the same initial frame (top left) and other navigation actions.

Figure: Action rich, diverse long sequences



Downstream use cases

suffixing “uncovering” with the object name. On the right, we only specify “put cup” or “put pen”, and cups
and pens of different colors are sampled as a result of the stochastic sampling process during video generation.

Figure: Different simulation



Generating Synthetic Data

» Use placeholder frames (e.g., white
images) with strong text guidance.

» Generate 4 videos per text from
ActivityNet Captions.

» Fine-tune PalLl-X on 4x data.

» The generated videos align semantically
well than AcitvityNet Caption(their claim,
no examples).

» Helpful in generating rare event data.

| Activity|MSR-VTT | VATEX | SMIT

No finetune| 15.2 21.91 13.31 | 9.22
Activity 54.90 24.88 36.01 |16.91
Simulator | 46.23 27.63 40.03 |20.58

Table 4: VLM trained in UniSim to perform
video captioning tasks. CIDEr scores for PaLI-
X finetuned only on simulated data from UniSim
compared to no finetuning and finetuning on true
video data from ActivityNet Captions. Finetuning
only on simulated data has a large advantage over
no finetuning and transfers better to other tasks
than finetuning on true data.



Long-Horizon Simulations

1. Pick up can 2. Close 3.0pen 4.Putorangein 5. Close 6.Opentop 7.Putcanin 8. Close top
and put on top bottom drawer middle drawer middle drawer middle drawer drawer top drawer drawer
2B e a a8 =t \ & 3 -

Figure 4: Long-horizon simulations. UniSim sequentially simulates 8 interactions autoregressively. The
simulated interactions maintain temporal consistency across long-horizon interactions, correctly preserving
objects and locations (can on counter in column 2-7, orange in drawer in column 4-5).



Long-Horizon Simulations

Start 17 Language plans generated by the VLM policy *l

Move the blue cube Slide the green circle Move the yellow circle
'#Y to the bottom right to the top left to the bottom left

Real-robot execution

Figure: A VLM policy generating long-horizon actions, simulated video plans, and real-robot
execution.

Model | RDG (moved) RDG (all)

VLM-BC 0.11 £ 0.13 0.07 £ 0.11
Sim-Hindsight | 0.34 £0.13  0.34 = 0.13

Table: Evaluation of long-horizon actions.



Long-Horizon Simulations

Generate long-horizon trajectories with UniSim.

Use the final frame of the short-horizon trajectory as the initial state.
Move some blocks, then use a VLM to generate language instructions.
Use these instructions to generate long-horizon data.

Train the VLM policy using the generated data.

An inverse dynamics model produces low-level actions for robot execution.



Sim-to-Real: RL with UniSim

Simulated rollout =

from Ax, Ay moving :
lef, right, down,up
Simulated rollout

from Ax, Ay
moving diagonally

Real-robot execution
of “move blue cube to
green circle”

Figure 8: [Top] Simulation from low-level controls. UniSim supports low-level control actions as inputs
to move endpoint horizontally, vertically, and diagonally. [Bottom] Real-robot execution of an RL policy
trained in simulation and zero-shot onto the real Language Table task. The RL policy can successfully complete

the task of “moving blue cube to green circle”.

| Succ. rate (all) Succ. rate (pointing)

VLA-BC 0.58 0.12
Simulator-RL 0.81 0.71

Table: Performance of RL policy trained with UniSim and evaluated on real-robot tasks.



Sim to Real

» UniSim is used as a realistic simulator for training RL policies.

» Compared to a baseline trained via behavior cloning, the RL policy is fine-tuned
using REINFORCE on simulated rollouts (reward signals based on progress toward
the goal).

» Low-level action predictions are generated from observations; the simulator
produces video trajectories from which rewards are derived.

» The RL policy trained in UniSim outperforms the behavior cloning baseline and is
deployed directly on the real robot.



Ablation

Condition | FID | | FVD| | ISt | CLIP %

1 frame 59.47 | 315.69 | 3.03 | 22.55
4 distant 34.89 237 343 | 22.62
4 recent 34.63 | 211.3 | 3.52 | 22.63

Table 1: Ablations of history conditioning using
FVD, FID, and Inception score, and CLIP score on
Ego4D. Conditioning on multiple frames is better
than on a single frame, and recent history has an edge
over distant history.

Model size | FVD | | CLIP 1

500M 277.85 22.08
1.6B 224.61 22.27
5.6B 211.30 | 22.63
Dataset | FVD| | CLIP 1
Internet only 219.62 | 2227

Without internet 307.80 21.99
Universal simulator | 211.30 22.63




Video examples and Failures

Unisim: universal-simulator.github.io/unisim/


https://universal-simulator.github.io/unisim/

Limitations

» Hallucinations
» Limited temporal memory only 4 frames
> struggles with out of distribution

» Not a truly universal model. only uses visual changes. not able to tell forces,
touch.



Future Work

Genie: Generative Interactive Environments
Video as the New Language for Real-World Decision Making
Genie 2: A Large-Scale Foundation World Model

SORA: Video Generation Models as World Simulators


https://arxiv.org/abs/2402.15391
https://arxiv.org/pdf/2402.17139
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://openai.com/index/video-generation-models-as-world-simulators/

References

@ Jonathan Ho et al., Imagen Video: High Definition Video Generation with Diffusion
Models.

@ Jonathan Ho et al., Video Diffusion Models.

@ Ozgiin Cicek et al., 3D U-Net: Learning Dense Volumetric Segmentation from Sparse
Annotation.



	week09_Dahye_Kim
	week09_Surbhi
	week09_Sal_Yeung
	week09_Anurup_Naskar
	week09_Andrew_Deur
	week09_Sidhartha_Reddy_Potu

