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Module 5:

Continual Learning,
Few-Shot Learning, Meta-Learning




Why Continual Learning?

* The world is not a dataset that allows you to get IID samples.
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Why Continual Learning?

* The world is not a dataset that allows you to get IID samples.
* The world keeps changing and evolving.

* Online vs. Continual

* Online means that samples arrive in a streaming / temporal partial order, but
they may still come from a static distribution.

0 = f(xe,0-1) x1.7 ~ X
* Example: Online reinforcement learning, trajectory roll out is online, but the
environment is the same.
* Continual learning means that there will be distribution shift.
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What is Continual Learning?

* Distribution shift: Forgetting
* Learning on A and then B, results in worse performance on A.

* Multi-task learning: Forward transfer

* Learning Task A + B results in better learning in Task C compared to learning
C alone.

* Leverage the similarity between tasks.
* Compositionality
* Learning A and B first, and then learning tasks with composed A+B.

* Incremental/curriculum Learning
* Learning A->B->C is easier than at random order.




Continual Learning

Task 1 Task 2 Task 3 Task 4 Task 5
| | 0/ 719
i Lea rn I ng a Seq uence Of taSkS WIthOUt Trst second t:rs‘ sd flirst snd Trst sed selcond
Class class class class Class Class class class Class Class
looking back.
Task 1 Task 2 Task 10
(permutation 1) (permutation 2) (permutation 10)
CUBEI SRS -
BEEEA BEERE EEEEE

a Tk Task-based continual learning b - Task-free continual learning
ask set ask set
0] /. AEl Ga 0]/ AEl BAa
Data stream Data stream
aoaoo 0oooa aoao (W) aoooa
EII:IEIEIEII | | 00000 0o0ooao Ooo00o00o0oo

)

— button press door open drawer close drawer open peg insert
side

ANYU

(a) Pong variants (b) Labyrinth games (c) Atari games

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.




Continual Learning

Task 1 Task 2 Task 3 Task 4 Task 5
* Learning a sequence of tasks without 0L/ s
looking back.
. (pekusfl.;ﬁgn 1) (pejn?ust:tign 2) (pe;lr-gustlgtilr? 10)
* Goal is to do well on all of the tasks at NEEED EREEE - BEEEE
the end HOa00 SESRE | 5NEENS

a Tk Task-based continual learning b - Task-free continual learning
ask set ask set
0] /. A& BA 0]/ AEl BAa
Data stream Data stream
aoaoo 0oooa aoao (W) aoooa
EII:IEIEIDI | | 00000 0o0ooao Ooo00o00o0oo

- —— button press door open drawer close drawer open peg insert

(a) Pong variants (b) Labyrinth games (c) Atari games RISH

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.
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Continual Learning

Task 2 Task 3 Task 4 Task 5
* Learning a sequence of tasks without s
looking back.
e Goal is to do well on all of the tasks at AHPEn EEEEE IIIII
the end GOEIE0 S

T k b d aT } Task-based continual learning bT . Task-free continual learning
Py as Oun ar- ask set ask set
y 0] /. A& BA 0]/ AEl BAa
Data stream Data stream
aoaoo 0oooa aoao (W) aoooa
EII:IEIEIDI | | 00000 0oooo 0o0oooooo
- button press door open drawer close drawer open peg insert

(a) Pong variants (b) Labyrinth games (c) Atari games RISH

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.
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Continual Learning

Task 2 Task 3 Task 4 Task 5
* Learning a sequence of tasks without s
looking back.
e Goal is to do well on all of the tasks at EEDED EEEEE llI!l
the end GOGIG0 | S | 8

T k b d aT } Task-based continual learning bT . Task-free continual learning
Y as Oun ar- ask set ask set
y 0] /] deE BA 0] /| AE Ba
* Memory constraints oooon 00000 aTatatatatats 0oooo
EIIZIEIEIDI | | 0o00o0oa 0o0ooo ooooooao
- button press door open drawer close drawer open peg insert

(a) Pong variants (b) Labyrinth games (c) Atari games RISH

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.
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Parameter Regularization

* Over-completeness Assumption. A Sa=1{0|£04(0) < ¢}
multitude of models can reach
equivalent performance. SanSp # 0

. | N ANYU
Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017. 1
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Parameter Regularization

* Over-completeness Assumption. A Sa=1{0|£04(0) < ¢}
multitude of models can reach
equivalent performance. SanSp # 0

* What is left is to efficiently find = Low error for task B = EWC
the intersection between A and B. = LW ETOL for ask A, "= .

== NO penalty

p(0 | Da) = N(8;0",%)

* Elastic Weight Consolidation
(EWCQ):

£(0) = L(6 +Zﬁe 0" )’

@
Kirkpatrick et al. Ove ing catastrophic forgetting in s. PNAS 2017. 1 NYU




Computing Fisher

* At the end of each epoch, compute the

gradient Sq Uared: 5 5 il train A ; train B | train C i
Fo— (ﬁ) < ’r QW\_: Ly
v\ do; ° ' ; SGD
= 0.8 !
o 1,005 ;
o

1.0 -

! | —
0.8 - :‘

Task C

0.8 4

Frac. correct o .
Training time

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017. (f/l NYU
Zenke et al. Continual Learning Through Synaptic Intelligence. ICML 2017. J




Computing Fisher

* At the end of each epoch, compute the

gradient Sq Uared: 5 5 il train A ; train B 1 train C i
F. = daL - :Q*:\W_;“’VLZ
v\ do; R : | SGD
0.8 4 : |
1.0

Task B

; —
* Measures the sensitivity on each 0s IEVVW

parameter dimension. 1.0 -

0.8 4 | il

Frac. correct

Task C

Training time

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017. (C/l NYU
Zenke et al. Continual Learning Through Synaptic Intelligence. ICML 2017. !




