
DS-GA.3001
Embodied
Learning and
Vision

Mengye Ren

NYU

Spring 2025

embodied-learning-vision-course.github.io

Lecture Slides for Note Taking

Module 5:
Continual Learning,

Few-Shot Learning, Meta-Learning

Why Continual Learning?

• The world is not a dataset that allows you to get IID samples.

Why Continual Learning?

• The world is not a dataset that allows you to get IID samples.
• The world keeps changing and evolving.

Why Continual Learning?

• The world is not a dataset that allows you to get IID samples.
• The world keeps changing and evolving.
• Online vs. Continual
• Online means that samples arrive in a streaming / temporal partial order, but

they may still come from a static distribution.

• Example: Online reinforcement learning, trajectory roll out is online, but the
environment is the same.

• Continual learning means that there will be distribution shift.

θt = f(xt, θt−1) x1:T ∼ X

What is Continual Learning?

• Distribution shift: Forgetting
• Learning on A and then B, results in worse performance on A.

What is Continual Learning?

• Distribution shift: Forgetting
• Learning on A and then B, results in worse performance on A.

• Multi-task learning: Forward transfer
• Learning Task A + B results in better learning in Task C compared to learning

C alone.
• Leverage the similarity between tasks.

What is Continual Learning?

• Distribution shift: Forgetting
• Learning on A and then B, results in worse performance on A.

• Multi-task learning: Forward transfer
• Learning Task A + B results in better learning in Task C compared to learning

C alone.
• Leverage the similarity between tasks.

• Compositionality
• Learning A and B first, and then learning tasks with composed A+B.

What is Continual Learning?

• Distribution shift: Forgetting
• Learning on A and then B, results in worse performance on A.

• Multi-task learning: Forward transfer
• Learning Task A + B results in better learning in Task C compared to learning

C alone.
• Leverage the similarity between tasks.

• Compositionality
• Learning A and B first, and then learning tasks with composed A+B.

• Incremental/curriculum Learning
• Learning A->B->C is easier than at random order.

Continual Learning

• Learning a sequence of tasks without
looking back.

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.

Continual Learning

• Learning a sequence of tasks without
looking back.
• Goal is to do well on all of the tasks at

the end.

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.

Continual Learning

• Learning a sequence of tasks without
looking back.
• Goal is to do well on all of the tasks at

the end.
• Task boundary

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.

Continual Learning

• Learning a sequence of tasks without
looking back.
• Goal is to do well on all of the tasks at

the end.
• Task boundary
• Memory constraints

van de Ven et al. Continual learning and catastrophic forgetting. arXiv 2024.
van de Ven & Tolias. Three scenarios for continual learning. arXiv 2019.

Parameter Regularization

• Over-completeness Assumption. A
multitude of models can reach
equivalent performance.

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.

SA = {θ | ℓA(θ) < ϵ}

SA ∩ SB ̸= ∅

Parameter Regularization

• Over-completeness Assumption. A
multitude of models can reach
equivalent performance.
• What is left is to efficiently find

the intersection between A and B.

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.

SA = {θ | ℓA(θ) < ϵ}

SA ∩ SB ̸= ∅

p(θ | DA) = N (θ; θ∗,Σ)

Parameter Regularization

• Over-completeness Assumption. A
multitude of models can reach
equivalent performance.
• What is left is to efficiently find

the intersection between A and B.

• Elastic Weight Consolidation
(EWC):

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.

SA = {θ | ℓA(θ) < ϵ}

SA ∩ SB ̸= ∅

p(θ | DA) = N (θ; θ∗,Σ)

L(θ) = LB(θ) +
∑

i

λ

2
Fi(θi − θ

∗

A,i)
2

Computing Fisher

• At the end of each epoch, compute the
gradient squared:

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.
Zenke et al. Continual Learning Through Synaptic Intelligence. ICML 2017.

Fi =

(

dL

dθi

)2

Computing Fisher

• At the end of each epoch, compute the
gradient squared:

• Measures the sensitivity on each
parameter dimension.

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.
Zenke et al. Continual Learning Through Synaptic Intelligence. ICML 2017.

Fi =

(

dL

dθi

)2

Computing Fisher

• At the end of each epoch, compute the
gradient squared:

• Measures the sensitivity on each
parameter dimension.
• You can also accumulate an online

estimate.

Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.
Zenke et al. Continual Learning Through Synaptic Intelligence. ICML 2017.

