DS-GA.3001 Embodied Learning and Vision

Mengye Ren

NYU

Spring 2025

embodied-learning-vision-course.github.io

Lecture Slides for Note Taking

Module 5: Continual Learning, Few-Shot Learning, Meta-Learning

Why Continual Learning?

• The world is not a dataset that allows you to get IID samples.

Why Continual Learning?

- The world is not a dataset that allows you to get IID samples.
- The world keeps changing and evolving.

Why Continual Learning?

- The world is not a dataset that allows you to get IID samples.
- The world keeps changing and evolving.
- Online vs. Continual
 - Online means that samples arrive in a streaming / temporal partial order, but they may still come from a static distribution.

$$\theta_t = f(x_t, \theta_{t-1}) \quad x_{1:T} \sim \mathcal{X}$$

- Example: Online reinforcement learning, trajectory roll out is online, but the environment is the same.
- Continual learning means that there will be distribution shift.

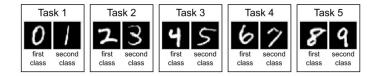
- Distribution shift: Forgetting
 - Learning on A and then B, results in worse performance on A.

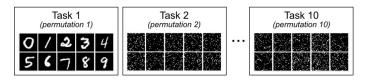
- Distribution shift: Forgetting
 - Learning on A and then B, results in worse performance on A.
- Multi-task learning: Forward transfer
 - Learning Task A + B results in better learning in Task C compared to learning C alone.
 - Leverage the similarity between tasks.

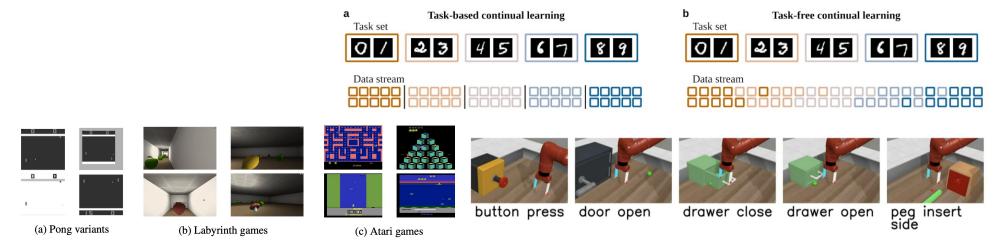
- Distribution shift: Forgetting
 - Learning on A and then B, results in worse performance on A.
- Multi-task learning: Forward transfer
 - Learning Task A + B results in better learning in Task C compared to learning C alone.
 - Leverage the similarity between tasks.
- Compositionality
 - Learning A and B first, and then learning tasks with composed A+B.

- Distribution shift: Forgetting
 - Learning on A and then B, results in worse performance on A.
- Multi-task learning: Forward transfer
 - Learning Task A + B results in better learning in Task C compared to learning C alone.
 - Leverage the similarity between tasks.
- Compositionality
 - Learning A and B first, and then learning tasks with composed A+B.
- Incremental/curriculum Learning
 - Learning A->B->C is easier than at random order.

• Learning a sequence of tasks without looking back.







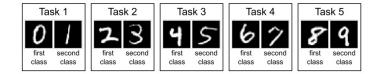
- Learning a sequence of tasks without looking back.
- Goal is to do well on all of the tasks at the end.

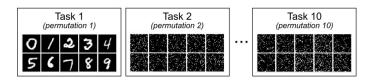
а

Task set

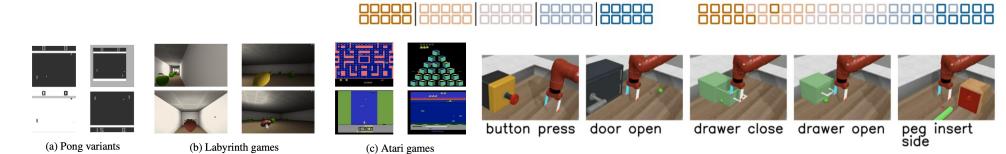
Data stream

0





Data stream



Task-based continual learning

67

89

2345

- Learning a sequence of tasks without looking back.
- Goal is to do well on all of the tasks at the end.

а

Task set

Data stream

0

• Task boundary

Task 2

Task 1



Task 3

Task 4

Task 5

class

Data stream



Task-based continual learning

45

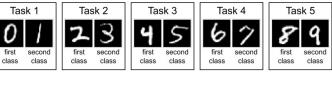
67

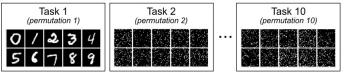
89

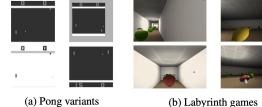
23

Task-based continual learning

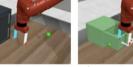
- Learning a sequence of tasks without looking back.
- Goal is to do well on all of the tasks at the end.
- Task boundary
- Memory constraints

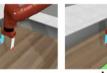






а





(c) Atari games

button press door open drawer close drawer open

peg insert side

Parameter Regularization

• Over-completeness Assumption. A multitude of models can reach equivalent performance.

 $S_A = \{ \theta \mid \ell_A(\theta) < \epsilon \}$ $S_A \cap S_B \neq \emptyset$

Parameter Regularization

- Over-completeness Assumption. A multitude of models can reach equivalent performance.
- What is left is to efficiently find the intersection between A and B.

 $p(\theta \mid \mathcal{D}_A) = \mathcal{N}(\theta; \theta^*, \Sigma)$

$$\mathcal{S}_A = \{ \theta \mid \ell_A(\theta) < \epsilon \}$$
$$\mathcal{S}_A \cap \mathcal{S}_B \neq \emptyset$$

Parameter Regularization

- Over-completeness Assumption. A multitude of models can reach equivalent performance.
- What is left is to efficiently find the intersection between A and B.

 $p(\theta \mid \mathcal{D}_A) = \mathcal{N}(\theta; \theta^*, \Sigma)$

• Elastic Weight Consolidation (EWC):

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

$$S_A \cap S_B \neq \emptyset$$

$$\square \text{ Low error for task B} = EWC$$

$$\square \text{ Low error for task A} = L_2$$

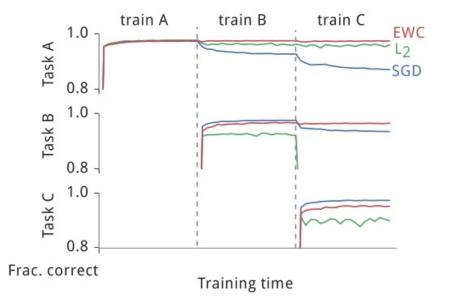
$$\square \text{ no penalty}$$

 $\mathcal{S}_A = \{\theta \mid \ell_A(\theta) < \epsilon\}$

Computing Fisher

• At the end of each epoch, compute the gradient squared: $(12)^2$

$$F_i = \left(\frac{d\mathcal{L}}{d\theta_i}\right)$$

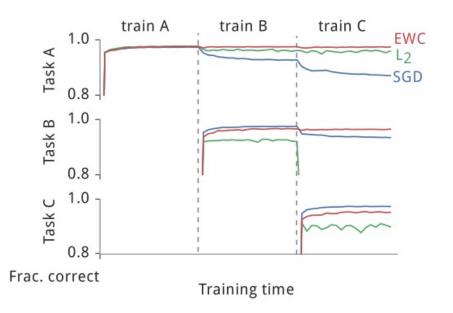


Computing Fisher

• At the end of each epoch, compute the gradient squared:

$$F_i = \left(\frac{d\mathcal{L}}{d\theta_i}\right)^2$$

• Measures the sensitivity on each parameter dimension.

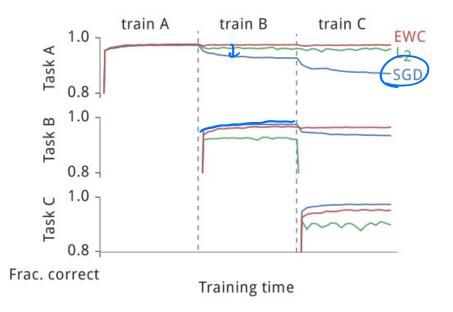


Computing Fisher

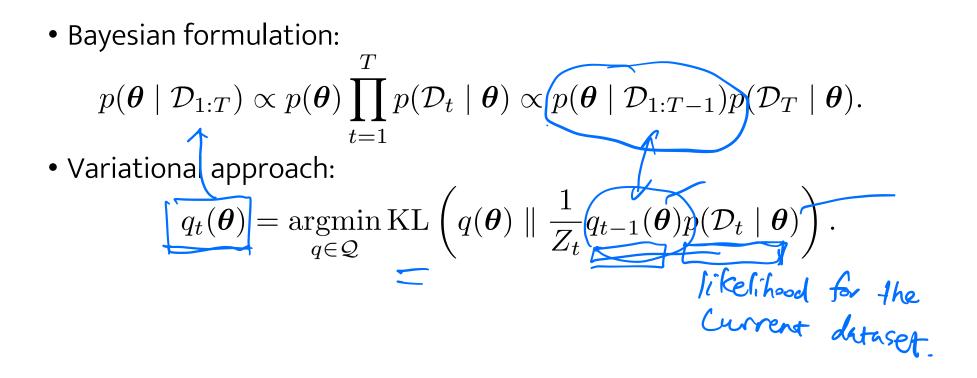
• At the end of each epoch, compute the gradient squared:

$$F_i = \left(\frac{d\mathcal{L}}{d\theta_i}\right)^2$$

- Measures the sensitivity on each parameter dimension.
- You can also accumulate an online estimate.