Computing Fisher

* At the end of each epoch, compute the

gradient Sq Uared: 5 . ;e train A ;ain B ; train C i
. — ([ dL - : : ‘
Fi = (dei) & r
1.0

Task B

* Measures the sensitivity on each 0s | } i

parameter dimension. 1.0 -

@) ' I
* You can also accumulate an online S 5 ;‘5 =
estimate. Frac. correct L
Training time
Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017. (?/ NYU

Zenke et al. Continual Learning Through Synaptic Intelligence. ICML 2017.



Variational Continual Learning (VCL)

* Bayesian forprulation:

x p(0) Hp(Dt | 6)

t=1

Nguyen et al. Variational Continual Learning. ICLR 2018.



Variational Continual Learning (VCL)

* Bayesian formulation:

T
p(0 | Dir) o< p(6) | [ p(De | 6) x(p(6 | Drcr—1)p

t=1 . 4

. Variationa! approach:

- qt(H)L: arqgerrglin KL (q(@) |
— Jikelhooo o0 She

Cetrene duguser

Nguyen et al. Variational Continual Learning. ICLR 2018.



Variational Continual Learning (VCL)

* Bayesian formulation:
T
p(0 | Drr) x p(8) [ [ p(D: | 0) o p(6 | Drr—1)p(Dr | 6).
t=1

* Variational approach:

qt<9>:argminKL( 0) | a1(0 >p<z>t|e>).

qeQ

Loss:  L(2:(0)) = Egnyuo)[~ log p(yx.0) +‘KL( | gi_1(0)).

@
Nguyen et al. Variational Continual Learning. ICLR 2018. 1 NYU




Variational Continual Learning (VCL)

* Bayesian formulation:
T
p(0 | Drr) x p(8) [ [ p(D: | 0) o p(6 | Drr—1)p(Dr | 6).
t=1

* Variational approach:

qt<9>:argmmKL( 0) | a1(0 >p<z>t|e>).

q€Q

e Loss:  L£(q(0)) = Egrg,0)|—logp(y|x,0)] + KL(q:(0 || ¢:—1(0))-
q:(0) = ngl N(Qt,d; He,d; Utz,d)'

ANYU




Variational Continual Learning (VCL)

* Bayesian formulation: 9{: F
T S
p(0 | Dr.r) < p(0) [[ (D¢ | 6) o p(0 | Dr.r—1)p(Dr | 6)_

t=1"
* Variational approach:
, _ 1 ——
0:(6) = axgmin KL (4(0) |, g1 O)p(D1 | 6))
P

qeQ

* Loss: )) = Egy,o1]— log p(y|x, 0)]  KL(q:(0 || ¢:—1(8)).

[[d_ 04,d; Lot d/ff I_

. Compare to EWC Maintains uncertaln y throughout training.

—
Nguyen et al. Variational Continual Learning. ICLR 2018,
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* Softmax layer is known to be x} ____________ .
ﬂ sensitive to distribution shift. i

[
&CL

— ( >J Weight layers

' Softmax

®

SBC

Li et al. Energy-Based Models for Continual Learning. ColLLAs 2022.

EBM for Continual Learning

Elx,y)

Weight layers / Weight layers
Fixed projection f(x)
ns |
90) m(x,y) |
o
Weight layers
|
EBM Energy: Eg(x,y)




EBM for Continual Learning

* Softmax layer is known to be x} ____________ _ yl x }
sensitive to dIStrIbutI?n shift. o r— FWeight layers Weight loyers ]
« A common approach is to use [fen || L xecprojection fe
Y O -}-4------------' G i
nearest mean classifier. ? 70) m(y) |
Weight layers | | @ '
j SOImA Weighf layers
SBC EBM Energy: Eg(x,y)

Li et al. Energy-Based Models for Continual Learning. ColLLAs 2022.




EBM for Continual Learning

* Softmax layer is known to be x} ____________ _ yl X }
sensitive to dIStrIbutI?n shift. o — Weightnyers | [ Weight Ty

« A common approach is to use [7Go || L=xecproecton f
. r S g i

nearest mean classifier. @f 70) mGy) |

* Can be generalized to EBMs Weight layers | | @ |

Softmax .
Weight layers
SBC EBM Energy: Eg(x,y)

Li et al. Energy-Based Models for Continual Learning. ColLLAs 2022.




EBM for Continual Learning

* Softmax layer is known to be x} ____________ )
sensitive to distribution shift. |

Weight layers

* A common approach is to use | F&x)
nearest mean classifier. ?

* Can be generalized to EBMs Weight layers

' Softmax

* Energy betweeninputsand 35 - ®
labels:
(m(%,9) 5 G/ (%), 9(v)
)

Li et al. Energy-Based Models for Continual Learning. ColLLAs 2022.

SBC

d

Weight layers /
Fixed projection

Weight layers

f(x)

g)

EBM

Weighf layers

!

Energy: Eg(x,y)
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Frozen Layers (G) Plastic Layers (F)

AR (S rﬂj
Replay =

Memory Indexing, Storage and Reconstruction

Reconstructed

Memory Indices Samples

5\ [OCOO|[|@\[E (L1
[Fomc}els |2 |9 @O Q@ g LTl =
1 . 2| | @O @O|(ls 55/
* Store raw data, representations, or train a i leoco o|lll|le J|§# |—
generative mod?l'/ﬁ‘&, erotie fhp(aj
Feedback Connections
Main model 2 Ee_ap_e_r_a}cgr ;% Hlbeocam
5 : % e Pus:
| ‘\O@,/} Py P, Softmax z_ |
;. KN /. ;,_.(‘ s ~“ : |
] R i&! o\ —
“\ :"' '\ ~ ~I —I -’ ‘,
- [ Input ]/ .ﬁ-mm_' T
AL el e AN
New data Generative replay Newdata = ™ Replay
Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017. ) NYU
1

van de Ven et al. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 2020.
Hayes et al. REMIND Your Neural Network to Prevent Catastrophic Forgetting. ECCV 2020.