Fi =

(

dL

dθi

)2

O

Variational Continual Learning (VCL)

• Bayesian formulation:

Nguyen et al. Variational Continual Learning. ICLR 2018.

p(θ | D1:T) ∝ p(θ)
T∏

t=1

p(Dt | θ) ∝ p(θ | D1:T−1)p(DT | θ).

00

Variational Continual Learning (VCL)

• Bayesian formulation:

• Variational approach:

Nguyen et al. Variational Continual Learning. ICLR 2018.

p(θ | D1:T) ∝ p(θ)
T∏

t=1

p(Dt | θ) ∝ p(θ | D1:T−1)p(DT | θ).

qt(θ) = argmin
q∈Q

KL

(

q(θ) ∥
1

Zt

qt−1(θ)p(Dt | θ)

)

.
I
It

Fethood for the
current dataset

Variational Continual Learning (VCL)

• Bayesian formulation:

• Variational approach:

• Loss:

Nguyen et al. Variational Continual Learning. ICLR 2018.

p(θ | D1:T) ∝ p(θ)
T∏

t=1

p(Dt | θ) ∝ p(θ | D1:T−1)p(DT | θ).

qt(θ) = argmin
q∈Q

KL

(

q(θ) ∥
1

Zt

qt−1(θ)p(Dt | θ)

)

.

L(qt(θ)) = Eθ∼qt(θ)[− log p(y|x, θ)] + KL(qt(θ ∥ qt−1(θ)).

Variational Continual Learning (VCL)

• Bayesian formulation:

• Variational approach:

• Loss:

Nguyen et al. Variational Continual Learning. ICLR 2018.

p(θ | D1:T) ∝ p(θ)
T∏

t=1

p(Dt | θ) ∝ p(θ | D1:T−1)p(DT | θ).

qt(θ) = argmin
q∈Q

KL

(

q(θ) ∥
1

Zt

qt−1(θ)p(Dt | θ)

)

.

qt(θ) =
∏D

d=1
N (θt,d;µt,d,σ

2

t,d).

L(qt(θ)) = Eθ∼qt(θ)[− log p(y|x, θ)] + KL(qt(θ ∥ qt−1(θ)).

Variational Continual Learning (VCL)

• Bayesian formulation:

• Variational approach:

• Loss:

• Compare to EWC: Maintains uncertainty throughout training.
Nguyen et al. Variational Continual Learning. ICLR 2018.

p(θ | D1:T) ∝ p(θ)
T∏

t=1

p(Dt | θ) ∝ p(θ | D1:T−1)p(DT | θ).

qt(θ) = argmin
q∈Q

KL

(

q(θ) ∥
1

Zt

qt−1(θ)p(Dt | θ)

)

.

qt(θ) =
∏D

d=1
N (θt,d;µt,d,σ

2

t,d).

L(qt(θ)) = Eθ∼qt(θ)[− log p(y|x, θ)] + KL(qt(θ ∥ qt−1(θ)).

as a

EBM for Continual Learning

• Softmax layer is known to be
sensitive to distribution shift.

Li et al. Energy-Based Models for Continual Learning. CoLLAs 2022.

E x y

to

EBM for Continual Learning

• Softmax layer is known to be
sensitive to distribution shift.
• A common approach is to use

nearest mean classifier.

Li et al. Energy-Based Models for Continual Learning. CoLLAs 2022.

EBM for Continual Learning

• Softmax layer is known to be
sensitive to distribution shift.
• A common approach is to use

nearest mean classifier.
• Can be generalized to EBMs

Li et al. Energy-Based Models for Continual Learning. CoLLAs 2022.

EBM for Continual Learning

• Softmax layer is known to be
sensitive to distribution shift.
• A common approach is to use

nearest mean classifier.
• Can be generalized to EBMs
• Energy between inputs and

labels:

Li et al. Energy-Based Models for Continual Learning. CoLLAs 2022.

m(x, y) = G(f(x), g(y))

LCD(θ) = E(x,y,y−)∼pD
[Eθ(x, y)− Eθ(x, y

−)].Eo

Replay

• Store raw data, representations, or train a
generative model

Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.
van de Ven et al. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 2020.
Hayes et al. REMIND Your Neural Network to Prevent Catastrophic Forgetting. ECCV 2020.

Feedback Connections

Jaerative raplay

Replay

• Store raw data, representations, or train a
generative model
• Coreset selection

Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.
van de Ven et al. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 2020.
Hayes et al. REMIND Your Neural Network to Prevent Catastrophic Forgetting. ECCV 2020.