• Bayesian formulation: $\mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\boldsymbol{\theta})$ $\boldsymbol{\theta}$ t=1



• Bayesian formulation:

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta}).$$

• Variational approach:

$$q_t(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL} \left(q(\boldsymbol{\theta}) \parallel \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}) \right).$$

Loss: $\mathcal{L}(q_t(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{\theta} \sim q_t(\boldsymbol{\theta})} [-\log p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta})] + \operatorname{KL}(q_t(\boldsymbol{\theta}) \parallel q_{t-1}(\boldsymbol{\theta})).$

•

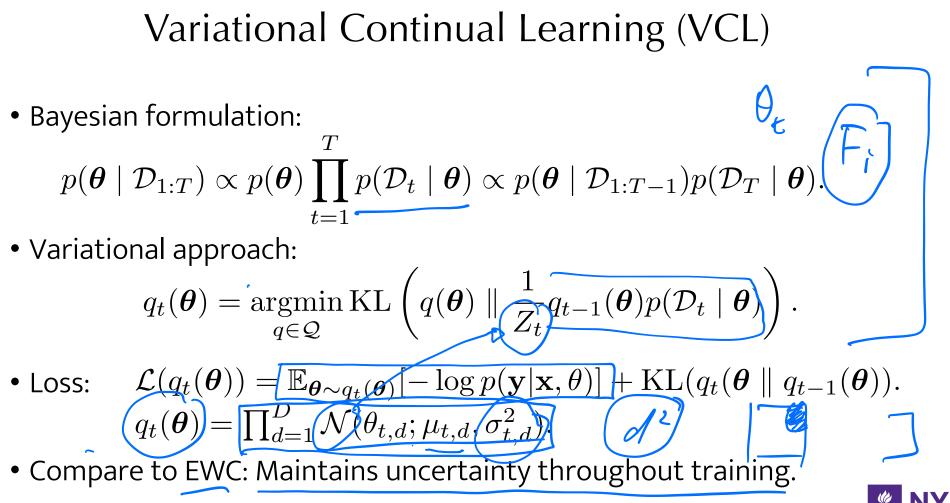
• Bayesian formulation:

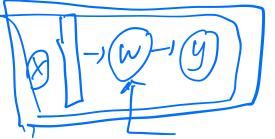
$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta}).$$

• Variational approach:

$$q_t(\boldsymbol{\theta}) = \operatorname*{argmin}_{q \in \mathcal{Q}} \operatorname{KL} \left(q(\boldsymbol{\theta}) \parallel \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}) \right).$$

• Loss: $\mathcal{L}(q_t(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{\theta} \sim q_t(\boldsymbol{\theta})}[-\log p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})] + \mathrm{KL}(q_t(\boldsymbol{\theta} \parallel q_{t-1}(\boldsymbol{\theta}))).$ $q_t(\boldsymbol{\theta}) = \prod_{d=1}^D \mathcal{N}(\theta_{t,d}; \mu_{t,d}, \sigma_{t,d}^2).$



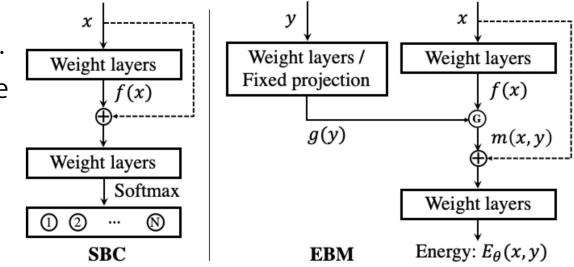


EBM for Continual Learning

• Softmax layer is known to be y х х sensitive to distribution shift. Weight layers / Weight layers Weight layers X Fixed projection f(x)f(x)g(y)m(x,y)Weight layers Softmax Weight layers 2 N (1)••• Energy: $E_{\theta}(x, y)$ SBC **EBM**

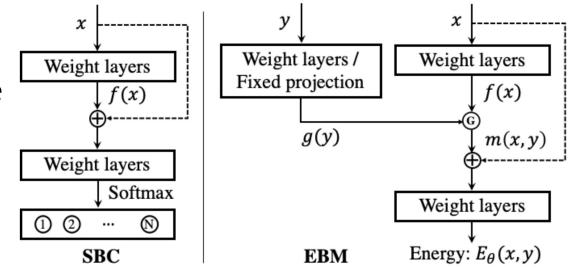
EBM for Continual Learning

- Softmax layer is known to be sensitive to distribution shift.
- A common approach is to use nearest mean classifier.

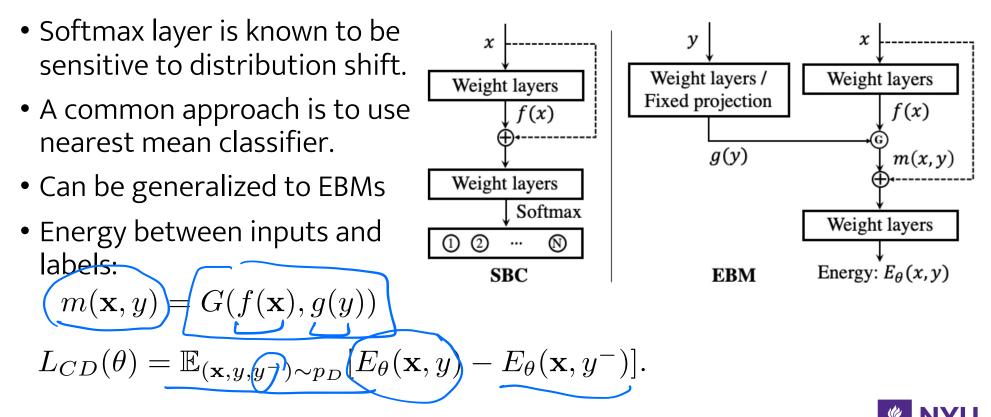


EBM for Continual Learning

- Softmax layer is known to be sensitive to distribution shift.
- A common approach is to use nearest mean classifier.
- Can be generalized to EBMs

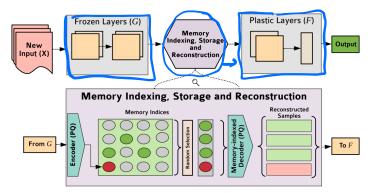


EBM for Continual Learning

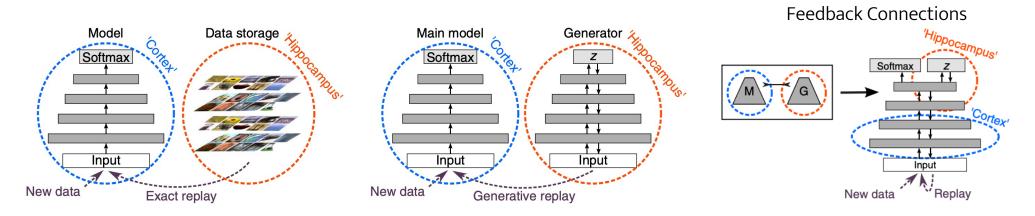


Li et al. Energy-Based Models for Continual Learning. CoLLAs 2022.

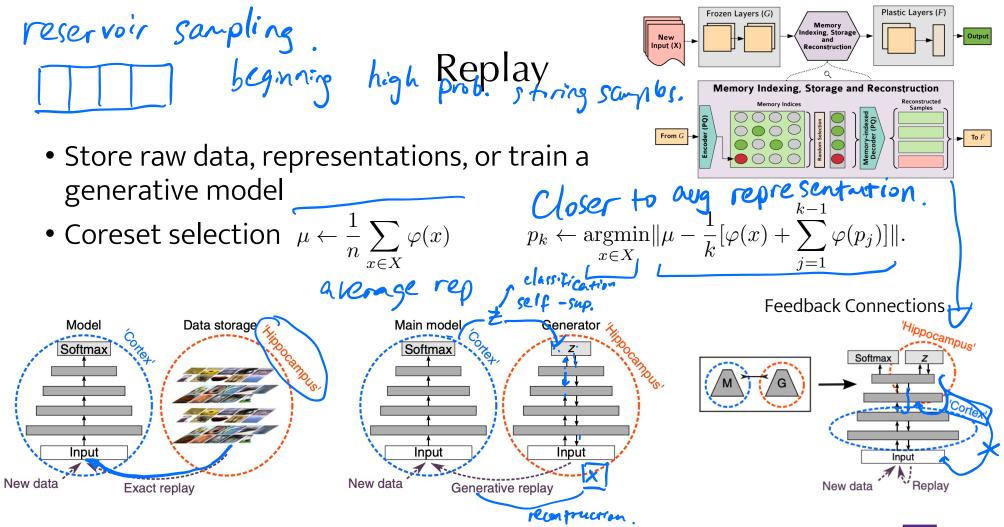
Replay



• Store raw data, representations, or train a generative model generative raplay.

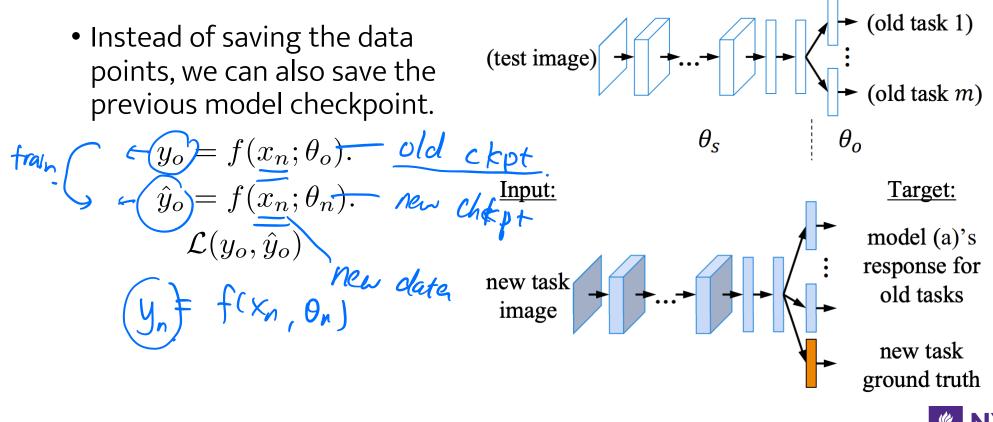


Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017. van de Ven et al. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 2020. Hayes et al. REMIND Your Neural Network to Prevent Catastrophic Forgetting. ECCV 2020.



Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017. van de Ven et al. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 2020. Hayes et al. REMIND Your Neural Network to Prevent Catastrophic Forgetting. ECCV 2020.

Knowledge Distillation

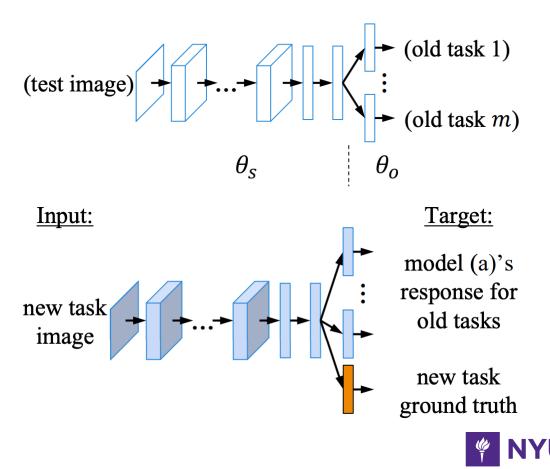


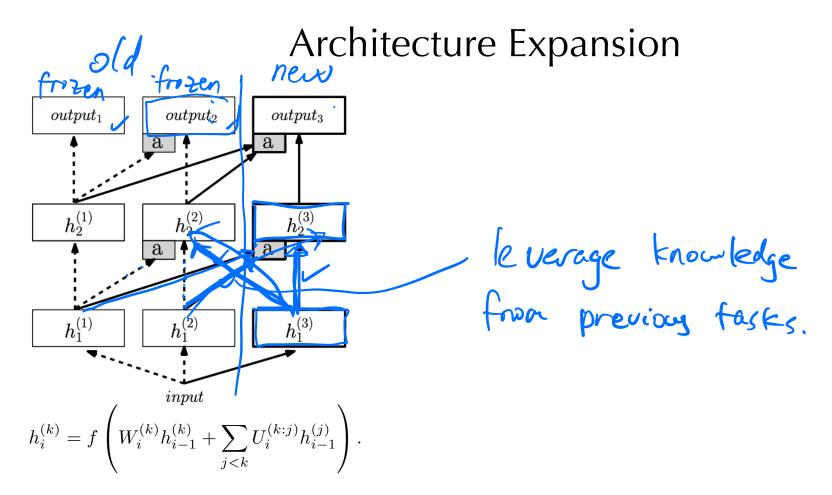
Knowledge Distillation

• Instead of saving the data points, we can also save the previous model checkpoint.

$$y_o = f(x_n; \theta_o).$$
$$\hat{y}_o = f(x_n; \theta_n).$$
$$\mathcal{L}(y_o, \hat{y}_o)$$

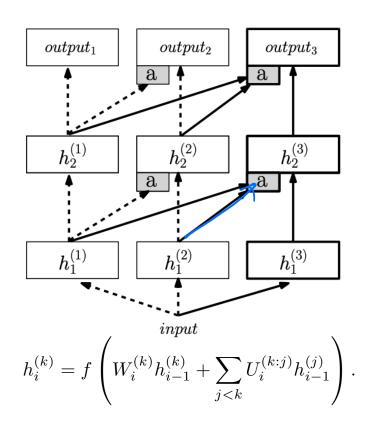
 Use <u>new data points and old</u> weights to "distill"



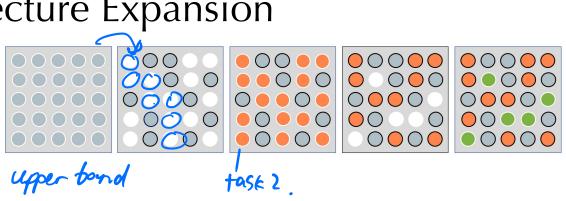


Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018. Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.

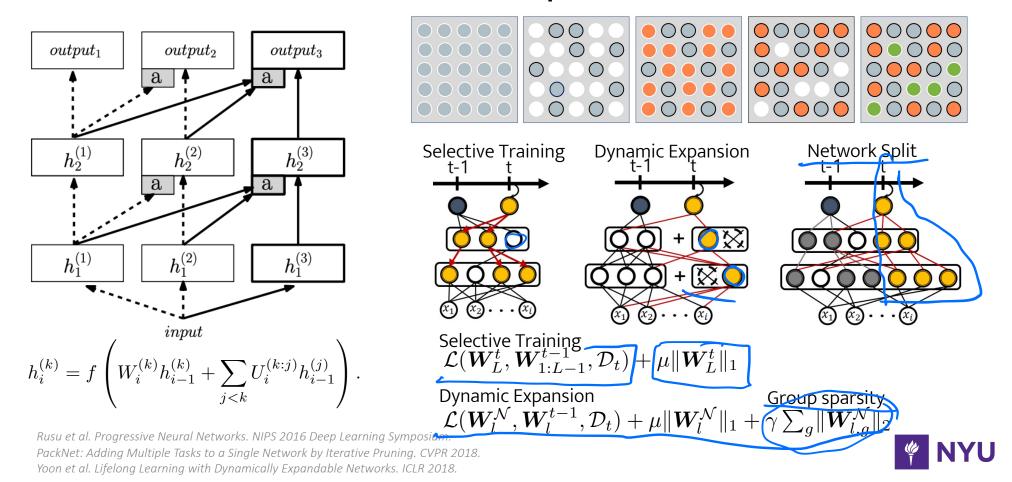
Architecture Expansion



Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018. Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.

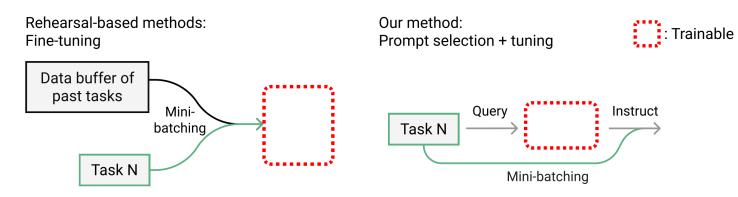


Architecture Expansion



Adapting Pretrained Models

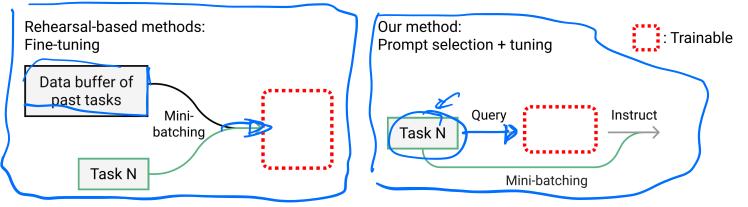
• Pretrained models have general knowledge that can be adapted to a continual stream of tasks.



Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

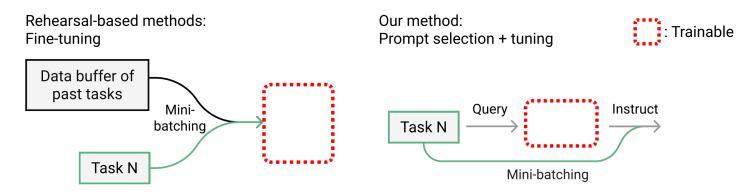
Adapting Pretrained Models

- Pretrained models have general knowledge that can be adapted to a continual stream of tasks.
- Learn adaptation parameters for each task and store these as "task embeddings."



Adapting Pretrained Models

- Pretrained models have general knowledge that can be adapted to a continual stream of tasks.
- Learn adaptation parameters for each task and store these as "task embeddings."
- Main model is frozen.

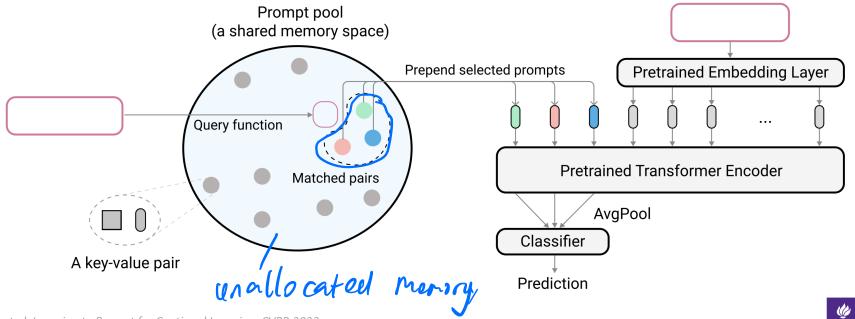


Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

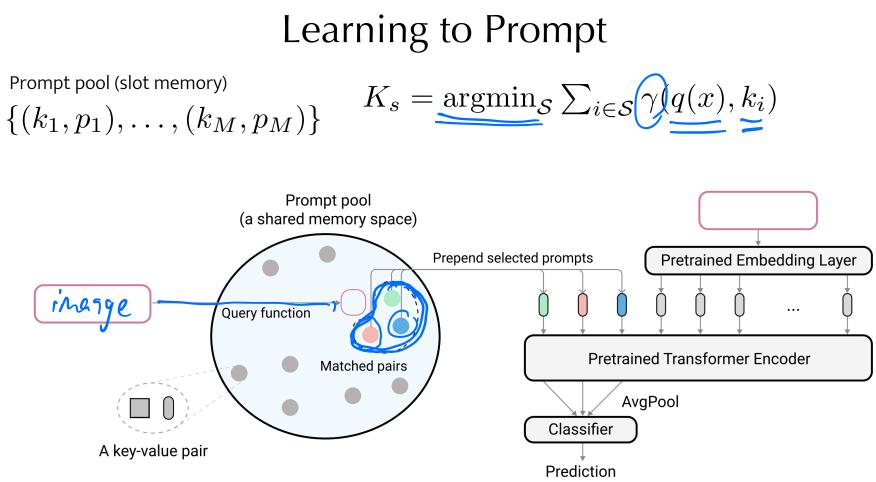
Learning to Prompt

Prompt pool (slot memory)