Frozen Layers (G) Plastic Layers (F)

reservosr Sanp ( ng @ MG ]
| | begny bt B e

Reconstructed

Memory Indices Samples

2\ (S22 ke =
. . [<}1% h [@ 0 @ ol I r' |
* Store raw data, representations, or train a it XSISTSHILI B &/t
' re. Senteat(
generative model — C(aSef o m;jl e kgvr oN
* Coreset selection p« — > ¢(x) pi = argmin|u = 2lp(@) + 3 o (py)]l
zeX T =1 J
me: e re las il :
5 2/;@'# 'S‘“P- Feedback Connections

Main model/”

New data Exact replay New data * Generative replay —J New data ~ ' Replay
re(on freectton
Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017. @ NYU
van de Ven et al. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 2020. 1

Hayes et al. REMIND Your Neural Network to Prevent Catastrophic Forgetting. ECCV 2020.



Knowledge Distillation

* Instead of saving the data _'.’ (old task 1)
points, we can also save the (test image) o
. ' ~ (old task m)

prewous model checkpoint.

x'rwe j__ O/CI Ck‘pf Os %
C . yo CCn, nﬁ_ S Cé In ut Target:

pr -
model (a)’s
yo’ yo 17 response for
-F (%, © % date new task old tasks
}jn " ,l) image
new task
ground truth

@
Li & Hoiem. Learning without Forgetting. ECCV 2016. 1 NYU




Knowledge Distillation

* Instead of saving the data
points, we can also save the
previous model checkpoint.

Yo = f(xm 90)'
?)0 — f(xna en)
L(YosTo)

* Use new data points and_old
weights to “distill”

Li & Hoiem. Learning without Forgetting. ECCV 2016.

(test image) G@ . ’@'H—K :

new task
image

—

— (old task 1)

~ (old task m)

0o

Target:

model (a)’s
response for
old tasks

new task
ground truth

A NYU




Architecture Expansion
e

outputs

[(7, U&f&j& knoc- (Q"(j(
P"‘””‘ previoosy e

(k) _ (k) 3 (k) (k:3) 3, (4)
hy = f Wy h 2+ E U
i<k
Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018. (?’ NYU
Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.




Architecture Expansion

" ¥oo

o0 00000 00000

o000 © 000 |®@ 000 | 00000
o OO0 ||O Oe | 0000 ||O000Oe
CO O e0 OO0 Ol IO X X©
P |9000 O000 #0000

Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018.

Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.
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Architecture Expansion

)@, )@,
output; 5 O 5 O S @) 2 O
= @ ©|e00e®
o O oo
hg) hgz) h§3) Selic1t|ve Ttramlng Dynatmlc Ex;%ansmn

5.
Selecti\ée Traitn_irfg -
(W}’“hﬁ £y U}’”)hgj)l) | LWL, Wi D) ulWE

Dynamic Expansion
t—1

LW, W/ D) + p [ W [+

Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Sympos k= -

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018. 1
Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.




Adapting Pretrained Models

* Pretrained models have general knowledge that can be adapted to a
continual stream of tasks.

Rehearsal-based methods: Our method: S Trainabl
Fine-tuning Prompt selection + tuning 5,..a- rainable
Data bufferof — ...
past tasks . A,
Mini- o . Query : = Instruct
batching Task N
TaskN |- 7 Mini-batching 7

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.




Adapting Pretrained Models

* Pretrained models have general knowledge that can be adapted to a
continual stream of tasks.

* Learn adaptation parameters for each task and store these as “task
embeddings.”

Rehearsal-based methods: Our method: S Trainabl
Fine-tuning Prompt selection + tuning 5,..a- rainable
-

f Data buffer of

___pw 2 eeesaeean,
-~ Mini- =~y Query
batching Task N ’ 2
~—\ / =  Casssssmmas® /
Task N . Mini-batching

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.




Adapting Pretrained Models

* Pretrained models have general knowledge that can be adapted to a
continual stream of tasks.

* Learn adaptation parameters for each task and store these as “task
embeddings.”

* Main model is frozen.

Rehearsal-based methods: Our method:

Fine-tuning Prompt selection + tuning \,... Irainable

Data buffer of
past tasks

lllllllllll

llllllllllll

Mini- Query : = Instruct

batching f Task N

------------

Task N Mini-batching

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.




Learning to Prompt

Prompt pool (slot memory)

{(k1,p1), -5 (knspm) }

Prompt pool i ‘
(a shared memory space)

Prepend selected prompts ( Pretrained Embedding Layer )

008980 - ¢
[ |

e

\—

Query function

Pretrained Transformer Encoder

\ '/AngooI

( Classifier )
!
Un mélo Cévl'&/ /‘MM?/ Prediction

@
Wang et al. Learning to Prompt for Continual Learning. CVPR 2022. 1 NYU

Matched pairs

00

A key-value pair




Learning to Prompt

Prompt pool (slot memory) .
K, = argming > ._o[vlq(x), k;
{(klapl),...,(/{:M,pM)} 5 \,_S Z’LES ( ) ::%)

Prompt pool i ‘
(a shared memory space)

/\ Prepend selected prompts ( Pretrained Embedding Layer )

Query function : [P [P [P

Pretrained Transformer Encoder

Matched pairs

\ '/AngooI

( Classifier )
A key-value pair !
Prediction

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.