µ←
1

n

∑

x∈X

ϕ(x) pk ← argmin
x∈X

∥µ−
1

k
[ϕ(x) +

k−1∑

j=1

ϕ(pj)]∥.

Feedback Connections

reservoir sampling

II beginning highprob storingsamples

Closerto aug representation

averagere.pe iiiiYO
i

1T

t.IE

Knowledge Distillation

• Instead of saving the data
points, we can also save the
previous model checkpoint.

Li & Hoiem. Learning without Forgetting. ECCV 2016.

yo = f(xn; θo).

ŷo = f(xn; θn).

L(yo, ŷo)

to C 8 Initii
newdatafixn On

Knowledge Distillation

• Instead of saving the data
points, we can also save the
previous model checkpoint.

• Use new data points and old
weights to “distill”

Li & Hoiem. Learning without Forgetting. ECCV 2016.

yo = f(xn; θo).

ŷo = f(xn; θn).

L(yo, ŷo)

Architecture Expansion

• xxx

Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium.
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018.
Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.

h
(k)
i = f

⎛

⎝W
(k)
i h

(k)
i−1 +

∑

j<k

U
(k:j)
i h

(j)
i−1

⎞

⎠ .

trzenftrg.mn
leverage knowledge
from previous tasks

Architecture Expansion

• xxx

Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium.
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018.
Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.

h
(k)
i = f

⎛

⎝W
(k)
i h

(k)
i−1 +

∑

j<k

U
(k:j)
i h

(j)
i−1

⎞

⎠ .

0880

upperbound task2

Architecture Expansion

• xxx

Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium.
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018.
Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.

h
(k)
i = f

⎛

⎝W
(k)
i h

(k)
i−1 +

∑

j<k

U
(k:j)
i h

(j)
i−1

⎞

⎠ .
L(W t

L
,W

t−1

1:L−1
,Dt) + µ∥W t

L
∥1

Selective Training

Dynamic Expansion
L(WN

l ,W
t−1

l ,Dt) + µ∥WN
l ∥1 + γ

∑
g∥W

N
l,g∥2

Group sparsity

Selective Training Dynamic Expansion Network Split

Adapting Pretrained Models

• Pretrained models have general knowledge that can be adapted to a
continual stream of tasks.

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

Adapting Pretrained Models

• Pretrained models have general knowledge that can be adapted to a
continual stream of tasks.
• Learn adaptation parameters for each task and store these as “task

embeddings.”

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.
Do

Adapting Pretrained Models

• Pretrained models have general knowledge that can be adapted to a
continual stream of tasks.
• Learn adaptation parameters for each task and store these as “task

embeddings.”
• Main model is frozen.

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

Learning to Prompt

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

{(k1, p1), . . . , (kM , pM)}

Prompt pool (slot memory)

0

unallocated memory

Learning to Prompt

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

{(k1, p1), . . . , (kM , pM)}

Prompt pool (slot memory)
Ks = argminS

∑
i∈S

γ(q(x), ki)

image

Learning to Prompt

Wang et al. Learning to Prompt for Continual Learning. CVPR 2022.

{(k1, p1), . . . , (kM , pM)}

Prompt pool (slot memory)
Ks = argminS

∑
i∈S

γ(q(x), ki)

minP,K,φ L(gφ(x), y) + λ
∑

i∈Ks

γ(q(x), ki)

image

image e nt

loss

Learned Prompt Query

• The query function can be end-to-end learned.

Smith et al. CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning.
CVPR 2023.

α = {γ(q(x)⊙A1,K1), . . . , γ(q(x)⊙AM ,KM)}

i i

Multimodal Semantic Prompts

Yin et al. Adapter-Enhanced Semantic Prompting for Continual Learning. arXiv 2024.

Continual Learning and Memory

• Fragility of feedforward gradient descent of the entire networkstens

Continual Learning and Memory

• Fragility of feedforward gradient descent of the entire networks
• If we have representations ready, continual learning is just

memorizing a sequence of new tasks.

Continual Learning and Memory

• Fragility of feedforward gradient descent of the entire networks
• If we have representations ready, continual learning is just

memorizing a sequence of new tasks.
• In prompting approaches:
• prompt pool = memory
• pretrained network = representations4 memory

Continual Learning and Memory

• Fragility of feedforward gradient descent of the entire networks
• If we have representations ready, continual learning is just

memorizing a sequence of new tasks.
• In prompting approaches:
• prompt pool = memory
• pretrained network = representations

• But what if representations also need to be built sequentially?