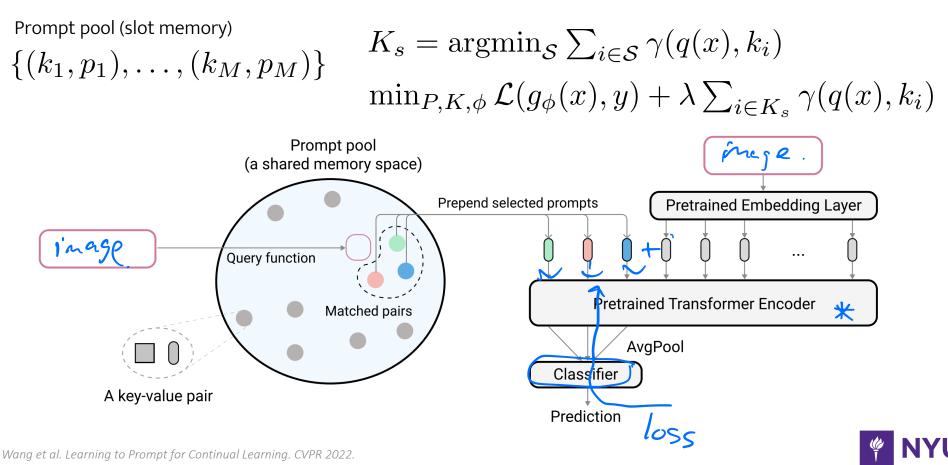
 $\{(k_1, p_1), \ldots, (k_M, p_M)\}$



Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

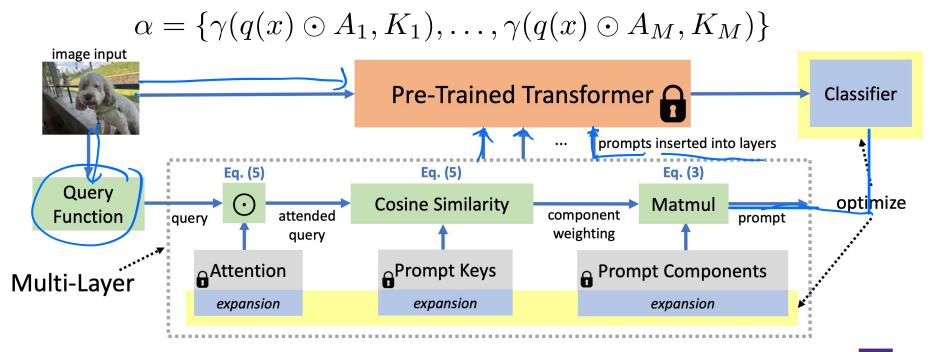


Learning to Prompt



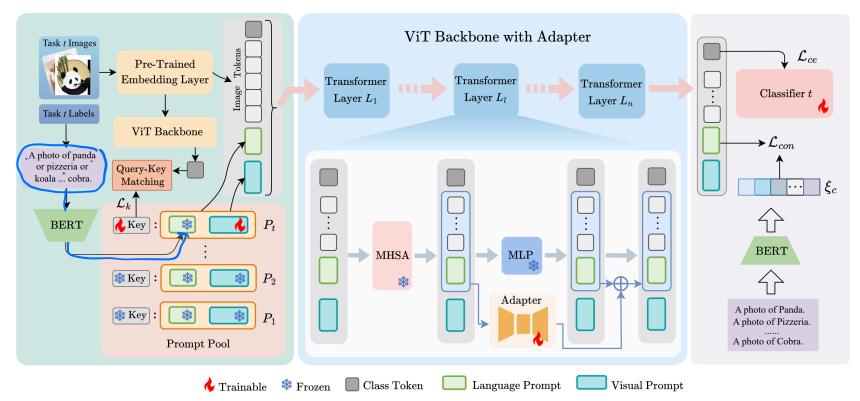
Learned Prompt Query

• The query function can be end-to-end learned.



Smith et al. CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning. CVPR 2023.

Multimodal Semantic Prompts



forgetting.

• Fragility of feedforward gradient descent of the entire networks

- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.

- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.
- In prompting approaches:

prompt pool = memorypretrained network = representations

- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.
- In prompting approaches:
 - prompt pool = memory
 - pretrained network = representations
- But what if representations also need to be built sequentially?

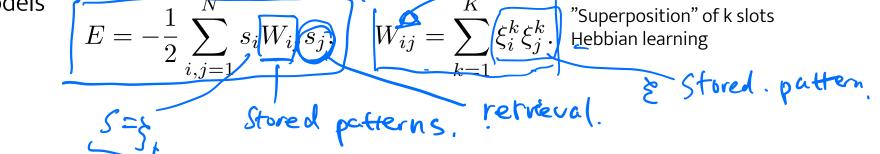
- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.
- In prompting approaches:
 - prompt pool = memory
 - pretrained network = representations
- But what if representations also need to be built sequentially?
- It's also plausible that representations are just "deeper memory."

• Memory aims to store content for easy retrieval

- Memory aims to store content for easy retrieval
 - Associative memories (Hopfield Networks) can be viewed as energy-based models

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016. https://ml-jku.github.io/hopfield-layers/

- Memory aims to store content for easy retrieval
 - Associative memories (Hopfield Networks) can be viewed as energy-based models



- Memory aims to store content for easy retrieval
 - Associative memories (Hopfield Networks) can be viewed as energy-based models
 1 N
 1 N
 1 Superposition of k slots

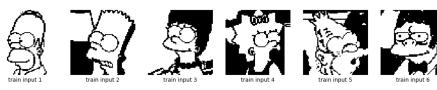
$$E = -\frac{1}{2} \sum_{i,j=1} s_i W_{ij} s_j, \qquad W_{ij} = \sum_{k=1}^{k} \xi_i^k \xi_j^k.$$
 Hebbian learning

• When presented with a new pattern the network should respond with a stored memory which most closely resembles the input.

- Memory aims to store content for easy retrieval
 - Associative memories (Hopfield Networks) can be viewed as energy-based models
 N
 K
 "Superposition" of k slot

$$E = -\frac{1}{2} \sum_{i,j=1}^{m} s_i W_{ij} s_j, \qquad W_{ij} = \sum_{k=1}^{m} \xi_i^k \xi_j^k.$$
 "Superposition" of k slot

- When presented with a new pattern the network should respond with a stored memory which most closely resembles the input.
- Retrieval: $s_i = (\text{sign}(\sum_j W_{ij}s_j))$



masked test image

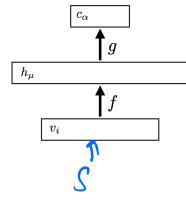
Storage: $C pprox_{c}$

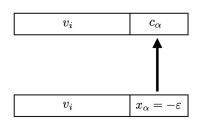
00.

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016. https://ml-jku.github.io/hopfield-layers/

• Duality with a feedforward network.

$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$$

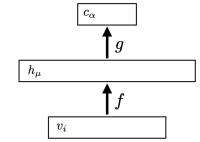


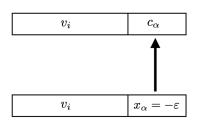


• Duality with a feedforward network.

 $E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$

• Non-linearity allows us to store more patterns.

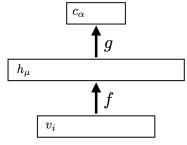


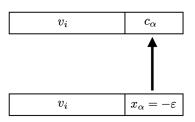


• Duality with a feedforward network.

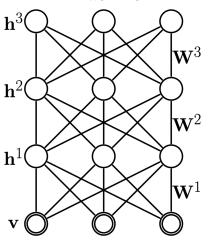
 $E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$

- Non-linearity allows us to store more patterns.
- Deep Boltzmann machines





Deep Boltzmann Machine

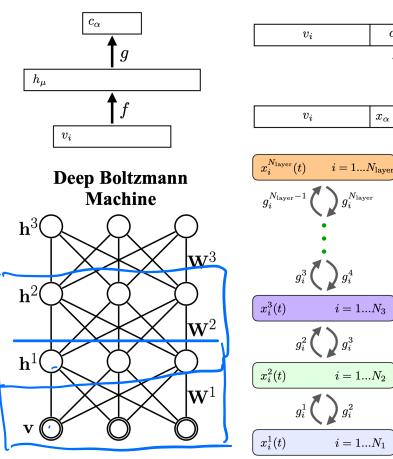


Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 2009. Krotov. Hierarchical Associative Memory. arXiv 2021.

• Duality with a feedforward network.