Learning to Prompt

Ks — argmins ZiGS /Y(Q(x)v kz)
minp g ¢ £(9¢(5’7)7 y) + A ZiEKS V(Q(x)a k@)

Prompt pool -
(a shared memory space) WL] 2 . ‘

| !
Prepend selected prompts ( Pretralned Embedding Layer )
T ¢ i

Prompt pool (slot memory)

{(k1,p1), -5 (knspm) }

!

retrained Transformer Encoder * J

Matched pairs

|:| O AvgPool
A key-value pair - !
Prediction

loss ANYU

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.




Learned Prompt Query

* The query function can be end-to-end learned.
Q= {V(Q(x) ® Ay, K1)7 "o 77(Q(x) © A, KM)}

image input
) s )

+  Pre-Trained Transformer a » Classifier
T T 'prompts inserted into layers [
—_ ;
Eq. (5) Eq. (5) Eq. (3)
e — ine Similari —_— ize
query @ attended esllia i) component Matmul prompt
query weighting
t |
. Attention Prompt Keys Prompt Components
Multi-Layer @ @ o :
expansion expansion expansion B
Smith et al. CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning. (?l NYU

CVPR 2023.



Multimodal Semantic Prompts

1 Lee

Classifier ¢

=
e D ViT Backbone with Adapter —
O
Pre-Trained =
‘@ Embeddmg Layer \A: Transformer Transformer Transformer [:]
éﬂ Layer L; Layer L; Layer L, :
ViT Backbone E]
A photo of panda
or plzzerla or Query-Key |« |
koala ... cobra. Matching D D C] D []
. _J — \ ——/
£ [ O L) D
BERT A Key | : P, : : : .
(. : U MHSA U MLP U U
Ery):| (%) (8| P D % I:] D “>>D
Adapter 1
ke (% (%] p E] D D D
Prompt Pool & —I—

‘r Trainable

Yin et al. Adapter-Enhanced Semantic Prompting for Continual Learning. arXiv 2024.

# Frozen

D Class Token

C] Language Prompt D Visual Prompt

A photo of Panda.
A photo of Pizzeria.

A photo of Cobra.

ANYU




Continual Learning and Memory
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* Fragility of feedforward gradient descent of the entire networks
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Continual Learning and Memory

* Fragility of feedforward gradient descent of the entire networks

* If we have representations ready, continual learning is just
memorizing a sequence of new tasks.

—

*/In prompting approaches:
* prompt pool = memory WO?'
* pretrained network = representations

q—




Continual Learning and Memory

* Fragility of feedforward gradient descent of the entire networks

* If we have representations ready, continual learning is just
memorizing a sequence of new tasks.
* In prompting approaches:
* prompt pool = memory
* pretrained network = representations

* But what if representations also need to be built sequentially?




Continual Learning and Memory

* Fragility of feedforward gradient descent of the entire networks
* If we have representations ready, continual learning is just

memorizing a sequence of new tasks. C@ —
* In prompting approaches: T Ree
* prompt pool = memory \ ey \ me«j \
* pretrained network = representations "—1'('

* But what if representations also need to be built sequentially?
* It’s also plausible that representations are just “deeper memory.”




Assoclative Memory

* Memory aims to store content for easy retrieval




Assoclative Memory

* Memory aims to store content for easy retri

* Associative memories Eopﬁeld Networks
models

an be viewed as energy-based

-
4
.
train |nput 1 train |nput 2 train |nput 3 train |nput 4 train input 5

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/




Assoclative Memory

* Memory aims to store content for easy retrieval

* Associative memories (Hopfield Networks) can ilewed as energy-based

models r—— ) “Superposition” of k slots
— _ A/ Hebbian learning
[\
L S Stoved . ?a%-
=
— _J¢

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/




Assoclative Memory

* Memory aims to store content for easy retrieval
* Associative memories (Hopfield Networks) can be viewed as energy-based

model 1 - K ke ke ”Superposition” of k slots
E= ) Z siWi;js;, Wij = E fz fj- Hebbian learning
L=l k=1

* When presented with a new pattern the network should respond with a
stored memory which most closely resembles the input.

S+oredd pattern;

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/




Assoclative Memory

* Memory aims to store content for easy retrieval
* Associative memories (Hopfield Networks) can be viewed as energy-based

models 1 N K b ke "Superposition” of k slots
E = —5 Z Sq;WijS'j, Wij = Zfl fj. Hebbian learning

* When presented with a new patterp the network should respond with a
stored memory which most cIoser resembles the input

. Retr|eva|/sz (SlanZ WZ] s]) Storage: (' @@/

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/




Memory Duality

. . | v | Car |
* Duality with a feedforward - g | T
network. :

@:_ZR@Z@@?S’LL [ ?Tf | I [0 =]

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 20089. (@/ NYU
Krotov. Hierarchical Associative Memory. arXiv 2021. J




Memory Duality
R

* Duality with a feedforward L | T
network. u K ' -

E=—3,F( & si) K

* Non-linearity allows us to store
more patterns.

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 2009. (?/l NYU
Krotov. Hierarchical Associative Memory. arXiv 2021.




Memory Duality

* Duality with a feedforward
network.

b= _ZkF(ZzngZ)

* Non-linearity allows us to store
more patterns.

* Deep Boltzmann machines

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 20089.
Krotov. Hierarchical Associative Memory. arXiv 2021.