Continual Learning and Memory

• Fragility of feedforward gradient descent of the entire networks
• If we have representations ready, continual learning is just

memorizing a sequence of new tasks.
• In prompting approaches:
• prompt pool = memory
• pretrained network = representations

• But what if representations also need to be built sequentially?
• It’s also plausible that representations are just “deeper memory.”

171

Associative Memory

• Memory aims to store content for easy retrieval

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/

Associative Memory

• Memory aims to store content for easy retrieval
• Associative memories (Hopfield Networks) can be viewed as energy-based

models

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/

Associative Memory

• Memory aims to store content for easy retrieval
• Associative memories (Hopfield Networks) can be viewed as energy-based

models

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/

E = −

1

2

N∑

i,j=1

siWijsj , Wij =

K∑

k=1

ξki ξ
k
j .

”Superposition” of k slots
Hebbian learning17 Tpiietfestored.p.tnEr

Associative Memory

• Memory aims to store content for easy retrieval
• Associative memories (Hopfield Networks) can be viewed as energy-based

models

• When presented with a new pattern the network should respond with a
stored memory which most closely resembles the input.

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/

E = −

1

2

N∑

i,j=1

siWijsj , Wij =

K∑

k=1

ξki ξ
k
j .

”Superposition” of k slots
Hebbian learning

Fredpatterns

Associative Memory

• Memory aims to store content for easy retrieval
• Associative memories (Hopfield Networks) can be viewed as energy-based

models

• When presented with a new pattern the network should respond with a
stored memory which most closely resembles the input.

• Retrieval:

Krotov & Hopfield. Dense Associative Memory for Pattern Recognition. NIPS 2016.
https://ml-jku.github.io/hopfield-layers/

E = −

1

2

N∑

i,j=1

siWijsj , Wij =

K∑

k=1

ξki ξ
k
j .

si = sign(
∑

j Wijsj) Storage:

”Superposition” of k slots
Hebbian learning

binary

00
10

Memory Duality

• Duality with a feedforward
network.

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 2009.
Krotov. Hierarchical Associative Memory. arXiv 2021.

E = −

∑
k
F (

∑
i
ξk
i
si)

Memory Duality

• Duality with a feedforward
network.

• Non-linearity allows us to store
more patterns.

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 2009.
Krotov. Hierarchical Associative Memory. arXiv 2021.

E = −

∑
k
F (

∑
i
ξk
i
si)

Memory Duality

• Duality with a feedforward
network.

• Non-linearity allows us to store
more patterns.
• Deep Boltzmann machines

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 2009.
Krotov. Hierarchical Associative Memory. arXiv 2021.

E = −

∑
k
F (

∑
i
ξk
i
si)

Memory Duality

• Duality with a feedforward
network.

• Non-linearity allows us to store
more patterns.
• Deep Boltzmann machines
• Hierarchical associative memory

Salakhutdinov & Hinton. Deep Boltzmann Machines. AISTATS 2009.
Krotov. Hierarchical Associative Memory. arXiv 2021.

E = −

∑
k
F (

∑
i
ξk
i
si)

Relation to Transformers

• General form:

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

E = −

∑

k

F (
∑

i

ξk
i
si).

w O
Storedreturned
pattern vector

Relation to Transformers

• General form:

• When it gives the classic HN.

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

E = −

∑

k

F (
∑

i

ξk
i
si).

F (z) = z
2

∇siE = −

∑

j

Wijsj

si ← sign(
∑

j Wijsj)

O

J a

Relation to Transformers

• General form:

• When it gives the classic HN.
• Transformer-like attention operation:

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

E = −

∑

k

F (
∑

i

ξk
i
si).

F (z) = z
2

∇siE = −

∑

j

Wijsj

si ← sign(
∑

j Wijsj)

o

Relation to Transformers

• General form:

• When it gives the classic HN.
• Transformer-like attention operation:

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

E = −

∑

k

F (
∑

i

ξk
i
si).

Z ← softmax(βXWqW
⊤

k Y
⊤)YiWv.

F (z) = z
2

∇siE = −

∑

j

Wijsj

si ← sign(
∑

j Wijsj)o I

Relation to Transformers

• General form:

• When it gives the classic HN.
• Transformer-like attention operation:

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

E = −

∑

k

F (
∑

i

ξk
i
si).