 $E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$

- Non-linearity allows us to store more patterns.
- Deep Boltzmann machines
- Hierarchical associative memory



 c_{α}

 $x_{\alpha} = -\varepsilon$

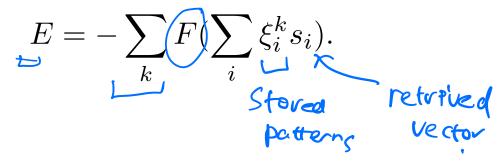
 $\xi_{ij}^{(N_{\mathrm{layer}},N_{\mathrm{layer}}-1)}$

 $\xi_{ii}^{(4,3)}$

 $\xi_{ij}^{(3,2)}$

 $\xi_{ii}^{(2,1)}$

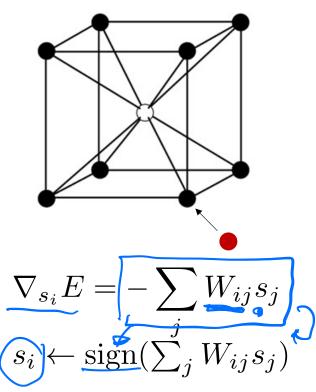
Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 2009. Krotov. Hierarchical Associative Memory. arXiv 2021.



• General form:

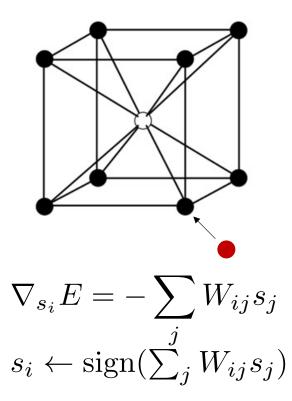
$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

• When $F(z) = z^2$ it gives the classic HN.



$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

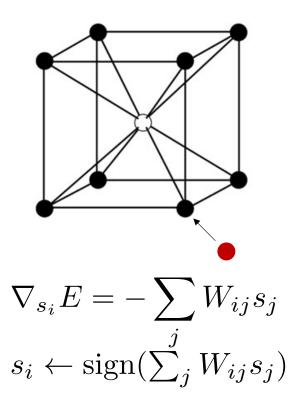
- When $F(z) = z^2$ it gives the classic HN. Transformer-like attention operation:



$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

- When $F(z) = z^2$ it gives the classic HN.
- Transformer-like attention operation:

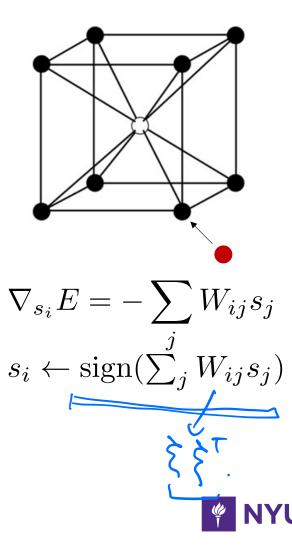
$$\boldsymbol{Z} \leftarrow \operatorname{softmax}(\boldsymbol{\beta} \boldsymbol{X} \boldsymbol{W}_{\boldsymbol{q}} \boldsymbol{W}_{\boldsymbol{k}}^{\top} \boldsymbol{Y}^{\top}) \boldsymbol{Y}_{i} \boldsymbol{W}_{v}.$$



$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

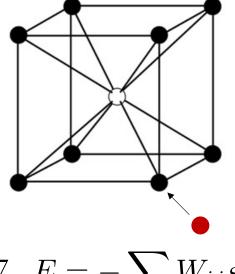
- When $F(z) = z^2$ it gives the classic HN.
- Transformer-like attention operation:

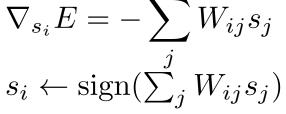
$$Z \leftarrow \operatorname{softmax}(\beta X W_q W_k^\top Y^\top) Y_i W_v.$$
$$S \leftarrow \operatorname{softmax}(\beta S \Xi^\top) \Xi. \rightarrow \nabla \Box$$



- General form: $E = -\sum F(\sum \xi_i^k s_i).$ • Relation to Transformers
- When $F(z) = z^2$ it gives the classic HN.
- Transformer-like attention operation:

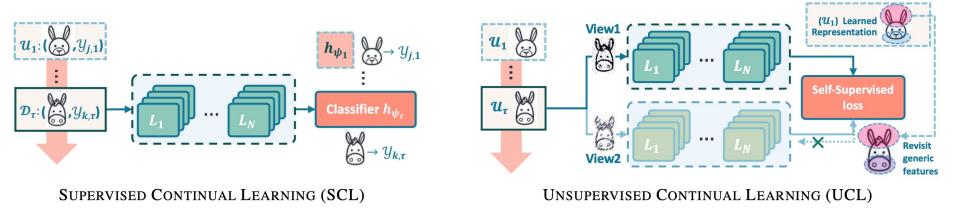
$$Z \leftarrow \operatorname{softmax}(\beta X W_q W_k^\top Y^\top) Y_i W_v. \qquad s_i \leftarrow \operatorname{sign} S \leftarrow \operatorname{softmax}(\beta S \Xi^\top) \Xi. \quad l \quad \text{step}.$$
$$E = -\operatorname{logsumexp}(\beta, \Xi^\top s) + \frac{1}{2} s^\top s + \beta^{-1} \log N + \frac{1}{2} M^2$$



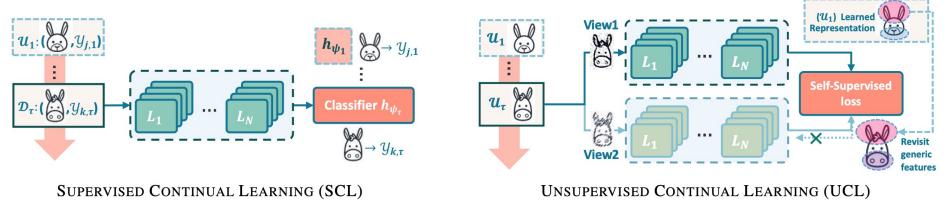


Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

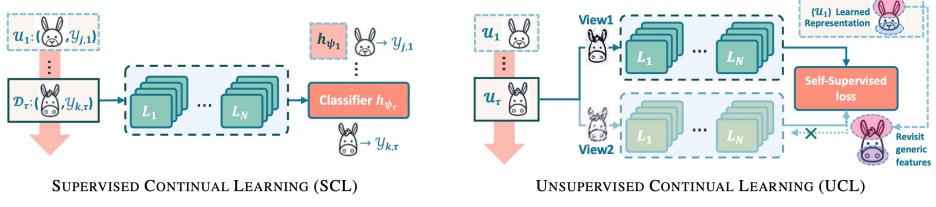
• Learning from a stream of unlabeled inputs.

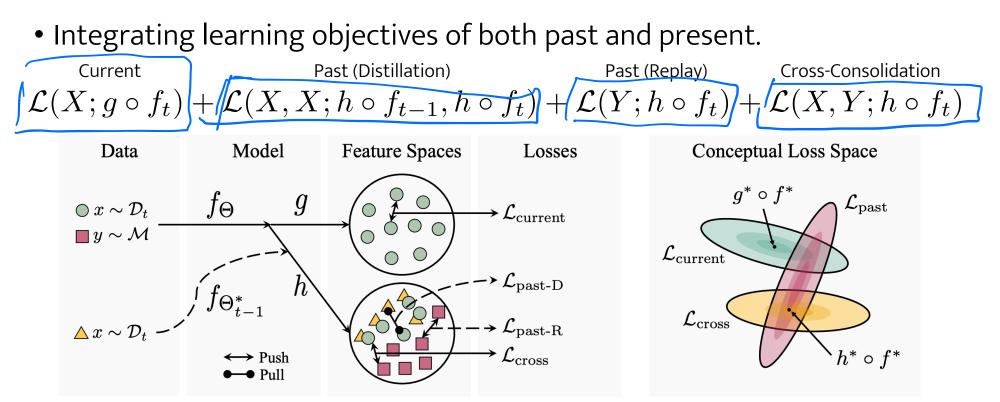


- Learning from a stream of unlabeled inputs.
- Bring SSL to the dynamic world.



- Learning from a stream of unlabeled inputs.
- Bring SSL to the dynamic world.
- SSL can still suffer from distributional shifts.





Outlooks

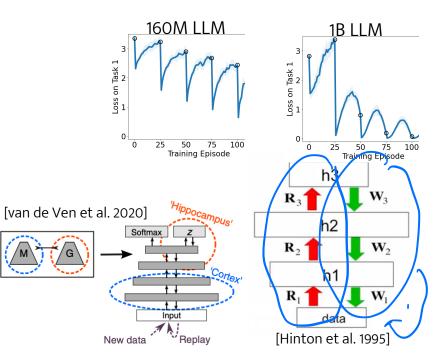
160M LLM 1B LLM Q 3 3 Loss on Task 1 T N Loss on Task 1 0 0 50 75 100 Training Episode Ó 25 25 50 75 1 Training Episode Ó 100

• Understand continual learning at scale

[Mayo et al. 2023]

Outlooks

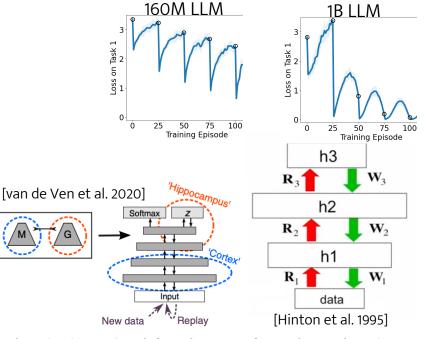
- Understand continual learning at scale
- Unified learning architecture, objective and replay, role of sleep



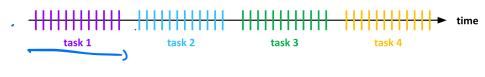
[Mayo et al. 2023]

Outlooks

- Understand continual learning at scale
- Unified learning architecture, objective and replay, role of sleep
- Continual learning with real world structure



Typical setting in continual, few-shot, transfer, and meta-learning



 Typical setting of human learning [Mayo et al. 2023]

 Image: Colspan="2">Image: Colspan="2"

 Image: Colspan="2"
 Image: Colspan="2"

 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"

 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"

 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan="2"
 Image: Colspan=

Tasks are interspersed and recur No opportunity to master one before confronted with another

Summary: Continual Learning

• Regularization, Distillation, Architecture Expansion/Isolation

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning
- Integration of memory and representations

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning
- Integration of memory and representations
- Combination with self-supervised learning

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning
- Integration of memory and representations
- Combination with self-supervised learning
- Exploration of multimodal continual learning from embodied environments

Few-Shot Learning and Meta-Learning

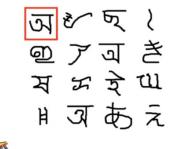
Few-Shot Learning (FSL)

• Humans can quickly learn new concepts with a few examples.