E

Deep Boltzmann
Machine

ANYU




Memory Duality

* Duality with a feedforward
network.

b= _ZkF(szfSZ)

* Non-linearity allows us to store
more patterns.

* Deep Boltzmann machines
* Hierarchical associative memory

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 20089.
Krotov. Hierarchical Associative Memory. arXiv 2021.

£

Deep Boltzmann
Machine

11111




Relation to Transformers

* General form:

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.



Relation to Transformers .<'\

* General form:

E = _%@Zé:ﬁsi)' >

* When F'(z) = 2? it gives the classic HN.

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.



Relation to Transformers .<'\

* General form:

b= —ZF(ZS%J
k i

* When t gives the classic HN.
* Transformer-fike attention operation:

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

o

o
Vsz.E = — Z Wiij

J
S; < Sign(zj Wiij)




Relation to Transformers .<'\

e General form:
E=-S"F(} ¢s). >
k i

* When F(z) = 22 it gives the classic HN. ®
* Transformer-like attention operation: Ve, B =— Z Wi;s;

T . : 4
Z %Eﬂftmax(ﬂﬁﬁw,:ﬁk ) YW si <= sign(p_; Wijs;)

+—

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.



Relation to Transformers .<'\

* General form:

E=-YF(} ¢s). >.

* When F(z) = 22 it gives the classic HN. ®
e Transformer-like attention operation: Ve, B =— Z Wi;s;
T T J
Z + softmax [3XW W, Y : s; < sign(> . Wijsj)

Q%S()ftmax BT = VE ’%

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.



Relation to Transformers .<'\
Le«
* General form: l':f] \f
B= Y P3¢l e o
k i 4

* When F(z) = 22 it gives the classic HN. ®
* Transformer-like attention operation: Vs, B/ = — Z Wijs;

Z + softmax(BXW,W, Y Y, W,,. 5 sign(gi. Wis,)

S « softmax(8SET)E. | .
1 1
B = —logsumexp(_3, ETS) +-s's+p tlog N + =M=

J
Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021. 1




Continual Self-Supervised Learning

* Learning from a stream of unlabeled inputs.

e ——
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Madaan et al. Representational Continuity for Unsupervised Continual Learning. ICLR 2022. 1




Continual Self-Supervised Learning

* Learning from a stream of unlabeled inputs.

* Bring SSL to the dynamic world.

Uy: (%:yj,l)

w
DT:( 5 iyk,r)

SUPERVISED CONTINUAL LEARNING (SCL)

Madaan et al. Representational Continuity for Unsupervised Continual Learning. ICLR 2022.

N
(U1) Learned L A
Representation !

¢ BB

u, e L y
b0 | £/ )| |
3 : Y
2 1 X ® " Revisit
View2 | 1 &y s
===’ features

UNSUPERVISED CONTINUAL LEARNING (UCL)
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Continual Self-Supervised Learning

* Learning from a stream of unlabeled inputs.
* Bring SSL to the dynamic world.
* SSL can still suffer from distributional shifts.

___________ Uy) L d(:’ ‘
& Views ¢ B
Us:((x),Yja) hy, %_} Y Uu, % ->I S
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I I
N l (Qaf)
(et et Y w " {29 1 e 1 X E / Revisit
D yk,‘t View?2 | | { . generic

____________ === features

SUPERVISED CONTINUAL LEARNING (SCL) UNSUPERVISED CONTINUAL LEARNING (UCL)

_ o . _ _ ‘A NYU
Madaan et al. Representational Continuity for Unsupervised Continual Learning. ICLR 2022. 1




Continual Self-Supervised Learning

* Integrating learning objectives of both past and present.

~ Current Past (Distillation) Past (R Cross-Consolidation
fE(X goftﬂ+/ﬁ(X X:ho fi_1, W—I—/E X,Y:ho U

Data Model Feature Spaces Losses Conceptual Loss Space

gtof*

Epast

Oz ~7Dy f@

my ~ M

— Ecurrent

-
/7
) Jor_

Az ~ Dt _ 7 Accross

<—> Push h* o f *

—o Pull

Zhang et al. Integrating Present and Past in Unsupervised Continual Learning. CoLLAs 2024.
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Outlooks

* Understand continual learning at
scale

* Unified learning architecture,
objective and replay,/rae of sleep

160M LLM 1B LLM

AU

w

sk 1
b

-

Loss on Task 1
=

0 25 50 75 100
Training Episode

0 25 50 75 100
Trajihg Episode

[van de Ven et al. 2020] H’b%ca,np

; S

i ; 2 >
.:l— . N‘
L 1
1] C —
FAN -
New data ~ ' Replay [Hinton et al. 1995]

[Mayo et al. 2023]

A NYU
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Outlooks 3

sk 1

=
Loss on Task 1

 Understand continual learning at Yom om0

Training Episode

scale

1B LLM

w

N

-

A0

0

25 50 75 100
Training Episode

. h3
S A
h

2

* Unified learning architecture,

5 i A

h1

objective and replay, role of sleep

; : h RT W,
s i

Newdata = “Replay [Hinton et al. 1995]

* Continual learning with real world
structure -

task 1 task 2 task 3

)

Typical setting in continual, few-shot, transfer, and meta-learning

Typical setting of human learning [Mayo et al. 2023]
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Summary: Continual Learning

* Regularization, Distillation, Architecture Expansion/Isolation
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Summary: Continual Learning

* Regularization, Distillation, Architecture Expansion/Isolation
* Frozen representation: prompt learning

* Integration of memory and representations

* Combination with self-supervised learning

* Exploration of multimodal continual learning from embodied
environments




Few-Shot Learning and Meta-Learning




Few-Shot Learning (FSL)

* Humans can quickly learn new concepts with a few examples.
* Learning in embodied agents also needs to be adaptive and swift.
* Examples: Recognize new objects, perform new skills, map new areas,

etc.
o l GO @ rT =
Lot oo ¥ 53 W
%LL LTI N
DY % [Lake et al. 2011]

[Ren et al. 2018]

/@m
kY

[Lu et al. 2024]

‘4 NYU




FSL: General Setup

* Quickly Ie/aLrﬁ,task (learning episode) with very few number of
training examples and get evaluated on a set of test examples.

https://www.ibm.com/think/topics/few-shot-learning



FSL: General Setup

* Quickly learn a task (learning episode) with very few number of
training examples and get evaluated on a set of test examples.

