DS-GA.3001 Embodied Learning and Vision

Mengye Ren

NYU

Spring 2025

embodied-learning-vision-course.github.io

Lecture Slides for Note Taking

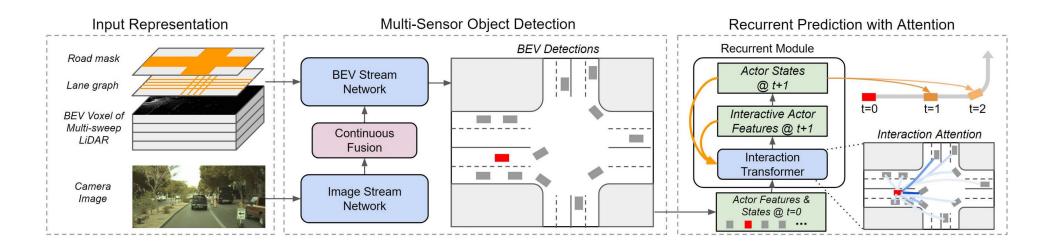
Logistics

- Next week will be the last lecture.
- Student topic presentation begins.

	Component 1	Component 2
Week 6 (Feb 27)	End-to-End Planning, Continual Learning (1.5 hr)	Tutorial: LLM Agents
Week 7 (Mar 6)	Continual Learning, Few-shot Learning (1 hr)	Deep Learning for Structured Prediction Kangrui Yu, Tanishq Sardana, Qing Mu, Owais Shuja
Week 8 (Mar 13)	Guest Lecture – Prof. Wei-Chiu Ma (1 hr)	3D Vision and Mapping Sihang Li, Kanishkha Jaisankar, Denis Mbey Akola, Zijin Hu
Week 9 (Mar 20)	SSL and Object Discovery Anurup Naskar, Dahye Kim, Sal Yeung, Surbhi (1.5 hr)	World Model 1 Sidhartha Reddy Potu, Andrew Deur
141001-10	<u> </u>	

Multi-Agents Joint Prediction

 Joint predict future trajectories by attending to other actors.



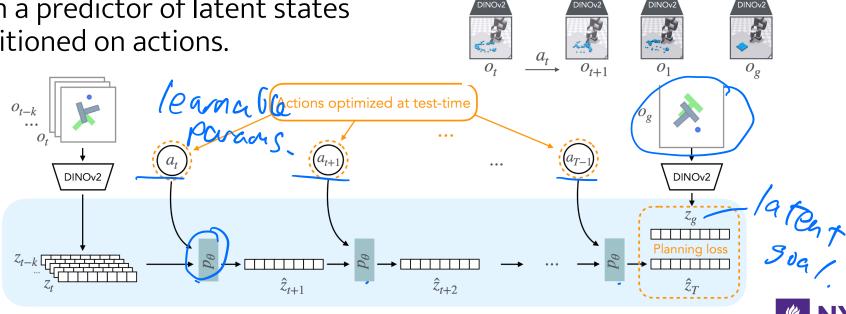
Multi-Agents Joint Prediction

 Joint predict future trajectories by attending to other actors. Recurrent Module Actor States @ t+1 Multi-Sensor Object Input Representation t=0t=2 t=1 Road mask Interactive Actor **BEV Stream** Features @ t+1 Lane graph Network Interaction Attention BEV Voxel of Multi-sweep Interaction Continuous LiDAR **Fusion** Transformer Camera Image Stream Image Actor Features & Network

States @ t=0

Latent Prediction + MPC

- Using MPC on the latent space of pretrained visual encoders.
- Learn a predictor of latent states conditioned on actions.



(a) Training DINO-WM

(b) Test-time Inference

World Model in Video Prediction

Mask GIT.

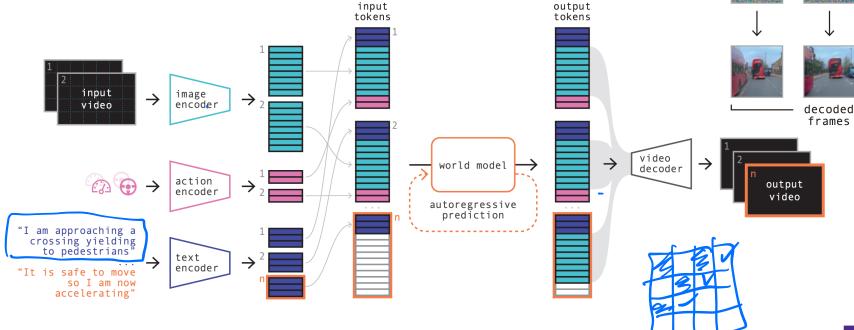
tokens

noise ↔ noise ↔ noise

tokens

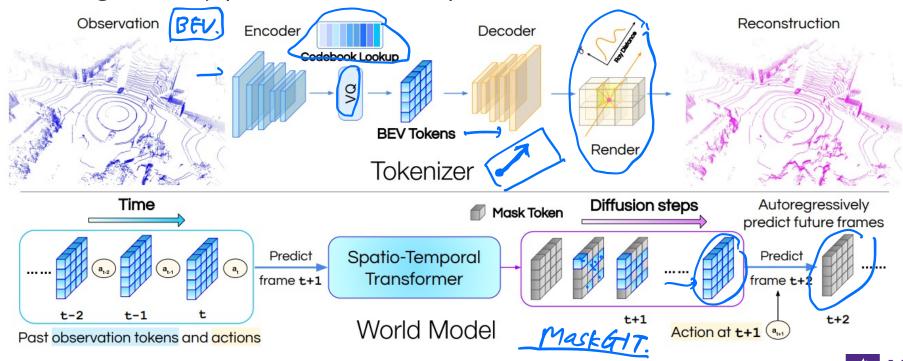
tokens

• Text+action conditioned generation. Diffusion decoder.



World Model in 3D volume prediction

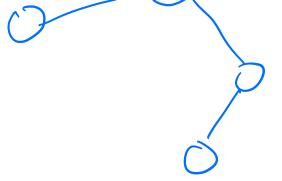
Autoregressively predict future 3D point clouds.



- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly

- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly
- Differentiable occupancy, motion field
 - Relatively heavy, spatially grounded, end-to-end learnable

- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly
- Differentiable occupancy, motion field
 - Relatively heavy, spatially grounded, end-to-end learnable
- Global latent, RNNs, graph landmarks
 - General-purpose, unstructured



- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly
- Differentiable occupancy, motion field
 - Relatively heavy, spatially grounded, end-to-end learnable
- Global latent, RNNs, graph landmarks
 - General-purpose, unstructured
- Raw video/3D prediction
 - Expensive, good for simulation

Imitation Learning

• The explicit policy model, supervised learning (behavior cloning)
$$\hat{a} \neq f_{\theta}(x) \qquad \mathcal{L} = \min_{i} \|a_{i} - \hat{a}\|_{2}^{2} \qquad \mathcal{L} = -\log \hat{a}_{j}$$

Imitation Learning

The explicit policy model, supervised learning (behavior cloning)

$$\hat{a} = f_{\theta}(x)$$
 $\mathcal{L} = \min_{i} ||a_{i} - \hat{a}||_{2}^{2}$ $\mathcal{L} = -\log \hat{a}_{j}$

Energy-based (cost-based) approach

$$\tau^{\star'} = \underset{\tau}{\operatorname{argmin}_{\tau}} E(x, \tau)$$

$$p(\tau \mid x) = \underset{\tau}{\underbrace{\exp(E(x, \tau))}}$$

Imitation Learning

The explicit policy model, supervised learning (behavior cloning)

$$\hat{a} = f_{\theta}(x)$$
 $\mathcal{L} = \min_{i} ||a_{i} - \hat{a}||_{2}^{2}$ $\mathcal{L} = -\log \hat{a}_{j}$

Energy-based (cost-based) approach

$$\tau^* = \operatorname{argmin}_{\tau} E(x, \tau)$$
$$p(\tau \mid x) = \frac{\exp(E(x, \tau))}{\int_{\tau} \exp(E(x, \tau))}$$

- Dataset Aggregation (DAgger)
 - Learned policy may deviate from experts
 - Need to collect more groundtruths

```
Initialize \mathcal{D} \leftarrow \emptyset.

Initialize \hat{\pi}_1 to any policy in \Pi.

for i=1 to N do

Let \pi_i = \beta_i \pi^* + (1-\beta_i) \hat{\pi}_i.

Sample T-step trajectories using \pi_i.

Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\} of visited states by \pi_i and actions given by expert.

Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i.

Train classifier \hat{\pi}_{i+1} on \mathcal{D}.

end for

Return best \hat{\pi}_i on validation.
```

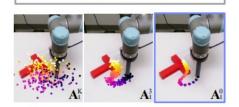
Algorithm 3.1: DAGGER Algorithm.

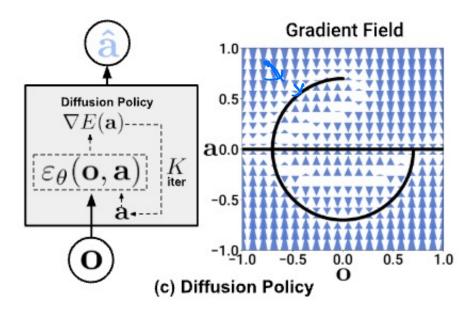
Direct Policy Learning from Diffusion

• Error prediction network is conditioned on observation features.

conditioned on observation features
$$A_t^{k-1} = \alpha(A_t^k) - \gamma \epsilon_\theta(O_t, A_t^k, k) + \mathcal{N}(0, \sigma^2 I)$$

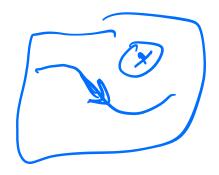
$$\mathcal{L} = MSE(\epsilon^k), \epsilon_\theta(O_t, A_t + \epsilon^k, k)).$$
 Input: Image Observation Sequence

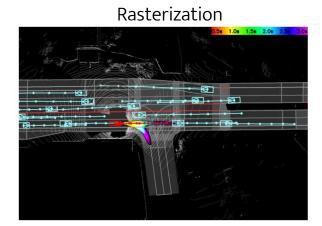


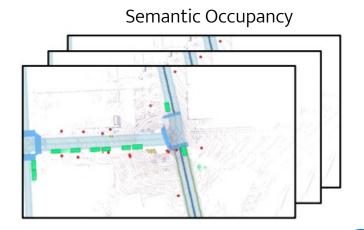


Cost/Value Volume Reasoning

• Interpretability (both costs and planner inputs)