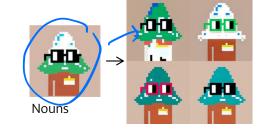
'goldfish'

"shark"

- Learning in embodied agents also needs to be adaptive and swift.
- Examples: Recognize new objects, perform new skills, map new areas, etc.



[Lake et al. 2011]



[Ren et al. 2018]

[Lu et al. 2024]

FSL: General Setup

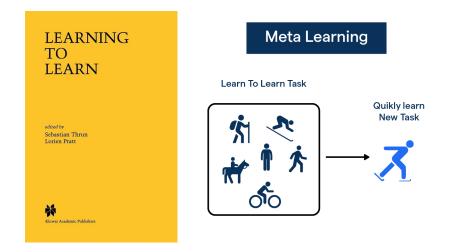
• Quickly learn a task (learning episode) with very few number of training examples and get evaluated on a set of test examples.

FSL: General Setup

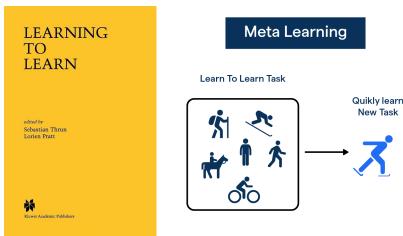
- Quickly learn a task (learning episode) with very few number of training examples and get evaluated on a set of test examples.
- During training, going through many episodes of the same structure.

https://www.ibm.com/think/topics/few-shot-learning

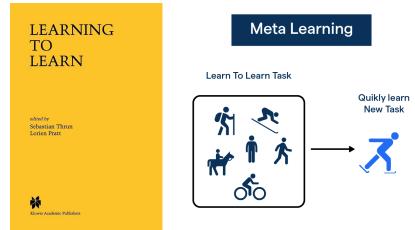
• Conceptually, we'd like to generalize new learning experiences.



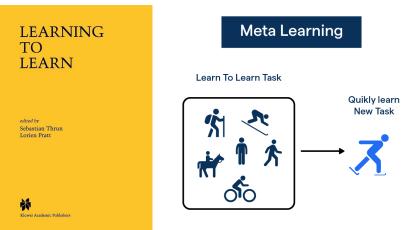
- Conceptually, we'd like to generalize new learning experiences.
- 1 learning experience = 1 training example



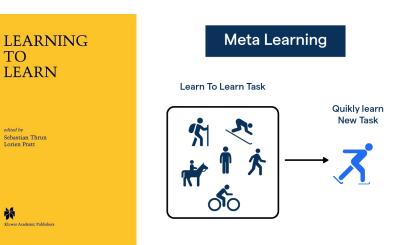
- Conceptually, we'd like to generalize new learning experiences.
- 1 learning experience = 1 training example
- Related to multi-task learning



- Conceptually, we'd like to generalize new learning experiences.
- 1 learning experience = 1 training example
- Related to multi-task learning
- What can be meta-learned?
 - Optimizer
 - Initialization
 - Architecture
 - Representations
 - Abstraction of tasks



- Conceptually, we'd like to generalize new learning experiences.
- 1 learning experience = 1 training example
- Related to multi-task learning
- What can be meta-learned?
 - Optimizer
 - Initialization
 - Architecture
 - Representations
 - Abstraction of tasks
- Discover learning algorithms that support FSL.



Meta-Optimization (Bi-level Optimization)

• One can formulate meta-learning as a meta-optimization problem.

 $\min_{\lambda} \mathbb{E} \min_{D \sim \mathcal{D}} \mathbb{E} \mathcal{L}(x; \theta, \lambda).$ hyper parameter.

Meta-Optimization (Bi-level Optimization)

• One can formulate meta-learning as a meta-optimization problem.

 $\min_{\lambda} \mathop{\mathbb{E}}_{D \sim \mathcal{D}} \min_{\theta} \mathop{\mathbb{E}}_{x \sim D} \mathcal{L}(x; \theta, \lambda).$

- Need to optimize through the inner optimization.
 - BPTT
 - Fixed point (implicit differentiation)
 - Zeroth order optimization

Meta-Optimization (Bi-level Optimization)

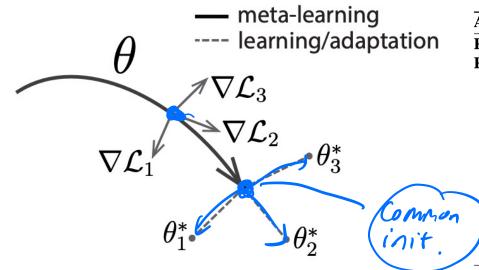
• One can formulate meta-learning as a meta-optimization problem.

$$\min_{\lambda} \mathop{\mathbb{E}}_{D \sim \mathcal{D}} \min_{\theta} \mathop{\mathbb{E}}_{x \sim D} \mathcal{L}(x; \theta, \lambda).$$

- Need to optimize through the inner optimization.
 - BPTT
 - Fixed point (implicit differentiation)
 - Zeroth order optimization
- Short-horizon bias: Optimal actions in the next few steps may not be optimal in the long run.
 - Example: Lowering learning rate will always result in short-term gains.

MAML (Truncated Optimization)

- For few-shot learning, short horizon is actually needed.
- Unroll the gradient graph for a few iterations.
- MAML (Model-agnostic meta-learning)



Algorithm 1 Model-Agnostic Meta-Learning

- **Require:** $p(\mathcal{T})$: distribution over tasks
- **Require:** α , β : step size hyperparameters
- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

end for

Update
$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

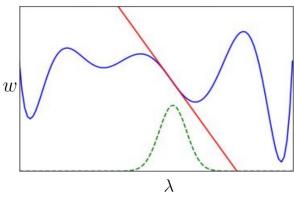
nd while

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

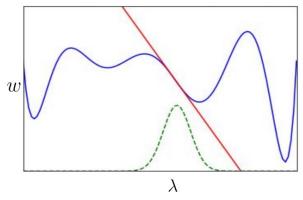
 Another way to "amortize" the optimization is to use a network to predict the optimal inner parameters.

- Another way to "amortize" the optimization is to use a network to predict the optimal inner parameters.
- Best response function: $w^* = \operatorname{argmin}_w \mathcal{L}_T(\lambda, w)$. $\lambda^* = \operatorname{argmin}_\lambda \mathcal{L}(\lambda, w^*)$.

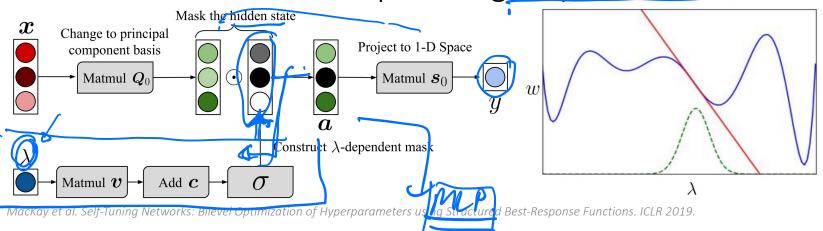
- Another way to "amortize" the optimization is to use a network to predict the optimal inner parameters.
- Best response function: $w^* = \operatorname{argmin}_w \mathcal{L}_T(\lambda, w)$. $\lambda^* = \operatorname{argmin}_\lambda \mathcal{L}(\lambda, w^*)$.
- Approximation: $\lambda^* \approx \operatorname{argmin}_{\lambda} \mathcal{L}(\lambda, \hat{w}_{\phi}(\lambda))$. $\min_{\phi} \mathbb{E}_{\epsilon}[f(\lambda + \epsilon, \hat{w}(\lambda + \epsilon))]$.



- Another way to "amortize" the optimization is to use a network to predict the optimal inner parameters.
- Best response function: $w^* = \operatorname{argmin}_w \mathcal{L}_T(\lambda, w)$. $\lambda^* = \operatorname{argmin}_\lambda \mathcal{L}(\lambda, w^*)$.
- Approximation: $\lambda^* \approx \operatorname{argmin}_{\lambda} \mathcal{L}(\lambda, \hat{w}_{\phi}(\lambda)). \min_{\phi} \mathbb{E}_{\epsilon}[f(\lambda + \epsilon, \hat{w}(\lambda + \epsilon))].$
- Scalable version? Instead of predicting full parameters?