* During training, going through many episodes of the same structure.

Training task 1 Training task 2 Test task 1

Support set Support set Support set

), S

DL ;»—"2.. y

e

G 38 E \.’r

s ()
Query set Query set Query set

ve| S R OB — g g
~ i B8 =1 4.9
https://www.ibm.com/think/topics/few-shot-learning




Learning to Learn

* Conceptually, we'd like to generalize new learning experiences.

LEARNING Meta Learning
TO

LEARN
Learn To Learn Task
e A Quikly learn
New Task
edited by 'q
Sebf-astiznThru.n
rien Pratt .
ot 1|‘ |
e}
" 90 |

Kluwer Academic Publishers
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Learning to Learn

* Conceptually, we'd like to generalize new learning experiences.

LEARNING Meta Learning
TO

* 1learning experience = 1training example
A Tle =AdE

LEARN
Learn To Learn Task

4 )
edited by 'ﬂ
Sebastian Thrun
Lorien Pratt
o 90
Kluwer A Publishers

Quikly learn
New Task

*Ji
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@/g{, - ?@ Learning to Learn

* Conceptually, we'd like to generalize new learning experiences.

LEARNING Meta Learning

* Related to multi-task learning Lo

* 1learning experience = 1training example

Learn To Learn Task

e A Quikly learn
New Task

= . 'Q'|
.
E —
# h A
O{-O

rd
) \ J
Kluwer. iblist
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Learning to Learn

* Conceptually, we'd like to generalize new learning experiences.

LEARNING Meta Learning

* 1learning experience = 1training example

* Related to multi-task learning TO N

* What can be meta-learned? , y
* Optimizer e G X .
* Initialization wr 1|‘ A \/_i
* Architecture 5 \ o )

* Representations
* Abstraction of tasks

—
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Learning to Learn

* Conceptually, we'd like to generalize new learning experiences.

LEARNING Meta Learning
TO

* 1learning experience = 1training example
* Related to multi-task learning

LEARN
e What can be meta-learned? R
* Optimizer e & o
* Initialization wr tA _’\/_i
* Architecture W \ So )

* Representations
* Abstraction of tasks

* Discover learning algorithms that support FSL.




Meta-Optimization (Bi-level Optimization)

* One can formulate meta-learning as a meta-optimization problem.

@ Eﬁn E L(x;0,)).
A ) D~ 0 x~D
(N /
)

v/

/’l/p@fpamm 2te,,




Meta-Optimization (Bi-level Optimization)

* One can formulate meta-learning a ta-optimization problem.

* Need to optimize through the inner optimization.
« BPTT
* Fixed point (implicit differentiation)
%—/
* Zeroth order optimization




Meta-Optimization (Bi-level Optimization)

* One can formulate meta-learning as a meta-optimization problem.

min E min E L(x;6,)\).
A D~D 6 a~D

* Need to optimize through the inner optimization.
« BPTT
* Fixed point (implicit differentiation)
* Zeroth order optimization
* Short-horizon bias: Optimal actions in the next few steps may not be
optimal in the long run.
* Example: Lowering learning rate will always result in short-term gains.

ANYU




MAML (Truncated Optimization)

* For few-shot learning, short horizon is actually needed.

——

. UnroII the gradient graph for a few iterations.

« MAML (Model-agnostic meta- Iearmng)

— meta-learni ng Algorithm 1 Model-Agnostic Meta-Learning
---- learni ng/ ada ptation Require: p(7): distribution over tasks
Require: o, 3: step size hyperparameters

1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(7)

4 for all 7; do
5: Evaluate VoL, (fg) with respect to K examples
6 Compute adapted parameters with gradient de-
scent: 0, = 6 — aVoLr,(fo)
end for
3 Update § < 0 — Vg ZTin(T) L, (fg:)
: end while

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

ANYU




Hypernetworks, Best Response Functions

* Another way to “amortize” the optimization is to use a network to
. . . /
predict the optimal inner parameters.

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.



Hypernetworks, Best Response Functions

* Another way to “amortize” the optimization is to use a network to

predict the optimal inner parameters.
* Best response function:@} argmin,, ﬁT@ w). A* = argminy L(A, w*).

—_—

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.



Hypernetworks, Best Response Functions

* Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.

* Best response function: w* = argmin,, L7 (A, w). A* = argminy L(\, w*
* Approximation: \* & argmin, £(\, We(A)). ming E.|[f(A —|— €, W A@ .

A

- | | ANYU
MacKay et al. Self-Tuning Networks: Bilevel Optimiza tion of Hyperparameters using Structured Best-Response Functions. ICLR 2019. 1




Hypernetworks, Best Response Functions

* Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.

* Best response function: w* = argmin,, L7 (A, w). A* = argminy £(A, w*).
* Approximation: \* & argmin, L£(\, We(A)). ming Ec[f(A + €, w(A + €))].
* Scalable version? Instead of predicting full parameters?

A

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.




Approx: ‘nnes loop.
_Hypernetworks, Best Response Functions

* Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.