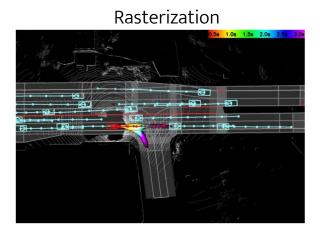


Cost/Value Volume Reasoning

 $(1)*\alpha$

• Interpretability (both costs and planner inputs)

• Use spatial geometry to form cost from explicit objects



Semantic Occupancy

Cost/Value Volume Reasoning

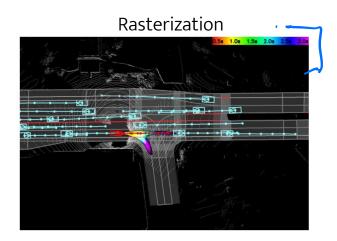
Interpretability (both costs and planner inputs)

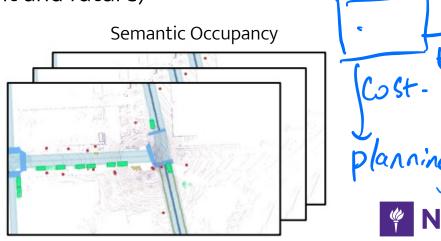
Use spatial geometry to form cost from explicit objects

Predict spatial cost volume

• Rasterize the scene for spatial inputs

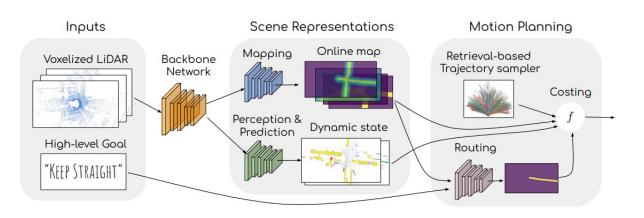
• Predict soft occupancy volumes (present and future)

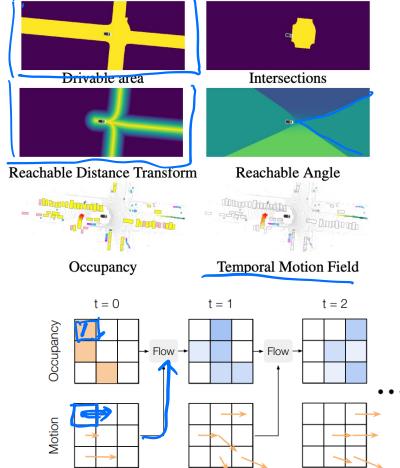




Learning Through Interpretable Predictions

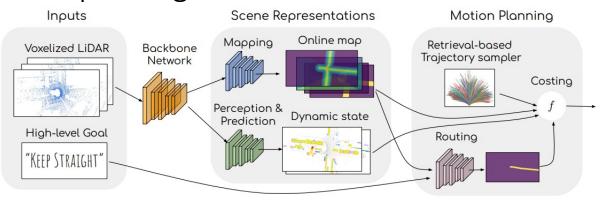
 Semantic occupancy, motion field, mapping, etc. as intermediate predictions.

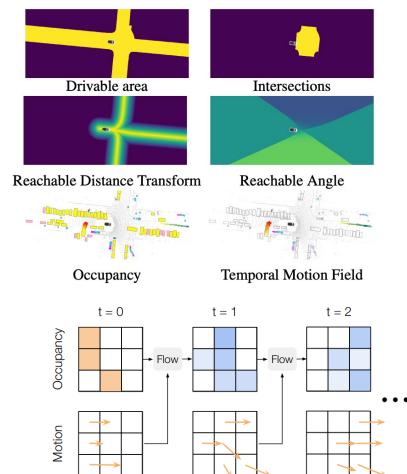




Learning Through Interpretable Predictions

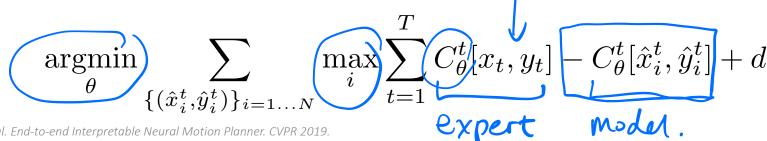
- Semantic occupancy, motion field, mapping, etc. as intermediate predictions.
- Differentiable, supports end-to-end interpretable learning from perception to planning.



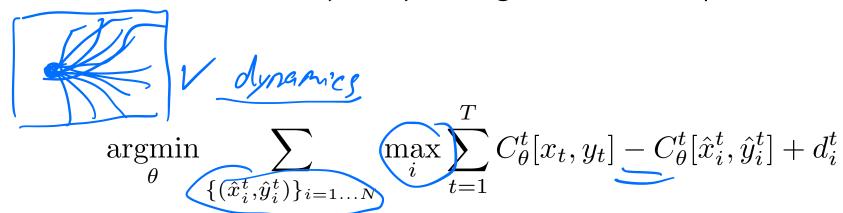


 If we have an explicit cost volume, the cost of a trajectory can be directly queried.

- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.



- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.
- Find the lowest cost trajectory among a batch of samples.



- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.
- Find the lowest cost trajectory among a batch of samples.
- Low-dimensional/known dynamics problems: External samplers

$$\underset{\theta}{\operatorname{argmin}} \sum_{\{(\hat{x}_{i}^{t}, \hat{y}_{i}^{t})\}_{i=1...N}} \max_{i} \sum_{t=1}^{T} C_{\theta}^{t}[x_{t}, y_{t}] - C_{\theta}^{t}[\hat{x}_{i}^{t}, \hat{y}_{i}^{t}] + d_{i}^{t}$$

- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.
- Find the lowest cost trajectory among a batch of samples.
- Low-dimensional/known dynamics problems: External samplers
- In general, needs to perform optimization (e.g. DP)

$$\underset{\theta}{\operatorname{argmin}} \sum_{\{(\hat{x}_{i}^{t}, \hat{y}_{i}^{t})\}_{i=1...N}} \underbrace{\max_{i}} \sum_{t=1}^{T} C_{\theta}^{t}[x_{t}, y_{t}] - C_{\theta}^{t}[\hat{x}_{i}^{t}, \hat{y}_{i}^{t}] + d_{i}^{t}$$

• Energy-based framework also needs negative samples.

- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.

- [expert]
- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.
- If there isn't an external sampler, we can either use autoregressive energy of sampling one dimension at a time, or gradient-based police Langevin MCMC.

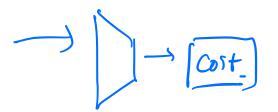
- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.
- If there isn't an external sampler, we can either use autoregressive energy of sampling one dimension at a time, or gradient-based Langevin MCMC.

$$\text{Langevin MCMC: } \widehat{\left(\mathbf{\tilde{y}}_{i}^{k}\right)} = \widehat{\mathbf{y}}_{i}^{k-1} - \lambda \left(\frac{1}{2}\nabla_{\mathbf{y}}E_{\theta}(\mathbf{x}_{i},\mathbf{y}_{i}^{k-1}) + \omega^{k}\right), \omega^{k} \sim \mathcal{N}(0,\sigma).$$

- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.
- If there isn't an external sampler, we can either use autoregressive energy of sampling one dimension at a time, or gradient-based Langevin MCMC.

Langevin MCMC:
$$\tilde{\mathbf{y}}_i^k = \tilde{\mathbf{y}}_i^{k-1} - \lambda \left(\frac{1}{2} \nabla_{\mathbf{y}} E_{\theta}(\mathbf{x}_i, \mathbf{y}_i^{k-1}) + \omega^k \right), \omega^k \sim \mathcal{N}(0, \sigma).$$

Loss:
$$\mathcal{L} = \sum_{i} -\log(p_{\theta}(\mathbf{y}_{i}|\mathbf{x}, \{\tilde{\mathbf{y}}_{i}\}_{j})$$
 $p_{\theta}(\mathbf{y}_{i}|\mathbf{x}, \{\tilde{\mathbf{y}}_{i}\}_{j} = \frac{e^{-E_{\theta}(\mathbf{x}_{i}, \mathbf{y}_{i})}}{e^{-E_{\theta}(\mathbf{x}_{i}, \mathbf{y}_{i})} + \sum_{j} e^{-E_{\theta}(\mathbf{x}_{i}+\tilde{\mathbf{y}}_{i,j})}}$



Value Iteration Networks

 A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.

Value Iteration Networks

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

Value Iteration Networks

 A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.

• Classic VI altorithm:

$$V^*(s) = \max_{\tau} V^{\pi}(s)$$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$V^{\underline{\pi}}(s) = \mathbb{E}^{\underline{\pi}} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$V^{\pi}(s) = \mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$V^{\pi}(s) = \mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$

$$V_{n+1}(s) = \max_a Q_n(s, a)$$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

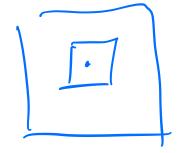
$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$V^{\pi}(s) = \mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$

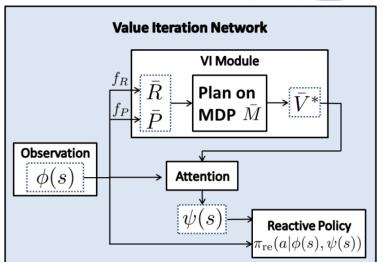
$$V_{n+1}(s) = \max_{a} Q_n(s, a)$$

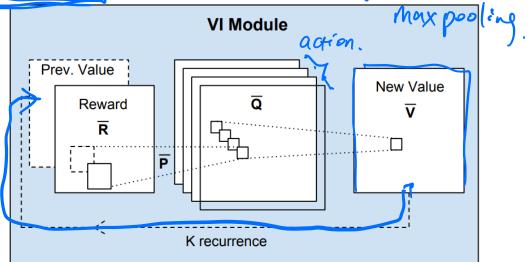
$$\pi^*(s) = \operatorname{argmax}_a Q_{\infty}(s, a)$$



 Reward and previous value are fed into a CNN to generate Q of A channels. Transition matrix is convolutional kernel. Then Max-Pooling.