- Another way to "amortize" the optimization is to use a network to predict the optimal inner parameters.
- Best response function: $w^* = \operatorname{argmin}_w \mathcal{L}_T(\lambda, w)$. $\lambda^* = \operatorname{argmin}_\lambda \mathcal{L}(\lambda, w^*)$.
- Approximation: $\lambda^* \approx \operatorname{argmin}_{\lambda} \mathcal{L}(\lambda, \hat{w}_{\phi}(\lambda)). \min_{\phi} \mathbb{E}_{\epsilon}[f(\lambda + \epsilon, \hat{w}(\lambda + \epsilon))].$
- Scalable version? Instead of predicting full parameters?



• Prototypical Network: Few-shot Classification

- Prototypical Network: Few-shot Classification
- Prototype = Avg. representation of a class

$$\mathbf{p}_k = \frac{1}{|S_k|} \sum_{(\mathbf{x}, y) \in S_k} f_\phi(\mathbf{x}_i).$$

$$p(y = k \mid \mathbf{x}) = \operatorname{softmax}(-d(f_{\phi}(\mathbf{x}), \mathbf{p}_k)).$$

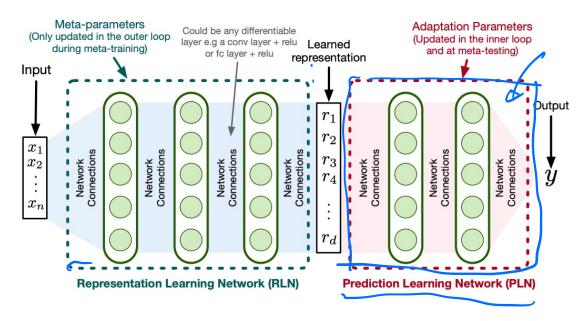
Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017. Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 2019.

- Prototypical Network: Few-shot Classification
- Prototype = Avg. representation of a class $\mathbf{p}_k = \frac{\mathbf{I}}{|S_k|} \sum_{(\mathbf{x}, y) \in S_k} f_{\phi}(\mathbf{x}_i).$
- 1 example = exemplar-based. Can be in between.

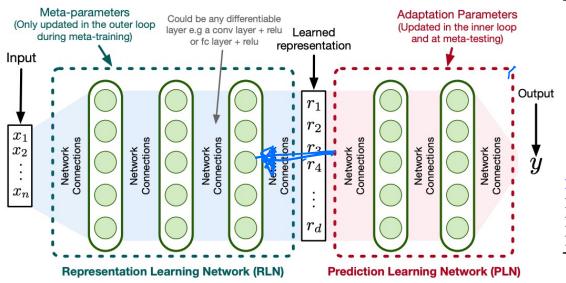
$$p(y = k \mid \mathbf{x}) = \operatorname{softmax}(-d(f_{\phi}(\mathbf{x}), \mathbf{p}_k)).$$

Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017. Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 2019.

• Representation vs. Memory Layers



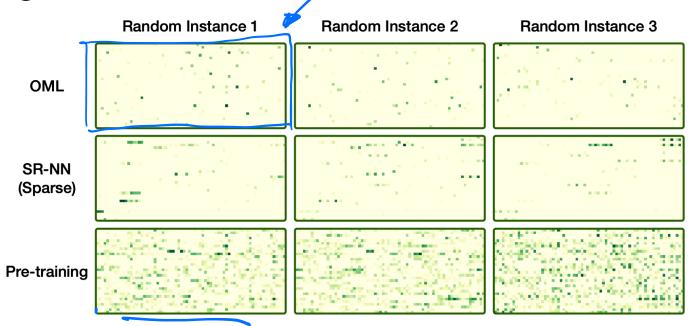
- Representation vs. Memory Layers
- Learning to continually learn

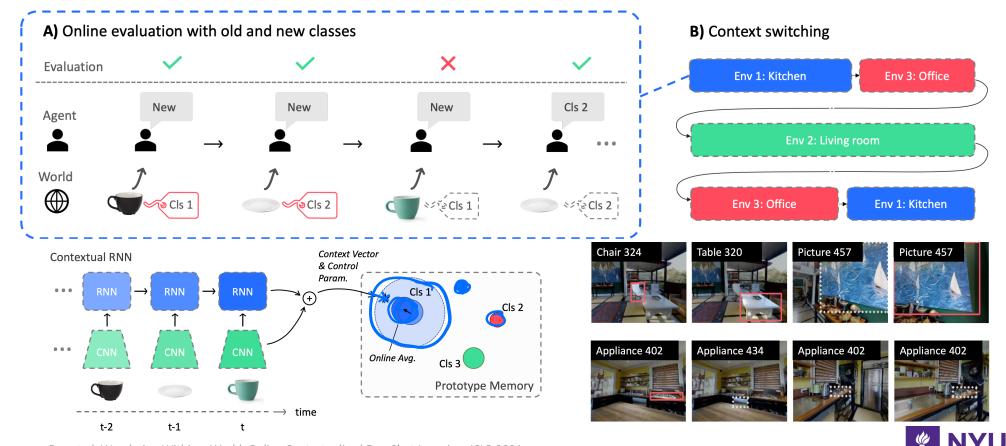


Algorithm 2: Meta-Training : OML

Require: $p(\mathcal{T})$: distribution over CLP problems **Require:** α , β : step size hyperparameters 1: randomly initialize θ while not done do 2: randomly initialize W3: Sample CLP problem $\mathcal{T}_i \sim p(\mathcal{T})$ 4: Sample S_{train} from $p(S_k | T_i)$ 5: 6: $W_0 = W$ 7: for j = 1, 2, ..., k do 8: $(X_j, Y_j) = \mathcal{S}_{train}[j]$ $W_{i} = W_{i-1} - \alpha \nabla_{W_{i-1}} \ell_{i}(f_{\theta, W_{i-1}}(X_{i}), Y_{i})$ 9: 10: end for Sample S_{test} from $p(S_k | T_i)$ 11: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \ell_i(f_{\theta, W_k}(S_{test}[:, 0]), S_{test}[:, 1])$ 12: 13: end while

• Meta-learning leads to sparse representation suitable for continual learning.





Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.

• Compared to OML: Using prototype memory vs. generic MLP.

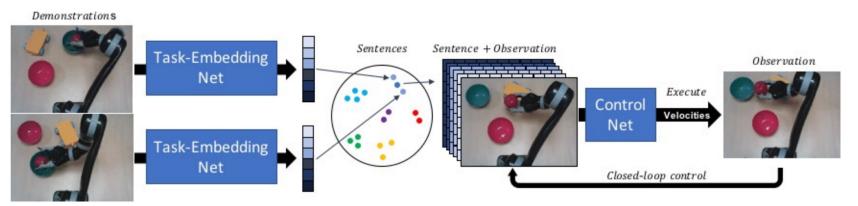
- Compared to OML: Using prototype memory vs. generic MLP.
- Both learning representations through online learning episodes.

- Compared to OML: Using prototype memory vs. generic MLP.
- Both learning representations through online learning episodes.
- Learning contextual representations (for context shifts).

- Compared to OML: Using prototype memory vs. generic MLP.
- Both learning representations through online learning episodes.
- Learning contextual representations (for context shifts).
- Learning to output unknowns.

Few-Shot Imitation Learning

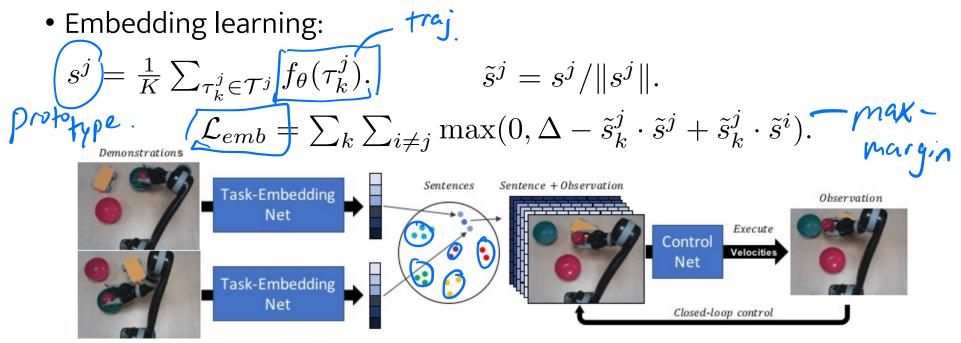
• The idea of prototype learning can also be applied to skill learning.



Finn et al. One-Shot Visual Imitation Learning via Meta-Learning. CoRL 2017. James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.

Few-Shot Imitation Learning

• The idea of prototype learning can also be applied to skill learning.



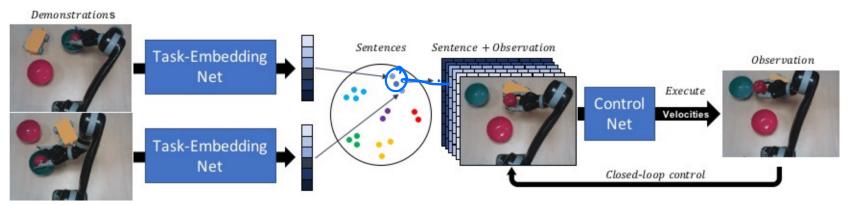
Finn et al. One-Shot Visual Imitation Learning via Meta-Learning. CoRL 2017. James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.