* Best response function: w* = argmin,, L7 (A, w). A* = argminy £(A, w*).
* Approximation: \* & argmin, L£(\, We(A)). ming Ec[f(A + €, w(A + €))].

* Scalable version? Instead of predlctlng full parameters?
Maskthgm

Change to principal T

component basis O . O Project to 1-D Space

—| Matmul Q) O . . s ‘ Matmul S
@) @ @
\é a’

onstru¢t \-dependent mas
Matmul ’UH Add C H J

MacRay et al. Self-Tuning Networks Beveroptimization of Hyperparameters u

|

/I
/
m urd@d Best-Response Functions. ICLR 20189.




Representation and Memory

* Prototypical Network: Few-shot Classification

Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017.
Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 2019.




Representation and Memory

* Prototypical Network: Few-shot Classification
* Prototype = Awentation of a class Z fcb XZ

(x Y)ESk

ply = k | x) = softmax(—d(f,(x), p).

Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017. (%/l NYU
Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 20189.




Representation and Memory

* Prototypical Network: Few-shot Classification
* Prototype = Avg. representation of a class Z fo(x;).
* 1 example = exemplar-based. Can be in between (X y) €Sk

p(y =k | x) = softmax(—d(f»(x), Px)-

Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017. (%/l NYU
Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 20189.




Representation and Memory
* Representation vs. Memory Layers

yduF:'ing meta-training) i jayere.gaconviayer +ell Learned (Updége(: i t?etmnt('er i
X 5 ana at meta-testin
or fc layer + relu repl:esentatlon 9)

Input \ l
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Javed & White. Meta-Learning Representations for Continual Learning. NeurlPS 20189.



Representation and Memory

* Representation vs. Memory Layers

Algorithm 2: Meta-Training : OML

* Learni ng to continual |y learn Require: p(7): distribution over CLP problems
< Require: o, 3: step size hyperparameters
- m%t;éze?;at:lee;i::r oop Could be any diffrentiab Adaptation Parameters 1: randomly initialize ¢
yduring meta-training) layer :rg fs g;r;\rl La\;/;r rel Learntec'l[. (Upaiadtea(: Inr;et?ae-tlggt?r:g!;))op 2: while not dOIlC (_10 .
Input \ FplRaSIata ¥ 3:  randomly initialize W
i e i L ) l p =i Ak R s A 4:  Sample CLP problem 7; ~ p(T)
‘ () AN —~\ . « () () '0 5. Sample S;,qin from p(Sk|T;
l O OO i (O (O] i & wpmwe TP
" Q Q O V2| Q O . l 7. forj=1,2,...,kdo
2| vg5 £5 £5 Sulraty £ 5 £5 £5 8: (X5,Y;) = StrainJ]
| 33 O[28 O 3| ORE[: 32 |O| 23038 ¥ ¢ Wy =Wii = oV, lilfow, . (X)), Y))
| 28§ z5 z5 zZ5 z5 zs z5 " 10:  end for
T o o o Ol . R o o
: O Q O i B Q O " 11:  Sample Sicst from p(Sk|T;)
' . _ . . .
: O Q Q : Td : Q O : ig engfv’;ililitleee — 0 IBVGEZ(fG,Wk (Stest [-a 0])7 Stest [-7 1])
Representation Learning Network (RLN) Prediction Learning Network (PLN)
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Javed & White. Meta-Learning Representations for Continual Learning. NeurlPS 2019. 1




Representation and Memory

* Meta-learning leads to sparse representation suitable for continual
learning.

Random Instance 1 / Random Instance 2 Random Instance 3
OML
SR-NN
(Sparse) _
Pre-training | _' ! _ SR | SR e ] -1 [ =- b wn A

)
Javed & White. Meta-Learning Representations for Continual Learning. NeurlPS 20189.
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Online Continual Few-Shot Learning
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Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.



Online Continual Few-Shot Learning

« Compared to OML: Using prototype memory vs. generic MLP.

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.



Online Continual Few-Shot Learning

* Compared to OML: Using prototype memory vs. generic MLP.
* Both learning representations through online learning episodes.

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.
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Online Continual Few-Shot Learning

* Compared to OML: Using prototype memory vs. generic MLP.

* Both learning representations through online learning episodes.
* Learning contextual representations (for context shifts).

* Learning to output unknowns.

o)

r

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.



Few-Shot Imitation Learning

* The idea of prototype learning can also be applied to skill learning.

Demonstrations

: Sentences Sentence + Observation
Task-Embedding Dhservation
Net e e e ————
‘ ’ Execute
[ Control

Velocities
Net

Task-Embedding ' r
Net ‘ Closed-loog control '

Finn et al. One-Shot Visual Imitation Learning via Meta-Learning. CoRL 2017.
James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.




Few-Shot Imitation Learning

* The idea of prototype learning can also be applied to skill learning.
* Embedding learning: trey.
| F=s1/|s7].
et o

Sentences Sentence + Observation
Task-Embedding : , Observation
Net L L L L |
. Execute
Velocities

D i; max(0, A—Sk $9 48

Demonstrations

Control
Net

elocitie
Task-Embedding 8 4 ! |
A bit ‘ 7 CIosed-looE control '

Finn et al. One-Shot Visual Imitation Learning via Meta-Learning. CoRL 2017.
James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.




Few-Shot Imitation Learning

* Control learning:

Ectr — Z] Z(O,CL)ETj H@ _gH%

0“+pu4— acton

Demonstrations

: Sentences Sentence + Observation
Task-Embedding Observation
Net \ g e e e ————
‘ ’ Execute

Control

' Net
Task-Embedding
Net C losed loop control

James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.