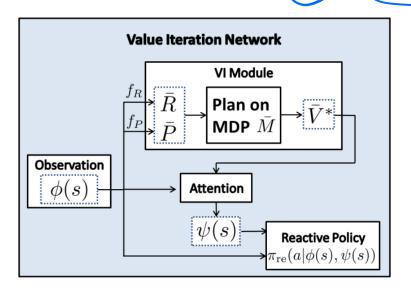
$$Q_n(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s') \quad V_{n+1}(s) = \max_a Q_n(s,a)$$

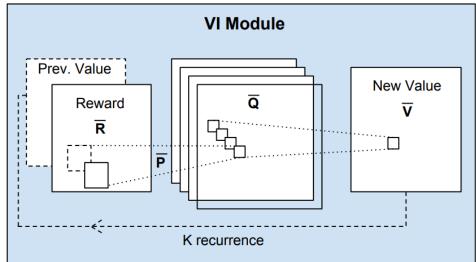




• Select the current state and choose an action from softmax.

 \hat{a} softmax_a(Q(s,a))

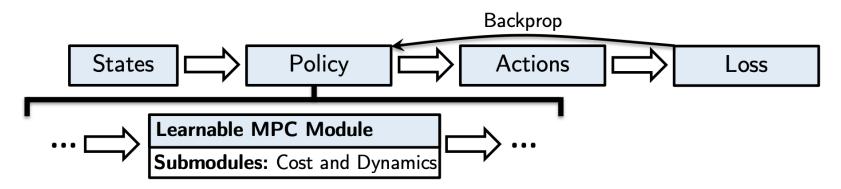




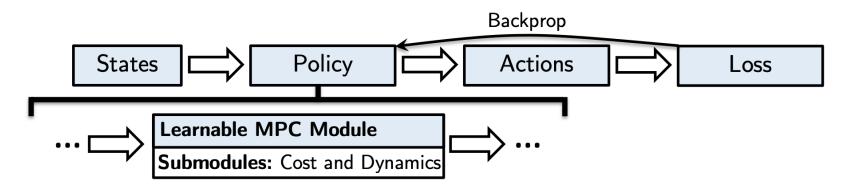
- A baseline would be to untie the weights through iterations, more like a feedforward CNN.
- Achieve more training data efficiency by imposing the structure.

Training data	VIN			VIN Untied Weights		
	Pred.	Succ.	Traj.	Pred.	Succ.	Traj.
	loss	rate	diff.	loss	rate	diff.
20%	0.06	98.2%	0.106	0.09	91.9%	0.094
50%	0.05	99.4%	0.018	0.07	95.2%	0.078
100%	0.05	99.3%	0.089	0.05	95.6%	0.068

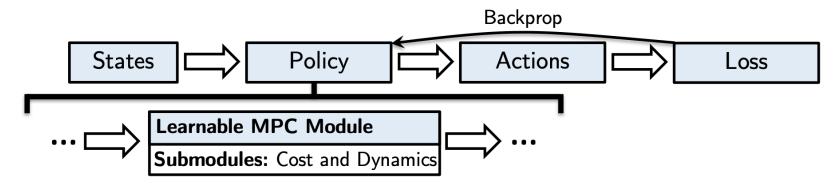
• Treat planning as an end-to-end layer. Can be used for RL/Imitation.



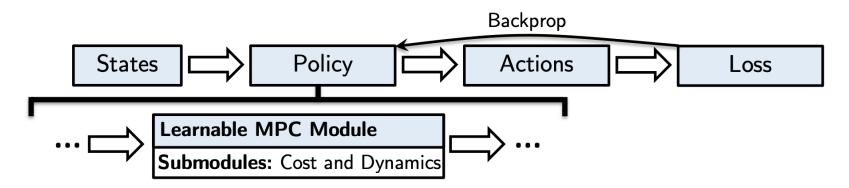
- Treat planning as an end-to-end layer. Can be used for RL/Imitation.
- Option 1: Unrolling a finite number of steps



- Treat planning as an end-to-end layer. Can be used for RL/Imitation.
- Option 1: Unrolling a finite number of steps
- Option 2: Solve till convergence, backprop for a finite step

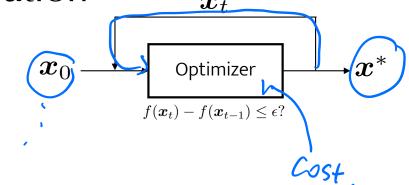


- Treat planning as an end-to-end layer. Can be used for RL/Imitation.
- Option 1: Unrolling a finite number of steps
- Option 2: Solve till convergence, backprop for a finite step
- Option 3: Converged at fixed point: Implicit differentiation



• Unconstrained case

$$oldsymbol{x}^* = \operatorname*{argmin}_{oldsymbol{x}} oldsymbol{x}; oldsymbol{ heta}).$$



• Unconstrained case $x_0 \xrightarrow{\text{Optimizer}_{\boldsymbol{\theta}}} x^* = \operatorname*{argmin}_{\boldsymbol{x}} f(\boldsymbol{x}; \boldsymbol{\theta}).$ $x = \underbrace{\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*; \boldsymbol{\theta})}$

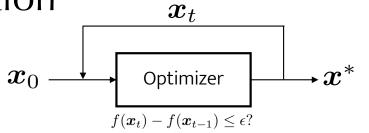
Unconstrained case

$$x^* = \operatorname{argmin} f(x; \theta).$$

$$\mathbf{0} = \underbrace{\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}}_{f,\boldsymbol{x}^*} (\boldsymbol{x}^*; \boldsymbol{\theta})$$

$$\mathbf{0} = \underbrace{\frac{\partial}{\partial \boldsymbol{\theta}}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

$$\mathbf{0} = \underbrace{\frac{\partial}{\partial \boldsymbol{x}^*}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\partial}{\partial \boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$



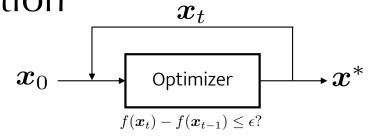
Unconstrained case

$$oldsymbol{x}^* = \operatorname*{argmin}_{oldsymbol{x}} f(oldsymbol{x}; oldsymbol{ heta}).$$

$$\mathbf{0} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

$$\mathbf{0} = \frac{\partial}{\partial \boldsymbol{x}^*} J_{f, \boldsymbol{x}^*}(\boldsymbol{x}^*; \boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\partial}{\partial \boldsymbol{\theta}} J_{f, \boldsymbol{x}^*}(\boldsymbol{x}^*; \boldsymbol{\theta})$$

$$\mathbf{0} = H_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\partial}{\partial \boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$



Unconstrained case

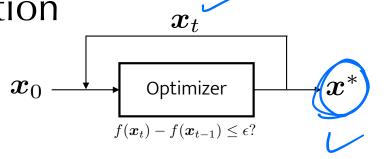
$$x^* = \underset{x}{\operatorname{argmin}} f(x; \theta).$$

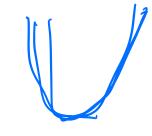
$$\mathbf{0} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

$$\mathbf{0} = \frac{\partial}{\partial \boldsymbol{x}^*} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\partial}{\partial \boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

$$\mathbf{0} = H_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\partial}{\partial \boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

$$\left(\frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}}\right) = -H_{f,x^*}(\boldsymbol{x}^*;\boldsymbol{\theta})^{-1} \frac{\partial}{\partial \boldsymbol{\theta}} J_{f,x^*}(\boldsymbol{x}^*;\boldsymbol{\theta}).$$





• How to compute Hessian inverse vector product?

 How to compute Hessian inverse vector product?

ullet Conjugate gradient, solve $Aoldsymbol{x} = oldsymbol{b}$

Conjugate Gradient Method
$$\mathbf{r}_0 := \mathbf{b} - \mathbf{A}\mathbf{x}_0$$
 if \mathbf{r}_0 is sufficiently small, then return \mathbf{x}_0 as the result $\mathbf{p}_0 := \mathbf{r}_0$

k := 0

repeat

$$lpha_k := rac{\mathbf{r}_k^\intercal \mathbf{r}_k}{\mathbf{p}_k^\intercal \mathbf{A} \mathbf{p}_k}$$

$$\mathbf{x}_{k+1} := \mathbf{x}_k + lpha_k \mathbf{p}_k$$

$$\mathbf{r}_{k+1} := \mathbf{r}_k - lpha_k \mathbf{A} \mathbf{\hat{p}}_k$$

if \mathbf{r}_{k+1} is sufficiently small, then exit loop

$$eta_k := rac{\mathbf{r}_{k+1}^\mathsf{T} \mathbf{r}_{k+1}}{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k}$$

$$\mathbf{p}_{k+1} := \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k$$

$$k:=k+1$$

end repeat

return \mathbf{x}_{k+1} as the result

on f

Implicit Differentiation

- How to compute Hessian inverse vector product?
- ullet Conjugate gradient, solve $Aoldsymbol{x} = oldsymbol{b}$
- Neumann series (finite truncation)

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

- Same as backprop the last K steps (Option 2).
- Memory savings.

Conjugate Gradient Method

$$\mathbf{r}_0 := \mathbf{b} - \mathbf{A}\mathbf{x}_0$$

if \mathbf{r}_0 is sufficiently small, then return \mathbf{x}_0 as the result

$$\mathbf{p}_0 := \mathbf{r}_0$$

$$k := 0$$

repeat

$$lpha_k := rac{\mathbf{r}_k^\intercal \mathbf{r}_k}{\mathbf{p}_k^\intercal \mathbf{A} \mathbf{p}_k}$$

$$\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

$$\mathbf{r}_{k+1} := \mathbf{r}_k - lpha_k \mathbf{A} \mathbf{p}_k$$

if \mathbf{r}_{k+1} is sufficiently small, then exit loop

$$eta_k := rac{\mathbf{r}_{k+1}^\mathsf{T} \mathbf{r}_{k+1}}{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k}$$

$$\mathbf{p}_{k+1} := \mathbf{r}_{k+1} + eta_k \mathbf{p}_k$$

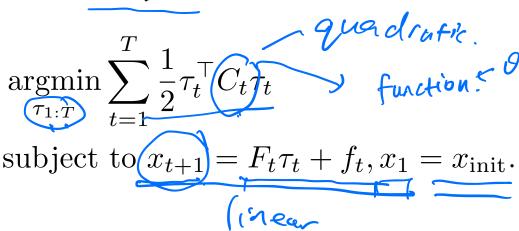
$$k := k + 1$$

end repeat

return \mathbf{x}_{k+1} as the result

 Now add linear equality constraints on the dynamics and initialization.

$$\tau_{1:T} = \{x_t, u_t\}_{1:T}$$



• Now add linear equality constraints on the dynamics and initialization.

$$\tau_{1:T} = \{x_t, u_t\}_{1:T}$$

• Chain rule: $\left(\frac{\partial \ell}{\partial \theta}\right) = \underbrace{\frac{\partial \ell}{\partial \tau_{1:T}^{\star}}}_{0\theta} \underbrace{\frac{\partial \tau_{1:T}^{\star}}{\partial \theta}}$

$$\underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to
$$x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$$

 Now add linear equality constraints on the dynamics and initialization.

$$\tau_{1:T} = \{x_t, u_t\}_{1:T}$$

• Chain rule: $\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \tau_{1:T}^{\star}} \frac{\partial \tau_{1:T}^{\star}}{\partial \theta}$.

$$\underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

General QP:

$$x^* = \operatorname{argmin} \frac{1}{2} x^\top Q x + c^\top x$$

subject to $Ax = b$.