Few-Shot Imitation Learning

D

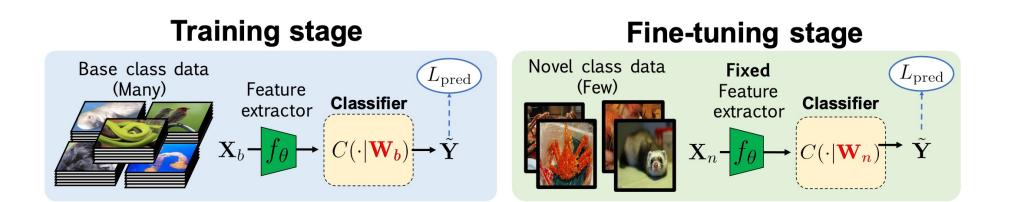
• Control learning:

$$\mathcal{L}_{ctr} = \sum_{j} \sum_{(o,a) \in \tau^{j}} \| \pi(o, s^{j}) - a \|_{2}^{2}$$



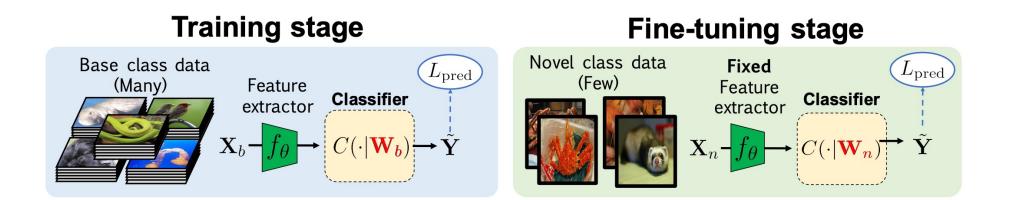
Leveraging Pretrained Representations

• Need a strong pretrained network.



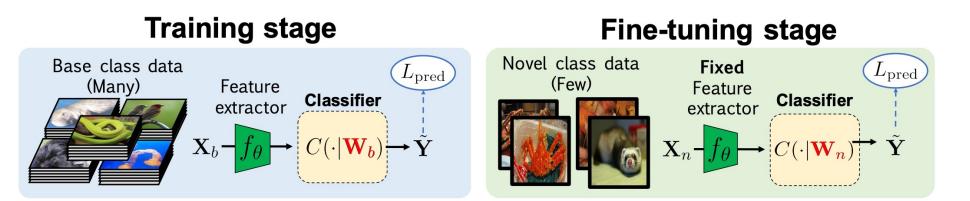
Leveraging Pretrained Representations

- Need a strong pretrained network.
- Works well for few-shot classification.



Leveraging Pretrained Representations

- Need a strong pretrained network.
- Works well for few-shot classification.
- Once again proves that representation is crucial.



🌾 NYU

In-Context Learning (ICL)

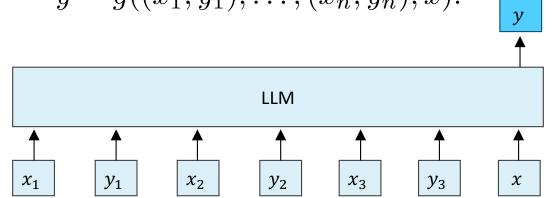
• Traditionally, learning through parameters θ .

In-Context Learning (ICL)

- Traditionally, learning through parameters θ .
- ICL does not optimize any parameters, just put the training data in the context.

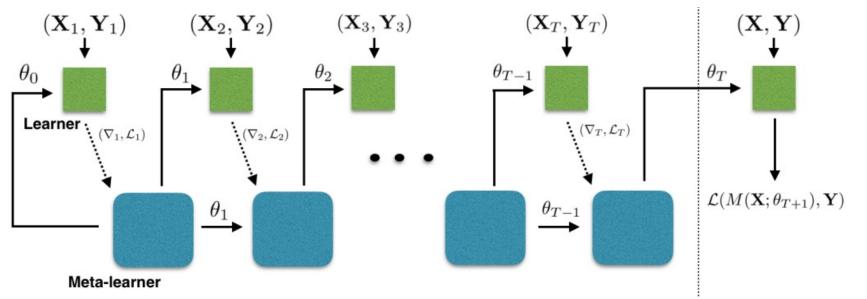
In-Context Learning (ICL)

- Traditionally, learning through parameters θ .
- ICL does not optimize any parameters, just put the training data in the context.
- Inner optimization loop done in a sequence model (RNN, Transformer, etc.) $y = g((x_1, y_1), \dots, (x_n, y_n), x).$



Meta-Learning LSTM

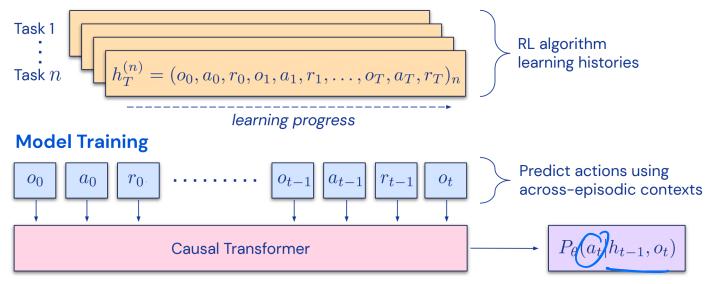
- An earlier sequential meta-learning paradigm before ICL.
- Using hidden states as "parameters"



In-Context RL

• Use sequences of Obervation (o_t) , Action (a_t) and Reward (r_t) generated by standard RL algorithms.

Data Generation



Test-Time Tuning/Adaptation

- Context Retrieval, e.g. nearest neighbors
- Finetuning on examples
 - Full finetuning
 - Low-rank adaptation
 - Prompt tuning
- Self-supervision objectives

- A modularized but differentiable end-to-end architecture
 - Perception
 - Prediction
 - Planning
 - Mapping
 - Memory

- A modularized but differentiable end-to-end architecture
 - Perception
 - Prediction
 - Planning
 - Mapping
 - Memory
- A combination of learning signals

- A modularized but differentiable end-to-end architecture
 - Perception
 - Prediction
 - Planning
 - Mapping
 - Memory
- A combination of learning signals
 - Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)

- A modularized but differentiable end-to-end architecture
 - Perception
 - Prediction
 - Planning
 - Mapping
 - Memory
- A combination of learning signals
 - Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
 - Self-supervision (InfoNCE, MSE, Cross-entropy)

- A modularized but differentiable end-to-end architecture
 - Perception
 - Prediction
 - Planning
 - Mapping
 - Memory
- A combination of learning signals
 - Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
 - Self-supervision (InfoNCE, MSE, Cross-entropy)
 - Reconstruction

- A modularized but differentiable end-to-end architecture
 - Perception
 - Prediction
 - Planning
 - Mapping
 - Memory
- A combination of learning signals
 - Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
 - Self-supervision (InfoNCE, MSE, Cross-entropy)
 - Reconstruction
 - Future prediction

- A modularized but differentiable end-to-end architecture
 - Perception
 - Prediction
 - Planning
 - Mapping
 - Memory
- A combination of learning signals

 • Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
 - Self-supervision (InfoNCE, MSE, Cross-entropy)

 - Reconstruction
 Future prediction
 Reinforcement learning

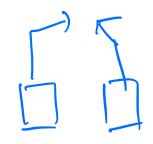
• Useful inductive biases

- Useful inductive biases
 - Spatial grounding

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance,



- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance
 - Motion grounding

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance
 - Motion grounding
 - Disentanglement, object-centric latents

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance
 - Motion grounding
 - Disentanglement, object-centric latents
 - Cost volumes

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance
 - Motion grounding
 - Disentanglement, object-centric latents
 - Cost volumes
 - Recursive iteration

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance
 - Motion grounding
 - Disentanglement, object-centric latents
 - Cost volumes
 - Recursive iteration
 - Optimization / fixed point iteration

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance
 - Motion grounding
 - Disentanglement, object-centric latents
 - Cost volumes
 - Recursive iteration
 - Optimization / fixed point iteration
 - Memory, replay, sparsity

- Useful inductive biases
 - Spatial grounding
 - Geometric projections / transformations
 - Permutation invariance / equivariance
 - Representation invariance
 - Motion grounding
 - Disentanglement, object-centric latents
 - Cost volumes
 - Recursive iteration
 - Optimization / fixed point iteration
 - Memory, replay, sparsity
 - Learning inductive biases, learning to learn

Topic Presentations

Component 1

Continual Learning, Few-shot Week 7 (Mar 6) Learning (1 hr) Week 8 (Mar 13) Guest Lecture -, Prof. Wei-Chiu Ma (1 hr) Week 9 (Mar 20) SSL and Object Discovery Anurup Naskar, Dahye Kim, Sal Yeung, Surbhi (1.5 hr) World Model 2 Week 11 (Apr 3) Pratyaksh Prabhav Rao, Sergey Sedov, Rooholla Khorrambakht Week 12 (Apr 10) **Continual Learning** Akshay Raman, Amey Joshi, **Zifan Zhao** Week 13 (Apr 17) Guest Lecture – Dr. Andrei Barsan (1hr)

Component 2

Deep Learning for Structured Prediction Tanishq Sardana, Qing Mu, Owais Shuja

3D Vision and Mapping Sihang Li, Kanishkha Jaisankar, Denis Mbey Akola, Zijin Hu

World Model 1 Sidhartha Reddy Potu, Andrew Deur

End-to-End Planning Raman Kumar Jha, Jovita Gandhi, Sushma Mareddy, Mrunal Sarvaiya

Few-Shot Learning Ellen Su, Xu Zhang, Swarali Borde

LLM Agents Solim LeGris, Ravan Budda, Dan Zhao, Sunidhi Tandel

Project Presentations

Week 14 (Apr 24)	Project Presentations (7 teams)
Week 15 (May 1)	Project Presentations (7 teams)

- Apr 10: Sign up for a presentation slot. Week 14 Presenters get 2% bonus. First come first serve.
- Project topics and proposals to be shared in the class.

Today

- Tanishq Sardana: Segment Anything
- Qing Mu: DETR: End-to-End Object Detection
- Owais Saad Shuja: Latent Diffusion Models
- Discussion