Z ← softmax(βXWqW
⊤

k Y
⊤)YiWv.

F (z) = z
2

∇siE = −

∑

j

Wijsj

si ← sign(
∑

j Wijsj)

S ← softmax(βSΞ⊤)Ξ.O It

Relation to Transformers

• General form:

• When it gives the classic HN.
• Transformer-like attention operation:

Ramsauer et al. Hopfield Networks is All You Need. ICLR 2021.

E = −

∑

k

F (
∑

i

ξk
i
si).

Z ← softmax(βXWqW
⊤

k Y
⊤)YiWv.

F (z) = z
2

∇siE = −

∑

j

Wijsj

si ← sign(
∑

j Wijsj)

E = −logsumexp(β,Ξ⊤
s) +

1

2
s
⊤
s+ β−1 logN +

1

2
M2.

S ← softmax(βSΞ⊤)Ξ.

IdiyaMen

I step

Continual Self-Supervised Learning

• Learning from a stream of unlabeled inputs.

Madaan et al. Representational Continuity for Unsupervised Continual Learning. ICLR 2022.

Continual Self-Supervised Learning

• Learning from a stream of unlabeled inputs.
• Bring SSL to the dynamic world.

Madaan et al. Representational Continuity for Unsupervised Continual Learning. ICLR 2022.

Continual Self-Supervised Learning

• Learning from a stream of unlabeled inputs.
• Bring SSL to the dynamic world.
• SSL can still suffer from distributional shifts.

Madaan et al. Representational Continuity for Unsupervised Continual Learning. ICLR 2022.

Continual Self-Supervised Learning

• Integrating learning objectives of both past and present.

Zhang et al. Integrating Present and Past in Unsupervised Continual Learning. CoLLAs 2024.

L(X; g ◦ ft) + L(X,X;h ◦ ft−1, h ◦ ft) + L(Y ;h ◦ ft) + L(X,Y ;h ◦ ft)
Current Past (Distillation) Past (Replay) Cross-Consolidation

Outlooks

• Understand continual learning at
scale

[Mayo et al. 2023]

160M LLM 1B LLM

Outlooks

• Understand continual learning at
scale

• Unified learning architecture,
objective and replay, role of sleep

[Mayo et al. 2023]

[Hinton et al. 1995]

[van de Ven et al. 2020]

160M LLM 1B LLM

00

Outlooks

• Understand continual learning at
scale

• Unified learning architecture,
objective and replay, role of sleep

• Continual learning with real world
structure

[Mayo et al. 2023]

[Hinton et al. 1995]

[van de Ven et al. 2020]

160M LLM 1B LLM

00 0

Summary: Continual Learning

• Regularization, Distillation, Architecture Expansion/Isolation

Summary: Continual Learning

• Regularization, Distillation, Architecture Expansion/Isolation
• Frozen representation: prompt learning

Summary: Continual Learning

• Regularization, Distillation, Architecture Expansion/Isolation
• Frozen representation: prompt learning
• Integration of memory and representations

Summary: Continual Learning

• Regularization, Distillation, Architecture Expansion/Isolation
• Frozen representation: prompt learning
• Integration of memory and representations
• Combination with self-supervised learning

Summary: Continual Learning

• Regularization, Distillation, Architecture Expansion/Isolation
• Frozen representation: prompt learning
• Integration of memory and representations
• Combination with self-supervised learning
• Exploration of multimodal continual learning from embodied

environments

Few-Shot Learning and Meta-Learning

Few-Shot Learning (FSL)

• Humans can quickly learn new concepts with a few examples.
• Learning in embodied agents also needs to be adaptive and swift.
• Examples: Recognize new objects, perform new skills, map new areas,

etc.

[Lake et al. 2011] [Lu et al. 2024]

Nouns

[Ren et al. 2018]

FSL: General Setup

• Quickly learn a task (learning episode) with very few number of
training examples and get evaluated on a set of test examples.

https://www.ibm.com/think/topics/few-shot-learning

FSL: General Setup

• Quickly learn a task (learning episode) with very few number of
training examples and get evaluated on a set of test examples.
• During training, going through many episodes of the same structure.

https://www.ibm.com/think/topics/few-shot-learning

training

val

Learning to Learn

• Conceptually, we’d like to generalize new learning experiences.