 Now add linear equality constraints on the dynamics and initialization.

$$\tau_{1:T} = \{x_t, u_t\}_{1:T}$$

- Chain rule: $\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \tau_{1,T}^{\star}} \frac{\partial \tau_{1:T}^{\star}}{\partial \theta}$.
- KKT:

$$\underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

General QP:

$$x^* = \operatorname{argmin} \frac{1}{2} x^\top Q x + c^\top x$$

subject to $Ax = b$.

 Now add linear equality constraints on the dynamics and initialization.

$$\tau_{1:T} = \{x_t, u_t\}_{1:T}$$

- Chain rule: $\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \tau_{1:T}^{\star}} \frac{\partial \tau_{1:T}^{\star}}{\partial \theta}$.
- KKT:

$$\begin{bmatrix} Q & A^{\top} \\ A & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} = \begin{bmatrix} -\boldsymbol{c} \\ \boldsymbol{b} \end{bmatrix}$$

$$\underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

General QP:

$$x^* = \operatorname{argmin} \frac{1}{2} x^\top Q x + c^\top x$$

subject to $Ax = b$.

In classic LQR solver, the Riccati recursion solves this linear system.

Apply differentiation

$$\begin{pmatrix}
\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \left(K \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} \right) = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$$

$$\frac{K}{\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$$

Apply differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \left(K \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} \right) = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}.$$

$$\frac{\mathrm{d}K}{\mathrm{d}\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$$

$$K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{C}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{D}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{A}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{b}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{A}} \end{bmatrix} = \begin{bmatrix} -I & 0 & -x^* & -\lambda^* \\ 0 & I & 0 & -x^* \end{bmatrix}$$

Apply differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\left(K\begin{bmatrix}\boldsymbol{x}^*\\\boldsymbol{\lambda}^*\end{bmatrix}\right) = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}.$$

$$\frac{\mathrm{d}K}{\mathrm{d}\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$$

$$K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{c}} \end{bmatrix} \begin{pmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{b}} \end{pmatrix} \begin{pmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{A}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{A}} \end{bmatrix} = \begin{bmatrix} \mathbf{d}\boldsymbol{\theta} & \mathbf{d}\boldsymbol{\lambda}^* \end{bmatrix}$$

$$\frac{\frac{d\mathbf{x}^*}{dA}}{\frac{d\mathbf{\lambda}^*}{dA}} = \begin{bmatrix} -I & 0 & -x^* \\ 0 & I & 0 & -x^* \end{bmatrix}$$

$$K rac{\partial \ell}{\partial oldsymbol{z}^*} egin{bmatrix} rac{\mathrm{d} oldsymbol{x}^*}{\mathrm{d} oldsymbol{c}} & rac{\mathrm{d} oldsymbol{x}^*}{\mathrm{d} oldsymbol{b}} \ rac{\mathrm{d} oldsymbol{\lambda}^*}{\mathrm{d} oldsymbol{c}} \end{bmatrix} = egin{bmatrix} -rac{\partial \ell}{\partial oldsymbol{x}^*} \ 0 \end{bmatrix}$$
 $K oldsymbol{d}^* = egin{bmatrix} -rac{\partial \ell}{\partial oldsymbol{x}^*} \ 0 \end{bmatrix}$

Apply differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \left(K \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} \right) = \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}\boldsymbol{\theta}}$$

$$\frac{\mathrm{d}K}{\mathrm{d}\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$$

$$K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{d}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{A}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{d}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{A}} \end{bmatrix} = \begin{bmatrix} -I & 0 & -x^* & -\lambda^* \\ 0 & I & 0 & -x^* \end{bmatrix} \quad K\frac{\partial \ell}{\partial \boldsymbol{z}^*} \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{b}} \end{bmatrix} = \begin{bmatrix} -\frac{\partial \ell}{\partial \boldsymbol{x}^*} \end{bmatrix}$$

• Equivalent(QP:)

$$\underline{d}^* = \operatorname{argmin}_{\boldsymbol{d}} \frac{1}{2} \boldsymbol{d}^\top Q \boldsymbol{d} + \frac{\partial \ell}{\partial \boldsymbol{x}^*}^\top \boldsymbol{d},$$
subject to $A\boldsymbol{d} = \mathbf{0}$.

Apply differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \left(K \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} \right) = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}.$$

$$\boldsymbol{x}^* \end{bmatrix} \quad \begin{bmatrix} \underline{\mathrm{d}\boldsymbol{x}^*} \\ \mathbf{x}^* \end{bmatrix} \quad \mathrm{d}v$$

$$\frac{\mathrm{d}K}{\mathrm{d}\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$$

$$K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = K\begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{A}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{d}\boldsymbol{d}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{d}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{A}} \end{bmatrix} = \begin{bmatrix} -I & 0 & -x^* & -\lambda^* \\ 0 & I & 0 & -x^* \end{bmatrix} \quad K\frac{\partial \ell}{\partial \boldsymbol{z}^*} \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{b}} \end{bmatrix} = \begin{bmatrix} -\frac{\partial \ell}{\partial \boldsymbol{x}^*} \end{bmatrix}$$

 $Kd^* = \begin{bmatrix} -rac{\partial \ell}{\partial oldsymbol{x}^*} \\ \mathbf{0} \end{bmatrix}$

Equivalent QP:

$$d^* = \underset{\boldsymbol{d}}{\operatorname{argmin}} \frac{1}{2} \boldsymbol{d}^{\top} Q \boldsymbol{d} + \frac{\partial \ell}{\partial \boldsymbol{x}^*}^{\top} \boldsymbol{d}, \qquad \underbrace{\frac{\partial \ell}{\partial Q}} = \frac{1}{2} (\boldsymbol{d}_{\boldsymbol{x}}^* \otimes \boldsymbol{x}^* + \boldsymbol{x}^* \otimes \boldsymbol{d}_{\boldsymbol{x}}^*)$$
subject to $A\boldsymbol{d} = \boldsymbol{0}$.
$$\underbrace{\frac{\partial \ell}{\partial Q}} = \boldsymbol{d}_{\boldsymbol{\lambda}}^* \otimes \boldsymbol{x}^* + \boldsymbol{\lambda}^* \otimes \boldsymbol{d}_{\boldsymbol{x}}^*.$$

- The backward pass can also be formulated as a LQR problem.
- Swap c to $\nabla_{\tau^*} \ell$ and f to 0.

Module 1 Differentiable LQR

(The LQR algorithm is defined in appendix A)

Input: Initial state x_{init}

Parameters: $\theta = \{C, c, F, f\}$

Forward Pass:

1: $\tau_{1:T}^{\star} = \underline{LQR}_T(x_{init}(C, c)F, C)$ 2: Compute $\lambda_{1:T}^{\star}$ with (7)

> Solve (2)

Backward Pass:

1: $d_{\tau_{1},\tau}^{\star} = LQR_{T}(0; C, \nabla_{\tau^{\star}}^{\mathbf{V}} \ell, F, \mathbf{0})$ ▷ Solve (9), ideally reusing the factorizations from the forward pass

2: Compute $d_{\lambda_{1:T}}^{\star}$ with (7)

3: Compute the derivatives of ℓ with respect to C, c, F, f, and x_{init} with (8)

What about general MPC?

$$\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{T} C_t(x_t, u_t)$$
subject to $x_{t+1} = f(x_t, u_t), x_1 = x_{\text{init}}.$

What about general MPC?

$$\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{T} C_t(x_t, u_t)$$
subject to $x_{t+1} = f(x_t, u_t), x_1 = x_{\text{init}}.$

Use Taylor expansion to approximate.

$$\widetilde{C}_{\theta,t}^{i} \stackrel{\cdot}{\Rightarrow} C_{\theta,t}(\tau_t^i) + p_t^{i^{\top}}(\tau_t - \tau_t^i) + \frac{1}{2}(\tau_t - \tau_t^i)^{\top} H_t^i(\tau_t - \tau_t^i).$$

What about general MPC?

$$\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{I} C_t(x_t, u_t)$$
subject to $x_{t+1} = f(x_t, u_t), x_1 = x_{\text{init}}.$

Use Taylor expansion to approximate.

$$\tilde{C}_{\theta,t}^{i} = C_{\theta,t}(\tau_{t}^{i}) + p_{t}^{i^{\top}}(\tau_{t} - \tau_{t}^{i}) + \frac{1}{2}(\tau_{t} - \tau_{t}^{i})^{\top}H_{t}^{i}(\tau_{t} - \tau_{t}^{i}).$$

Fixed point iteration.

$$\tau^{i+1} = \operatorname{argmin}_{\tau} \sum_{t}^{T} \tilde{C}_{t}^{i}(\tau_{t}^{i}).$$

What about general MPC?

$$\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{T} C_t(x_t, u_t)$$
subject to $x_{t+1} = f(x_t, u_t), x_1 = x_{\text{init}}.$

• Use Taylor expansion to approximate.

$$\tilde{C}_{\theta,t}^{i} = C_{\theta,t}(\tau_{t}^{i}) + p_{t}^{i^{\top}}(\tau_{t} - \tau_{t}^{i}) + \frac{1}{2}(\tau_{t} - \tau_{t}^{i})^{\top}H_{t}^{i}(\tau_{t} - \tau_{t}^{i}).$$

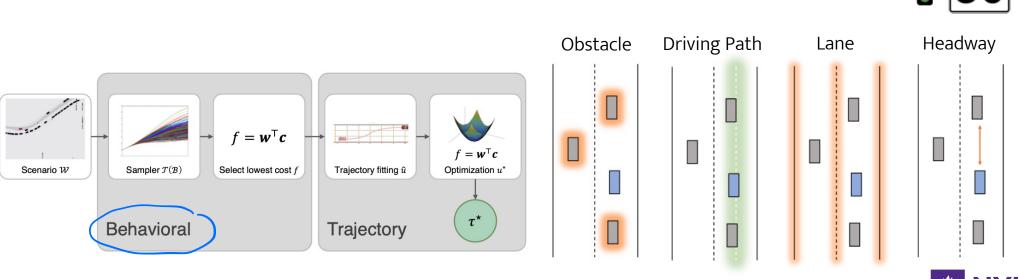
Fixed point iteration.

$$\tau^{i+1} = \operatorname{argmin}_{\tau} \sum_{t}^{T} \tilde{C}_{t}^{i}(\tau_{t}^{i}).$$

Backward only depends on final quadratic approximation.