Leveraging Pretrained Representations

* Need a strong pretrained network.

Training stage Fine-tuning stage
Base class data Novel class data Fixed
Feature . (Few) Feature . @
- [ £ extractor Classifier | 2147 I extractor Classifier

("Wb)‘;_’YL'

Chen et al. A Closer Look at Few-shot Classification. ICLR 2019.




Leveraging Pretrained Representations

* Need a strong pretrained network.
* Works well for few-shot classification.

Training stage Fine-tuning stage
Base class data Novel class data Fixed ’
Feature . (Few) Feature . @
J extractor Classifier 242 I extractor f.'???’.'.f!?'_'\

('\Wb)é—’ﬁif’

Chen et al. A Closer Look at Few-shot Classification. ICLR 2019.




Leveraging Pretrained Representations

* Need a strong pretrained network.
» Works well for few-shot classification.
* Once again proves that representation is crucial.

Training stage Fine-tuning stage
Base class data Novel class data Fixed ’
Feature . (Few) Feature e @
J extractor Classifier =147 I extractor Classifier

X, W ¥

('\Wb)é—’ﬁif’

Chen et al. A Closer Look at Few-shot Classification. ICLR 2019.
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In-Context Learning (ICL)

* Traditionally, learning through parameters 6.

* ICL does not optimize any parameters, just put the training data in
the context.

* Inner optimization loop done in a sequence model (RNN, Transformer,

etc.) y=g(x1,y1),--, (Tn,Yn),T).

y

T

LLM




Meta-Learning LSTM

* An earlier sequential meta-learning paradigm before ICL.
* Using hidden states as “parameters”

(Xl,Yl) (XQ,YQ) (X3’ YJ) (XT, YT)
v v v v
0o 0, ) 611
— —> —>  —
Learner -, . (V1,L4) % (V2,.£2) (VT.CT)
-._ k e e o
<

. 01 . . OT 1 . L(Mx o

Meta-learner

(.
Ravi & Larochelle. Optimization as a Model for Few-Shot Learning. ICLR 2017. 1 NYU




In-Context RL

* Use sequences of Obervation (o), Action (a;) and Reward (r;)
generated by standard RL algorithms.

Data Generation

Task 1

Task n

Model Training

[

(n) _
hT — (003 ap,7p,01,01,71, ... 70T7aT7TT)n

____________________________________

learning progress

0o

ao

To.

1

l

l

Ot—1

at—1

Tt—1

O¢

l

1

l

l

Causal Transformer

Laskin et al. In-context Reinforcement Learning with Algorithm Distillation ICLR 2023.

be

- P@ht—boi&)

RL algorithm
learning histories

Predict actions using
across-episodic contexts




Test-Time Tuning/Adaptation

 Context Retrieval, e.g. nearest neighbors

* Finetuning on examples
* Full finetuning
* Low-rank adaptation
* Prompt tuning

* Self-supervision objectives




Summary: Towards Embodied Learning Agents

* A modularized but differentiable end-to-end architecture
* Perception
* Prediction
* Planning

* Mapping
* Memory
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Summary: Towards Embodied Learning Agents

* A modularized but differentiable end-to-end architecture
* Perception
* Prediction
* Planning

* Mapping
* Memory

* A combination of learning signals
* Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)

Self-supervision (InfoNCE, MSE, Cross-entropy)

Reconstruction

Future prediction «

Reinforcement learning
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Summary: Towards Embodied Learning Agents

e Useful inductive biases

Spatial grounding

Geometric projections / transformations
Permutation invariance / equivariance
Representation invariance

Motion grounding

Disentanglement, object-centric latents
Cost volumes

Recursive iteration

Optimization / fixed point iteration
Memory, replay, sparsity

Learning inductive biases, learning to learn

ANYU




Week 7 (Mar 6)
Week 8 (Mar 13)

Week 9 (Mar 20)

Week 11 (Apr 3)

Week 12 (Apr 10)

Week 13 (Apr 17)

Topic Presentations

Component 1

Continual Learning, Few-shot
Learning (1 hr)

Guest Lecture —

. Prof. Wei-Chiu Ma (1 hr)

SSL and Object Discovery
Anurup Naskar, Dahye Kim, Sal
Yeung, Surbhi (1.5 hr)

World Model 2
Pratyaksh Prabhav Rao, Sergey
Sedov, Rooholla Khorrambakht

Continual Learning
Akshay Raman, Amey Joshi,
Zifan Zhao

Guest Lecture -
Dr. Andrei Barsan (1hr)

Component 2

Deep Learning for Structured Prediction
Tanishqg Sardana, Qing Mu, Owais Shuja

3D Vision and Mapping
’Sihang Li, Kanishkha Jaisankar, Denis Mbey Akola, Zijin Hu

World Model 1
Sidhartha Reddy Potu, Andrew Deur

End-to-End Planning
Raman Kumar Jha, Jovita Gandhi, Sushma Mareddy,
Mrunal Sarvaiya

Few-Shot Learning
Ellen Su, Xu Zhang, Swarali Borde

LLM Agents
Solim LeGris, Ravan Budda, Dan Zhao, Sunidhi Tandel

NYU



Project Presentations

Week 14 (Apr 24) Project Presentations (7 teams)
Week 15 (May 1) Project Presentations (7 teams)

* Apr 10: Sign up for a presentation slot. Week 14 Presenters get 2%
bonus. First come first serve.

* Project topics and proposals to be shared in the class.




Today

* Tanishqg Sardana: Segment Anything

* Qing Mu: DETR: End-to-End Object Detection
* Owalis Saad Shuja: Latent Diffusion Models

* Discussion