Learning to Learn

• Conceptually, we’d like to generalize new learning experiences.
• 1 learning experience = 1 training example

Learning to Learn

• Conceptually, we’d like to generalize new learning experiences.
• 1 learning experience = 1 training example
• Related to multi-task learning

Learning to Learn

• Conceptually, we’d like to generalize new learning experiences.
• 1 learning experience = 1 training example
• Related to multi-task learning
• What can be meta-learned?
• Optimizer
• Initialization
• Architecture
• Representations
• Abstraction of tasks

Learning to Learn

• Conceptually, we’d like to generalize new learning experiences.
• 1 learning experience = 1 training example
• Related to multi-task learning
• What can be meta-learned?
• Optimizer
• Initialization
• Architecture
• Representations
• Abstraction of tasks

• Discover learning algorithms that support FSL.

Meta-Optimization (Bi-level Optimization)

• One can formulate meta-learning as a meta-optimization problem.
min
λ

E
D∼D

min
θ

E
x∼D

L(x; θ,λ).

OR I
hyperparameter

Meta-Optimization (Bi-level Optimization)

• One can formulate meta-learning as a meta-optimization problem.

• Need to optimize through the inner optimization.
• BPTT
• Fixed point (implicit differentiation)
• Zeroth order optimization

min
λ

E
D∼D

min
θ

E
x∼D

L(x; θ,λ).

Meta-Optimization (Bi-level Optimization)

• One can formulate meta-learning as a meta-optimization problem.

• Need to optimize through the inner optimization.
• BPTT
• Fixed point (implicit differentiation)
• Zeroth order optimization

• Short-horizon bias: Optimal actions in the next few steps may not be
optimal in the long run.
• Example: Lowering learning rate will always result in short-term gains.

min
λ

E
D∼D

min
θ

E
x∼D

L(x; θ,λ).

MAML (Truncated Optimization)

• For few-shot learning, short horizon is actually needed.
• Unroll the gradient graph for a few iterations.
• MAML (Model-agnostic meta-learning)

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

F

Hypernetworks, Best Response Functions

• Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.

Hypernetworks, Best Response Functions

• Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.
• Best response function:

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.

w∗ = argmin
w
LT (λ, w). λ

∗ = argminλ L(λ, w
∗).A

Hypernetworks, Best Response Functions

• Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.
• Best response function:
• Approximation:

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.

w∗ = argmin
w
LT (λ, w). λ

∗ = argminλ L(λ, w
∗).

λ∗ ≈ argminλ L(λ, ŵφ(λ)). minφ Eϵ[f(λ+ ϵ, ŵ(λ+ ϵ))].

Hypernetworks, Best Response Functions

• Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.
• Best response function:
• Approximation:
• Scalable version? Instead of predicting full parameters?

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.

w∗ = argmin
w
LT (λ, w). λ

∗ = argminλ L(λ, w
∗).

λ∗ ≈ argminλ L(λ, ŵφ(λ)). minφ Eϵ[f(λ+ ϵ, ŵ(λ+ ϵ))].

Hypernetworks, Best Response Functions

• Another way to “amortize” the optimization is to use a network to
predict the optimal inner parameters.
• Best response function:
• Approximation:
• Scalable version? Instead of predicting full parameters?

MacKay et al. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions. ICLR 2019.

w∗ = argmin
w
LT (λ, w). λ

∗ = argminλ L(λ, w
∗).

λ∗ ≈ argminλ L(λ, ŵφ(λ)). minφ Eϵ[f(λ+ ϵ, ŵ(λ+ ϵ))].

approx inner loop If

T.TT
tIe

Representation and Memory

• Prototypical Network: Few-shot Classification

Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017.
Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 2019.

Representation and Memory

• Prototypical Network: Few-shot Classification
• Prototype = Avg. representation of a class

Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017.
Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 2019.

pk =
1

|Sk|

∑

(x,y)∈Sk

fφ(xi).

p(y = k | x) = softmax(−d(fφ(x),pk).po e

Representation and Memory

• Prototypical Network: Few-shot Classification
• Prototype = Avg. representation of a class
• 1 example = exemplar-based. Can be in between.

Snell et al. Prototypical Networks for Few-shot Learning. NIPS 2017.
Allen et al. Infinite Mixture Prototypes for Few-Shot Learning. ICML 2019.

pk =
1

|Sk|

∑

(x,y)∈Sk

fφ(xi).

p(y = k | x) = softmax(−d(fφ(x),pk).