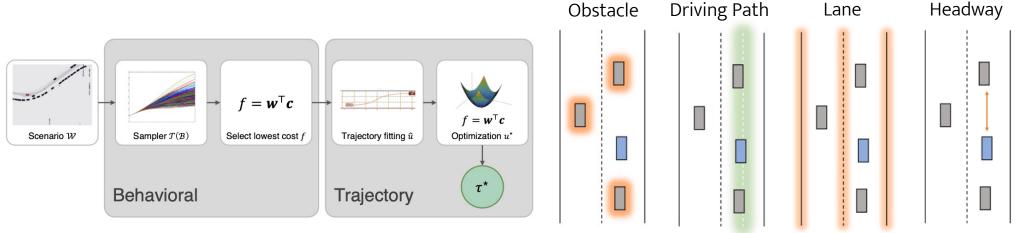
Behavioral vs. Trajectory Planning

• Gradient-based optimization provides a locally optimized trajectory.



Behavioral vs. Trajectory Planning

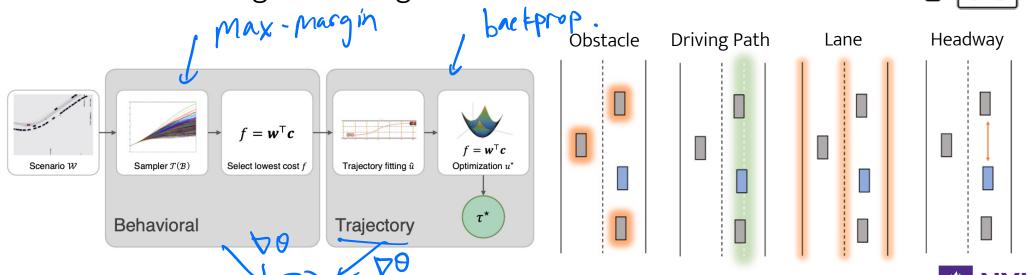
- Gradient-based optimization provides a locally optimized trajectory.
- Samples may be needed for reasoning global structure.



Behavioral vs. Trajectory Planning

- Gradient-based optimization provides a locally optimized trajectory.
- Samples may be needed for reasoning global structure.
- Can learn together using the same learned costs.

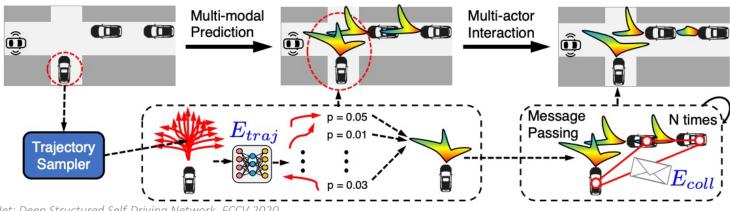
Sadat et al. Jointly Learnable Behavior and Tra



Planning for Self-Driving Vehicles, IROS 2019.



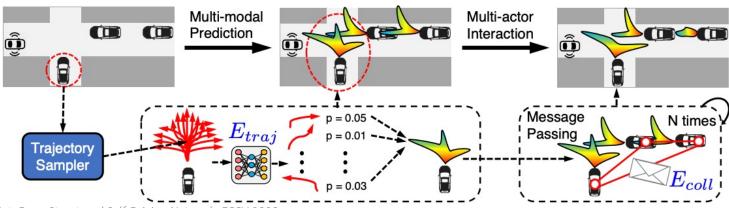
• Jointly reason the future trajectories of multiple agents as an energy-based graphical model. $p(\mathbf{s_1}, \dots, \mathbf{s}_N \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s_1}, \dots, \mathbf{s}_N) \mid \mathbf{X})$



- Jointly reason the future trajectories of multiple agents as an energy-based graphical model. $p(\mathbf{s_1}, \dots, \mathbf{s_N} \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s_1}, \dots, \mathbf{s_N}) \mid \mathbf{X})$
- Trajectory Goodness + Collision.

$$\sum_{i} E_{\theta}(\mathbf{s}_{i} \mid X) + \sum_{i \neq j} E(\mathbf{s}_{i}, \mathbf{s}_{j})$$

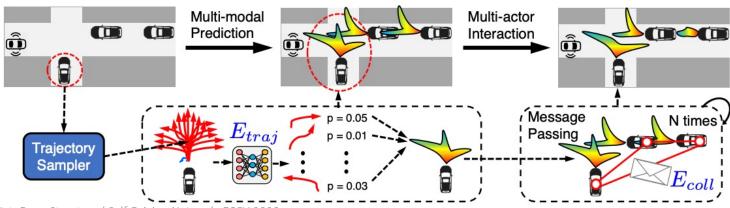
$$E(\mathbf{s}_{i}, \mathbf{s}_{j}) = \gamma \text{ if } \mathbf{s}_{i} \text{ collides } \mathbf{s}_{j}$$



- Jointly reason the future trajectories of multiple agents as an energy-based graphical model. $p(\mathbf{s}_1, \dots, \mathbf{s}_N \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s}_1, \dots, \mathbf{s}_N) \mid \mathbf{X})$
- Trajectory Goodness + Collision.
- Batch of trajectory samples.

$$\sum_{i} E_{\theta}(s_i \mid X) + \sum_{i \neq j} E(\mathbf{s}_i, \mathbf{s}_j)$$

$$E(\mathbf{s}_i, \mathbf{s}_j) = \gamma$$
 if \mathbf{s}_i collides \mathbf{s}_j



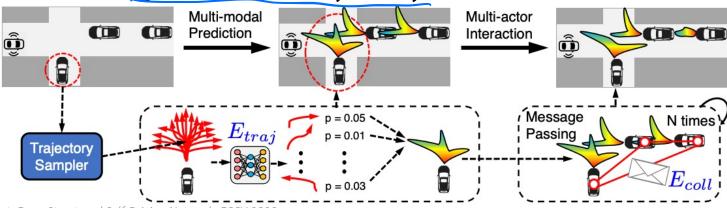
- Jointly reason the future trajectories of multiple agents as an energy-based graphical model. $p(\mathbf{s_1}, \dots, \mathbf{s_N} \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s_1}, \dots, \mathbf{s_N}) \mid \mathbf{X})$
- Trajectory Goodness + Collision.

• Batch of trajectory samples.

 $\sum_{i} E_{\theta}(s_i \mid X) + \sum_{i \neq j} E(\mathbf{s}_i, \mathbf{s}_j)$

 $E(\mathbf{s}_i, \mathbf{s}_j) = \gamma \text{ if } \mathbf{s}_i \text{ collides } \mathbf{s}_j$

Classification of groundtruth trajectory.



Summary: End-to-End Planning

- Direct Policy Prediction
 - Condition perception features into the model
 - Use of diffusion models

Summary: End-to-End Planning

- Direct Policy Prediction
 - Condition perception features into the model
 - Use of diffusion models
- Cost Learning (IRL) from Experts
 - Max-margin, max-entropy/EBM
 - Need negative samples
 - Can be combined with efficient external samplers
 - Cost volume prediction: parametric + non-parametric

Summary: End-to-End Planning

- Direct Policy Prediction
 - Condition perception features into the model
 - Use of diffusion models
- Cost Learning (IRL) from Experts
 - Max-margin, max-entropy/EBM
 - Need negative samples
 - Can be combined with efficient external samplers
 - Cost volume prediction: parametric + non-parametric
- Differentiable Planner
 - Backprop through local optimization
 - Can be memory efficient, implicit differentiation

Module 5: Continual Learning, Few-Shot Learning, Meta-Learning

Why Continual Learning?

• The world is not a dataset that allows you to get IID samples.

Why Continual Learning?

- The world is not a dataset that allows you to get IID samples.
- The world keeps changing and evolving.

Why Continual Learning?

- The world is not a dataset that allows you to get IID samples.
- The world keeps changing and evolving.
- Online vs. Continual
 - Online means that samples arrive in a streaming / temporal partial order, but they may still come from a static distribution.

$$\theta_t = f(x_t, \theta_{t-1}) \quad (x_{1:T}) \sim \lambda$$

- $\theta_t = f(x_t, \theta_{t-1}) \quad x_{1:T} \sim \mathcal{X}$ Example: Online reinforcement learning, trajectory roll out is online, but the environment is the same.
- Continual learning means that there will be distribution shift.

Distribution shift: Forgetting

• Learning on A and then B results in worse performance on A.

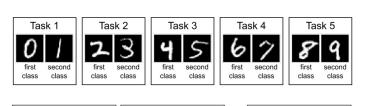
backward fromsfer.

- Distribution shift: Forgetting
 - Learning on A and then B, results in worse performance on A.
- Multi-task learning: Forward transfer
 - Learning Task A + B results in better learning in Task C compared to learning C alone.
 - Leverage the similarity between tasks.

- Distribution shift: Forgetting
 - Learning on A and then B, results in worse performance on A.
- Multi-task learning: Forward transfer
 - Learning Task A + B results in better learning in Task C compared to learning C alone.
 - Leverage the similarity between tasks.
- Compositionality
 - Learning A and B first, and then learning tasks with composed A+B.

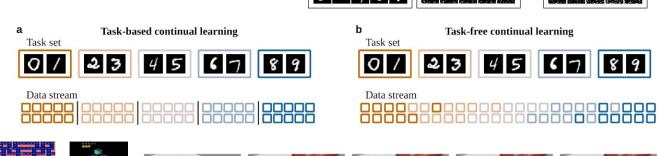
- ◆Distribution shift: Forgetting
 - Learning on A and then B, results in worse performance on A.
- Multi-task learning: Forward transfer
 - Learning Task A + B results in better learning in Task C compared to learning C alone.
 - Leverage the similarity between tasks.
- Compositionality
 - Learning A and B first, and then learning tasks with composed A+B.
- Incremental/curriculum Learning
 - Learning A->B->C is easier than at random order.

• Learning a sequence of tasks without looking back.



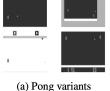
Task 2

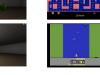
(permutation 2)



Task 1

(permutation 1)





Task 10

(permutation 10)

(b) Labyrinth games

(c) Atari games

drawer close drawer open

peg insert side

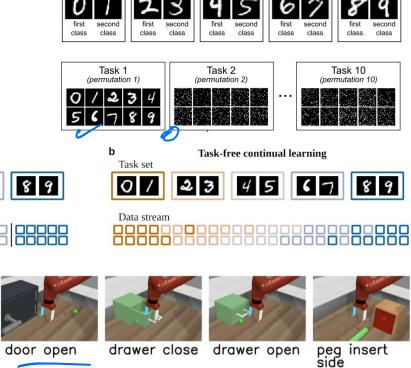
increment

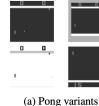
Task 3

Task 4

Task 5

- Learning a sequence of tasks without looking back.
- Goal is to do well on all of the tasks at the end.





Task set

Data stream

23

67

Task-based continual learning

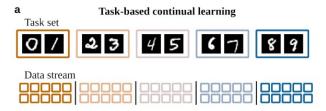
4 5

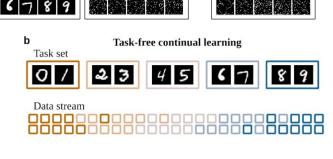
Task 1

Task 2

(b) Labyrinth games (c) Atari games

- Learning a sequence of tasks without looking back.
- Goal is to do well on all of the tasks at the end.
- Task boundary





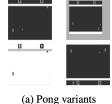
Task 3

Task 2

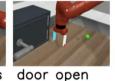
Task 4

Task 5

Task 10





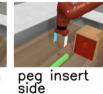


Task 2

Task 1

Task 1

(permutation 1)

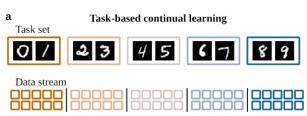


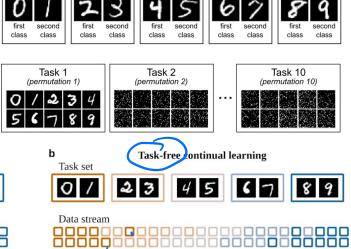
(b) Labyrinth games

(c) Atari games

drawer close drawer open

- Learning a sequence of tasks without looking back.
- Goal is to do well on all of the tasks at the end.
- Task boundary
- Memory constraints

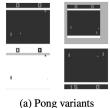




Task 3

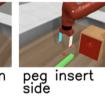
Task 4

Task 5



Task 2

Task 1



(b) Labyrinth games

(c) Atari games

drawer close drawer open

Parameter Regularization

 Over-completeness Assumption. A multitude of models can reach equivalent performance.

$$\mathcal{S}_{A} = \{ \underline{\theta} \mid \ell_{A}(\theta) \leq \underline{\epsilon} \}$$

$$\mathcal{S}_{A} \cap \mathcal{S}_{B} \neq \emptyset$$

Parameter Regularization

- Over-completeness Assumption. A multitude of models can reach equivalent performance.
- What is left is to efficiently find the intersection between A and B.

$$p(\theta \mid \mathcal{D}_A) \neq \mathcal{N}(\theta; \theta^*, \Sigma)$$

$$(S_A) = \{\theta \mid \ell_A(\theta) < \epsilon\}$$
 $(S_A) \cap S_B \neq \emptyset$

Parameter Regularization

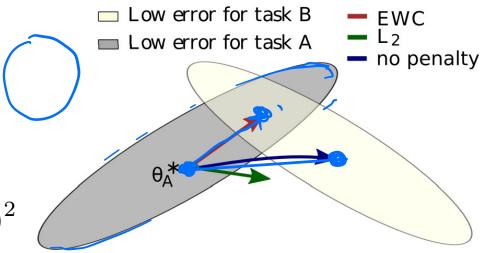
- Over-completeness Assumption. A multitude of models can reach equivalent performance.
- What is left is to efficiently find the intersection between A and B.

$$p(\theta \mid \mathcal{D}_A) = \mathcal{N}(\theta; \theta^*, \Sigma)$$

 Elastic Weight Consolidation (EWC):

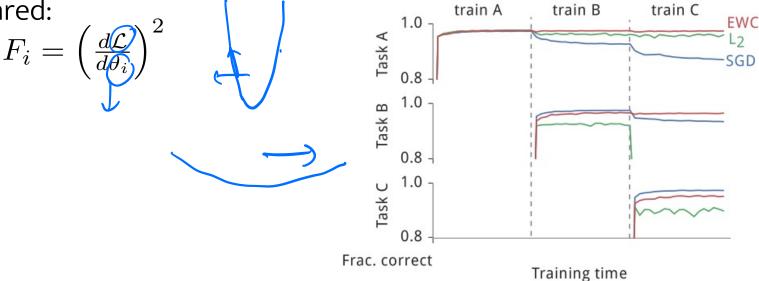
$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_{i} \frac{\lambda}{2} F_i(\theta_i) - \widehat{\theta_A^*}_i)^2$$

$$S_A \cap S_B \neq \emptyset$$



Computing Fisher

• At the end of each epoch, compute the gradient squared:

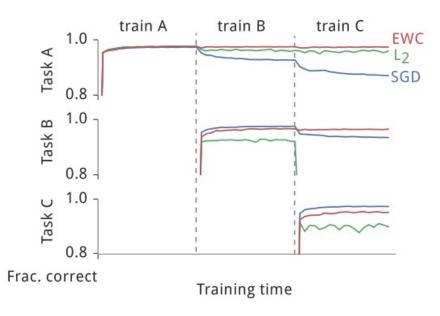


Computing Fisher

• At the end of each epoch, compute the gradient squared:

$$F_i = \left(\frac{d\mathcal{L}}{d\theta_i}\right)^2$$

• Measures the sensitivity on each parameter dimension.

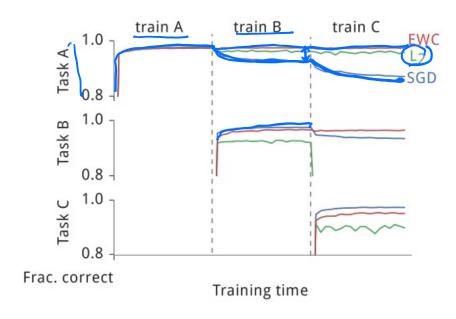


Computing Fisher plasticity Stability. ++

 At the end of each epoch, compute the gradient squared:

$$F_i = \left(\frac{d\mathcal{L}}{d\theta_i}\right)^2$$

- Measures the sensitivity on each parameter dimension.
- You can also accumulate an online estimate.



• Bayesian formulation:

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta}).$$

• Bayesian formulation:

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta}).$$

$$q_t(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL} \left(q(\boldsymbol{\theta}) \parallel \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}) \right).$$

• Bayesian formulation:

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta}).$$

$$q_t(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL} \left(q(\boldsymbol{\theta}) \parallel \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}) \right).$$

• Loss:
$$\mathcal{L}(q_t(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{\theta} \sim q_t(\boldsymbol{\theta})}[-\log p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})] + \mathrm{KL}(q_t(\boldsymbol{\theta} \parallel q_{t-1}(\boldsymbol{\theta})).$$

• Bayesian formulation:

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta}).$$

$$q_t(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL} \left(q(\boldsymbol{\theta}) \parallel \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}) \right).$$

• Loss:
$$\mathcal{L}(q_t(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{\theta} \sim q_t(\boldsymbol{\theta})}[-\log p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})] + \mathrm{KL}(q_t(\boldsymbol{\theta} \parallel q_{t-1}(\boldsymbol{\theta}))).$$
$$q_t(\boldsymbol{\theta}) = \prod_{d=1}^D \mathcal{N}(\theta_{t,d}; \mu_{t,d}, \sigma_{t,d}^2).$$

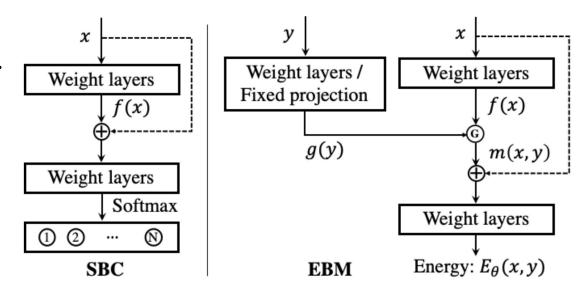
• Bayesian formulation:

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_t \mid \boldsymbol{\theta}) \propto p(\boldsymbol{\theta} \mid \mathcal{D}_{1:T-1}) p(\mathcal{D}_T \mid \boldsymbol{\theta}).$$

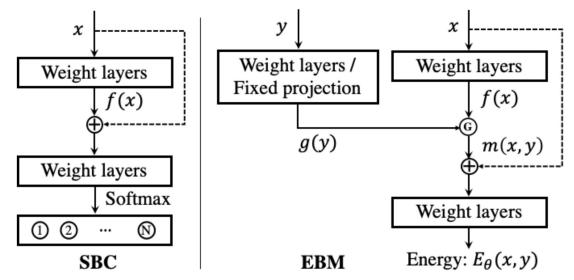
$$q_t(\boldsymbol{\theta}) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL} \left(q(\boldsymbol{\theta}) \parallel \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta}) \right).$$

- Loss: $\mathcal{L}(q_t(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{\theta} \sim q_t(\boldsymbol{\theta})}[-\log p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})] + \mathrm{KL}(q_t(\boldsymbol{\theta} \parallel q_{t-1}(\boldsymbol{\theta}))).$ $q_t(\boldsymbol{\theta}) = \prod_{d=1}^D \mathcal{N}(\theta_{t,d}; \mu_{t,d}, \sigma_{t,d}^2).$
- Compare to EWC: Maintains uncertainty throughout training.