To

Representation and Memory

• Representation vs. Memory Layers

Javed & White. Meta-Learning Representations for Continual Learning. NeurIPS 2019.

Representation and Memory

• Representation vs. Memory Layers
• Learning to continually learn

Javed & White. Meta-Learning Representations for Continual Learning. NeurIPS 2019.

Representation and Memory

• Meta-learning leads to sparse representation suitable for continual
learning.

Javed & White. Meta-Learning Representations for Continual Learning. NeurIPS 2019.

i

Online Continual Few-Shot Learning

• x

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.

ooo

Online Continual Few-Shot Learning

• Compared to OML: Using prototype memory vs. generic MLP.

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.

Online Continual Few-Shot Learning

• Compared to OML: Using prototype memory vs. generic MLP.
• Both learning representations through online learning episodes.

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.

Online Continual Few-Shot Learning

• Compared to OML: Using prototype memory vs. generic MLP.
• Both learning representations through online learning episodes.
• Learning contextual representations (for context shifts).

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.

Online Continual Few-Shot Learning

• Compared to OML: Using prototype memory vs. generic MLP.
• Both learning representations through online learning episodes.
• Learning contextual representations (for context shifts).
• Learning to output unknowns.

Ren et al. Wandering Within a World: Online Contextualized Few-Shot Learning. ICLR 2021.

T

Few-Shot Imitation Learning

• The idea of prototype learning can also be applied to skill learning.

Finn et al. One-Shot Visual Imitation Learning via Meta-Learning. CoRL 2017.
James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.

Few-Shot Imitation Learning

• The idea of prototype learning can also be applied to skill learning.
• Embedding learning:

Finn et al. One-Shot Visual Imitation Learning via Meta-Learning. CoRL 2017.
James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.

sj = 1

K

∑
τ
j

k
∈T j fθ(τ

j
k). s̃j = sj/∥sj∥.

Lemb =
∑

k

∑
i ̸=j max(0,∆− s̃

j
k · s̃j + s̃

j
k · s̃i).

0
prototype

F
max
margin

880

Few-Shot Imitation Learning

• Control learning:

James et al. Task-Embedded Control Networks for Few-Shot Imitation Learning. CoRL 2018.

Lctr =
∑

j

∑
(o,a)∈τj∥π(o, sj)− a∥22

Tupt action

Leveraging Pretrained Representations

• Need a strong pretrained network.

Chen et al. A Closer Look at Few-shot Classification. ICLR 2019.

Leveraging Pretrained Representations

• Need a strong pretrained network.
• Works well for few-shot classification.

Chen et al. A Closer Look at Few-shot Classification. ICLR 2019.

Leveraging Pretrained Representations

• Need a strong pretrained network.
• Works well for few-shot classification.
• Once again proves that representation is crucial.

Chen et al. A Closer Look at Few-shot Classification. ICLR 2019.

In-Context Learning (ICL)

• Traditionally, learning through parameters !.

In-Context Learning (ICL)

• Traditionally, learning through parameters !.
• ICL does not optimize any parameters, just put the training data in

the context.

In-Context Learning (ICL)

• Traditionally, learning through parameters !.
• ICL does not optimize any parameters, just put the training data in

the context.
• Inner optimization loop done in a sequence model (RNN, Transformer,

etc.)

LLM

!! !"

"

!"! !# "# ""

y = g((x1, y1), . . . , (xn, yn), x).

Meta-Learning LSTM

• An earlier sequential meta-learning paradigm before ICL.
• Using hidden states as “parameters”

Ravi & Larochelle. Optimization as a Model for Few-Shot Learning. ICLR 2017.

In-Context RL

• Use sequences of Obervation ("!), Action (#!) and Reward ($!)
generated by standard RL algorithms.

Laskin et al. In-context Reinforcement Learning with Algorithm Distillation ICLR 2023.