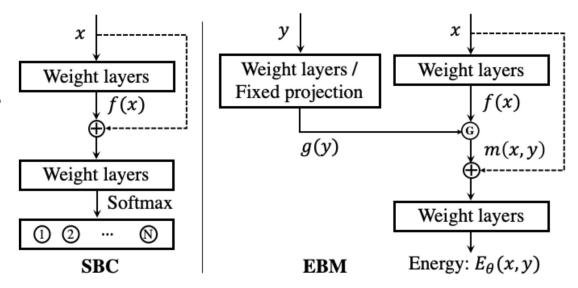
 Softmax layer is known to be sensitive to distribution shift.



- Softmax layer is known to be sensitive to distribution shift.
- A common approach is to use nearest mean classifier.

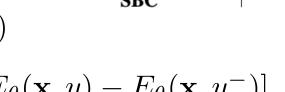


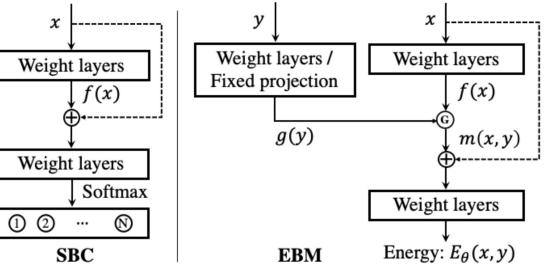
- Softmax layer is known to be sensitive to distribution shift.
- A common approach is to use nearest mean classifier.
- Can be generalized to EBMs



- Softmax layer is known to be sensitive to distribution shift.
- A common approach is to use nearest mean classifier.
- Can be generalized to EBMs
- Energy between inputs and labels:

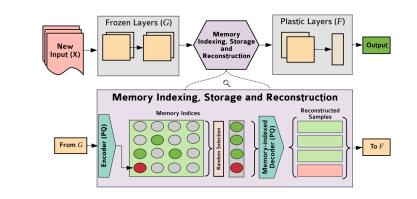
$$m(\mathbf{x}, y) = G(f(\mathbf{x}), g(y))$$





Replay

• Store raw data, representations, or train a generative model

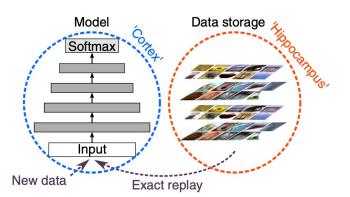


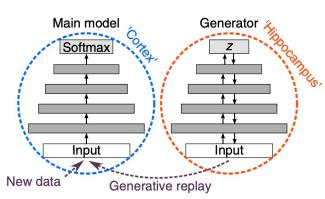
New data Exact replay Feedback Connections Feedback Connections Feedback Connections New data Replay

Replay

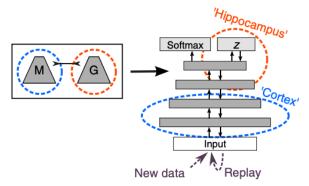
- Frozen Layers (G) Plastic Layers (F) Indexing, Storag Memory Indexing, Storage and Reconstruction
- Store raw data, representations, or train a generative model
- Coreset selection $\mu \leftarrow \frac{1}{n} \sum_{x \in X} \varphi(x)$ $p_k \leftarrow \underset{x \in X}{\operatorname{argmin}} \|\mu \frac{1}{k} [\varphi(x) + \sum_{j=1}^{n-1} \varphi(p_j)] \|.$

$$p_k \leftarrow \underset{x \in X}{\operatorname{argmin}} \|\mu - \frac{1}{k} [\varphi(x) + \sum_{j=1}^{k-1} \varphi(p_j)] \|$$





Feedback Connections



Knowledge Distillation

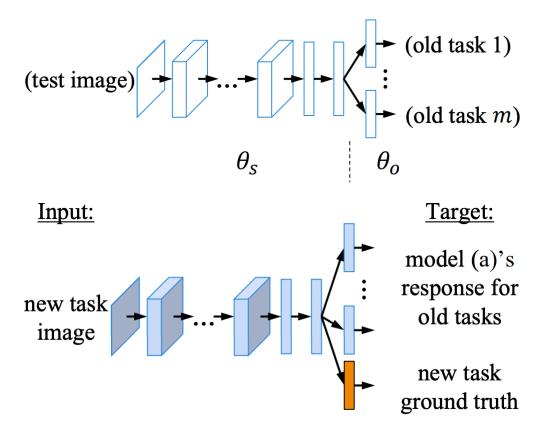
 Instead of saving the data points, we can also save the previous model checkpoint.

$$y_o = f(x_n; \theta_o).$$

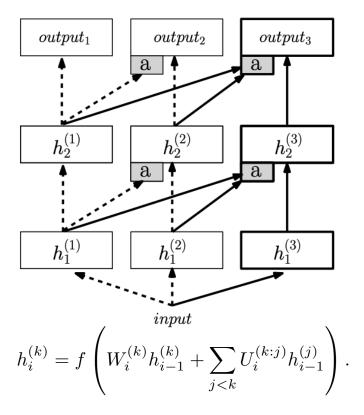
$$\hat{y}_o = f(x_n; \theta_n).$$

$$\mathcal{L}(y_o, \hat{y}_o)$$

 Use new data points and old weights to "distill"

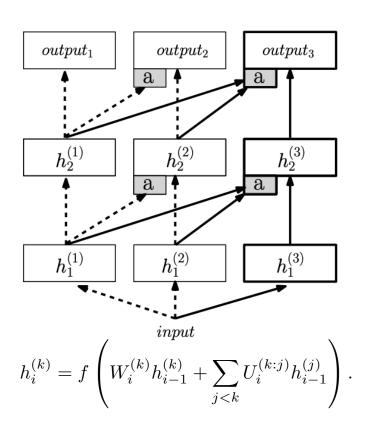


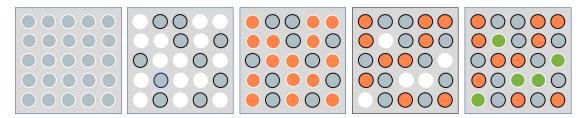
Architecture Expansion



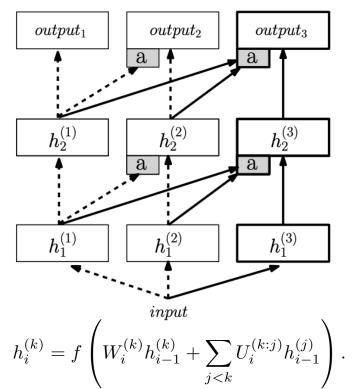
Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018. Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.

Architecture Expansion

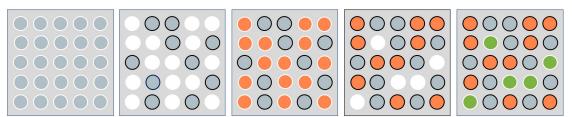


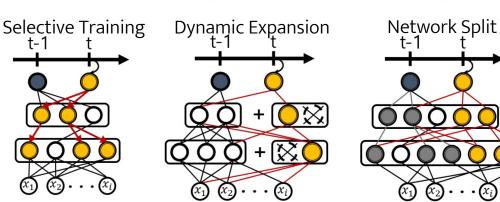


Architecture Expansion



$$h_i^{(k)} = f\left(W_i^{(k)} h_{i-1}^{(k)} + \sum_{j < k} U_i^{(k:j)} h_{i-1}^{(j)}\right)$$





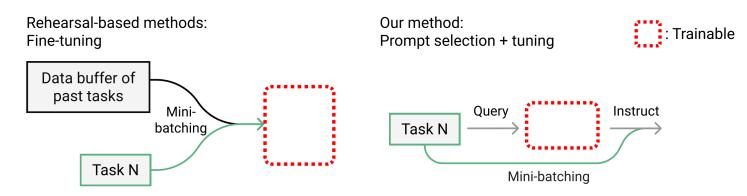
Selective Training $\mathcal{L}(\boldsymbol{W}_L^t, \boldsymbol{W}_{1:L-1}^{t-1}, \mathcal{D}_t) + \mu \| \boldsymbol{W}_L^t \|_1$

Dynamic Expansion Group sparsity $\mathcal{L}(\boldsymbol{W}_l^{\mathcal{N}}, \boldsymbol{W}_l^{t-1}, \mathcal{D}_t) + \mu \|\boldsymbol{W}_l^{\mathcal{N}}\|_1 + \gamma \sum_g \|\boldsymbol{W}_{l,g}^{\mathcal{N}}\|_2$

Rusu et al. Progressive Neural Networks. NIPS 2016 Deep Learning Symposium PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR 2018. Yoon et al. Lifelong Learning with Dynamically Expandable Networks. ICLR 2018.

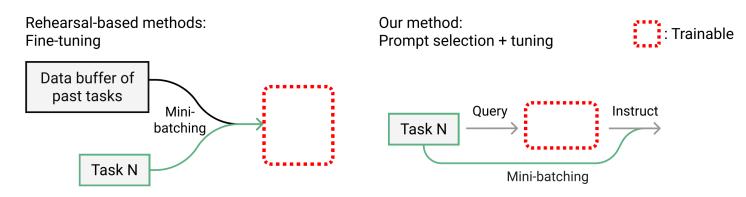
Adapting Pretrained Models

 Pretrained models have general knowledge that can be adapted to a continual stream of tasks.



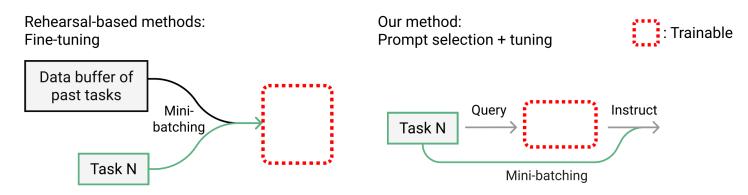
Adapting Pretrained Models

- Pretrained models have general knowledge that can be adapted to a continual stream of tasks.
- Learn adaptation parameters for each task and store these as "task embeddings."