Q

Test-Time Tuning/Adaptation

• Context Retrieval, e.g. nearest neighbors
• Finetuning on examples
• Full finetuning
• Low-rank adaptation
• Prompt tuning

• Self-supervision objectives

Summary: Towards Embodied Learning Agents

• A modularized but differentiable end-to-end architecture
• Perception
• Prediction
• Planning
• Mapping
• Memory

Summary: Towards Embodied Learning Agents

• A modularized but differentiable end-to-end architecture
• Perception
• Prediction
• Planning
• Mapping
• Memory

• A combination of learning signals

Summary: Towards Embodied Learning Agents

• A modularized but differentiable end-to-end architecture
• Perception
• Prediction
• Planning
• Mapping
• Memory

• A combination of learning signals
• Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)v

Summary: Towards Embodied Learning Agents

• A modularized but differentiable end-to-end architecture
• Perception
• Prediction
• Planning
• Mapping
• Memory

• A combination of learning signals
• Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
• Self-supervision (InfoNCE, MSE, Cross-entropy)

Summary: Towards Embodied Learning Agents

• A modularized but differentiable end-to-end architecture
• Perception
• Prediction
• Planning
• Mapping
• Memory

• A combination of learning signals
• Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
• Self-supervision (InfoNCE, MSE, Cross-entropy)
• Reconstruction

Summary: Towards Embodied Learning Agents

• A modularized but differentiable end-to-end architecture
• Perception
• Prediction
• Planning
• Mapping
• Memory

• A combination of learning signals
• Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
• Self-supervision (InfoNCE, MSE, Cross-entropy)
• Reconstruction
• Future prediction

Summary: Towards Embodied Learning Agents

• A modularized but differentiable end-to-end architecture
• Perception
• Prediction
• Planning
• Mapping
• Memory

• A combination of learning signals
• Direct supervision, energy-based (MSE, Contrastive, Max-Margin, Denoising)
• Self-supervision (InfoNCE, MSE, Cross-entropy)
• Reconstruction
• Future prediction
• Reinforcement learning

Summary: Towards Embodied Learning Agents

• Useful inductive biases

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance I II

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance
• Motion grounding

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance
• Motion grounding
• Disentanglement, object-centric latents

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance
• Motion grounding
• Disentanglement, object-centric latents
• Cost volumes

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance
• Motion grounding
• Disentanglement, object-centric latents
• Cost volumes
• Recursive iteration

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance
• Motion grounding
• Disentanglement, object-centric latents
• Cost volumes
• Recursive iteration
• Optimization / fixed point iteration

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance
• Motion grounding
• Disentanglement, object-centric latents
• Cost volumes
• Recursive iteration
• Optimization / fixed point iteration
• Memory, replay, sparsity

Summary: Towards Embodied Learning Agents

• Useful inductive biases
• Spatial grounding
• Geometric projections / transformations
• Permutation invariance / equivariance
• Representation invariance
• Motion grounding
• Disentanglement, object-centric latents
• Cost volumes
• Recursive iteration
• Optimization / fixed point iteration
• Memory, replay, sparsity
• Learning inductive biases, learning to learn

Topic Presentations
Component 1 Component 2

Week 7 (Mar 6) Continual Learning, Few-shot
Learning (1 hr)

Deep Learning for Structured Prediction
Tanishq Sardana, Qing Mu, Owais Shuja

Week 8 (Mar 13) Guest Lecture –
Prof. Wei-Chiu Ma (1 hr)

3D Vision and Mapping
Sihang Li, Kanishkha Jaisankar, Denis Mbey Akola, Zijin Hu

Week 9 (Mar 20) SSL and Object Discovery
Anurup Naskar, Dahye Kim, Sal
Yeung, Surbhi (1.5 hr)

World Model 1
Sidhartha Reddy Potu, Andrew Deur

Week 11 (Apr 3) World Model 2
Pratyaksh Prabhav Rao, Sergey
Sedov, Rooholla Khorrambakht

End-to-End Planning
Raman Kumar Jha, Jovita Gandhi, Sushma Mareddy,
Mrunal Sarvaiya

Week 12 (Apr 10) Continual Learning
Akshay Raman, Amey Joshi,
Zifan Zhao

Few-Shot Learning
Ellen Su, Xu Zhang, Swarali Borde

Week 13 (Apr 17) Guest Lecture –
Dr. Andrei Barsan (1hr)

LLM Agents
Solim LeGris, Ravan Budda, Dan Zhao, Sunidhi Tandel

Project Presentations

Week 14 (Apr 24) Project Presentations (7 teams)
Week 15 (May 1) Project Presentations (7 teams)

• Apr 10: Sign up for a presentation slot. Week 14 Presenters get 2%
bonus. First come first serve.
• Project topics and proposals to be shared in the class.

Today

• Tanishq Sardana: Segment Anything
• Qing Mu: DETR: End-to-End Object Detection
• Owais Saad Shuja: Latent Diffusion Models
• Discussion