Adapting Pretrained Models

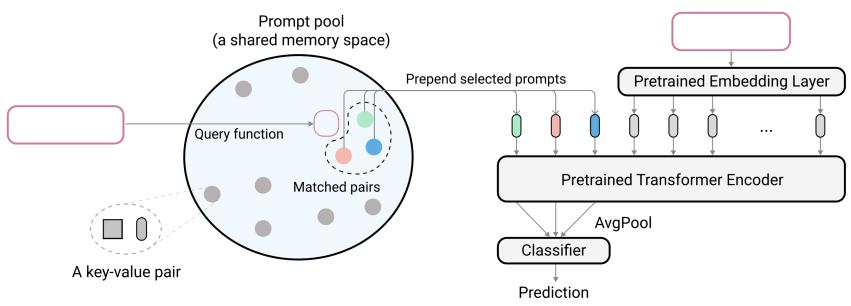
- Pretrained models have general knowledge that can be adapted to a continual stream of tasks.
- Learn adaptation parameters for each task and store these as "task embeddings."
- Main model is frozen.



Learning to Prompt

Prompt pool (slot memory)

$$\{(k_1, p_1), \ldots, (k_M, p_M)\}$$

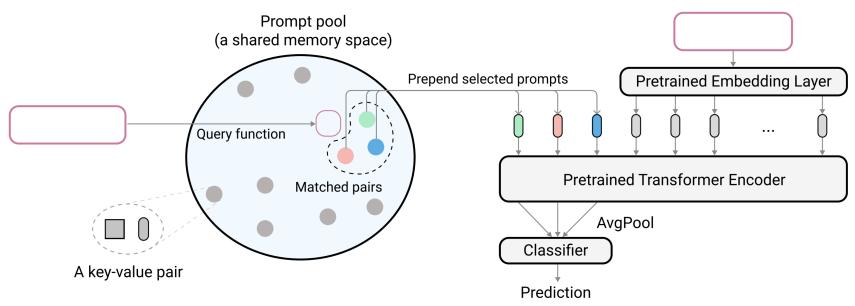


Learning to Prompt

Prompt pool (slot memory)

$$\{(k_1, p_1), \ldots, (k_M, p_M)\}$$

$$K_s = \operatorname{argmin}_{\mathcal{S}} \sum_{i \in \mathcal{S}} \gamma(q(x), k_i)$$



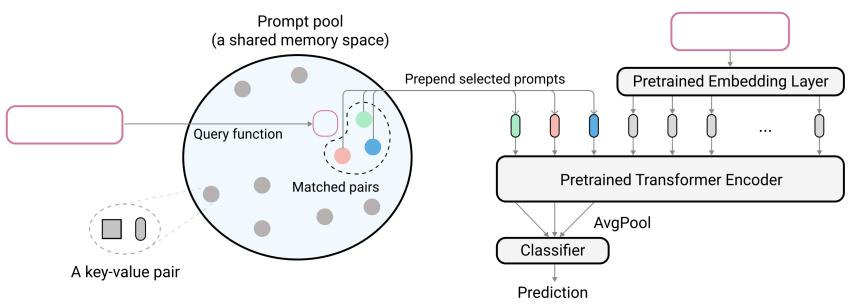
Learning to Prompt

Prompt pool (slot memory)

$$\{(k_1, p_1), \ldots, (k_M, p_M)\}$$

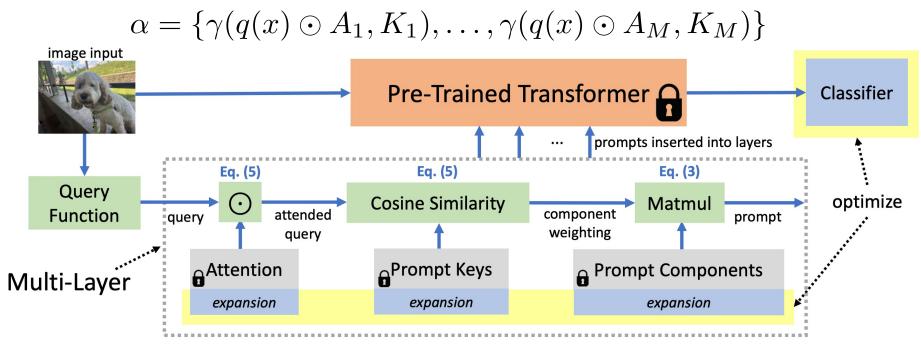
$$K_s = \operatorname{argmin}_{\mathcal{S}} \sum_{i \in \mathcal{S}} \gamma(q(x), k_i)$$

$$\min_{P,K,\phi} \mathcal{L}(g_{\phi}(x), y) + \lambda \sum_{i \in K_s} \gamma(q(x), k_i)$$

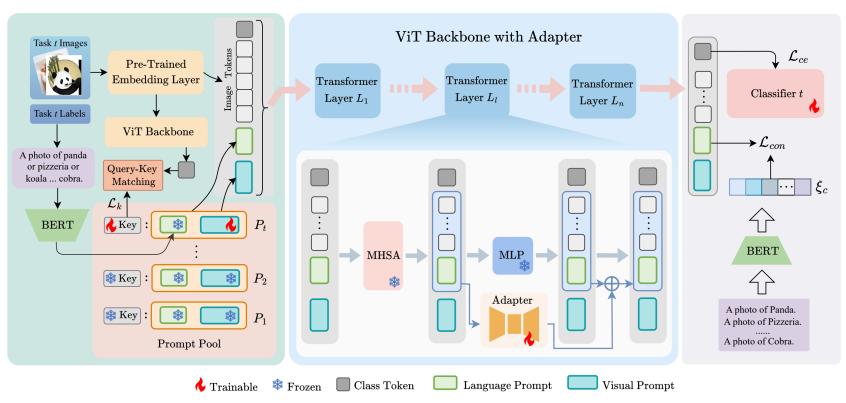


Learned Prompt Query

• The query function can be end-to-end learned.



Multimodal Semantic Prompts



• Fragility of feedforward gradient descent of the entire networks

- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.

- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.
- In prompting approaches:
 - prompt pool = memory
 - pretrained network = representations

- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.
- In prompting approaches:
 - prompt pool = memory
 - pretrained network = representations
- But what if representations also need to be built sequentially?

- Fragility of feedforward gradient descent of the entire networks
- If we have representations ready, continual learning is just memorizing a sequence of new tasks.
- In prompting approaches:
 - prompt pool = memory
 - pretrained network = representations
- But what if representations also need to be built sequentially?
- It's also plausible that representations are just "deeper memory."

Memory aims to store content for easy retrieval

- Memory aims to store content for easy retrieval
 - Associative memories (Hopfield Networks) can be viewed as energy-based models

Memory aims to store content for easy retrieval

Associative memories (Hopfield Networks) can be viewed as energy-based models

$$E=-rac{1}{2}\sum_{i,j=1}^N s_i W_{ij} s_j, \qquad W_{ij}=\sum_{k=1}^K \xi_i^k \xi_j^k.$$
 "Superposition" of k slots

Memory aims to store content for easy retrieval

• Associative memories (Hopfield Networks) can be viewed as energy-based models N

$$E=-\frac{1}{2}\sum_{i,j=1}^N s_iW_{ij}s_j, \qquad W_{ij}=\sum_{k=1}^K \xi_i^k\xi_j^k. \quad \text{"Superposition" of k slots}$$

• When presented with a new pattern the network should respond with a stored memory which most closely resembles the input.

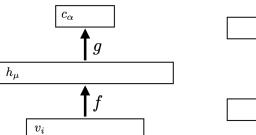
- Memory aims to store content for easy retrieval
 - Associative memories (Hopfield Networks) can be viewed as energy-based models

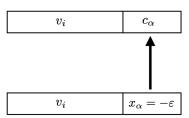
$$E=-\frac{1}{2}\sum_{i,j=1}^N s_iW_{ij}s_j, \qquad W_{ij}=\sum_{k=1}^K \xi_i^k\xi_j^k. \quad \text{"Superposition" of k slots}$$

- When presented with a new pattern the network should respond with a stored memory which most closely resembles the input.
- Retrieval: $s_i = \operatorname{sign}(\sum_j W_{ij} s_j)$ Storage: $C \approx \frac{d}{2 \log(d)} = 0.14 d$.

• Duality with a feedforward network.

$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$$

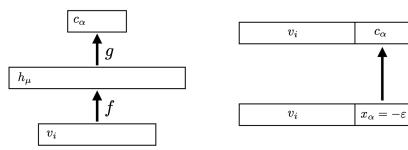




• Duality with a feedforward network.

$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$$

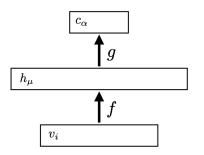
• Non-linearity allows us to store more patterns.

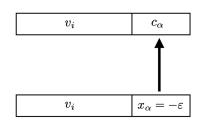


• Duality with a feedforward network.

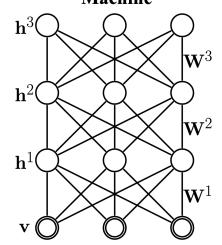
$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$$

- Non-linearity allows us to store more patterns.
- Deep Boltzmann machines





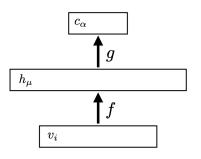
Deep Boltzmann Machine



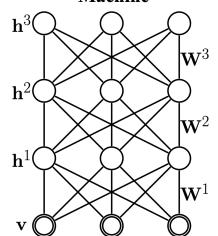
 Duality with a feedforward network.

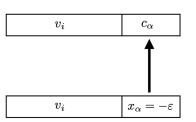
$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i})$$

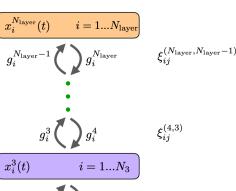
- Non-linearity allows us to store more patterns.
- Deep Boltzmann machines
- Hierarchical associative memory



Deep Boltzmann Machine







 $\xi_{ij}^{(2,1)}$

$$x_i^2(t)$$
 $i=1...N_2$ a_i^1 a_i^2

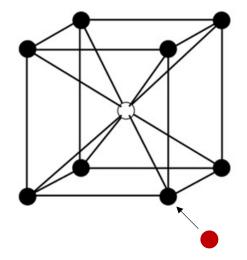
$$x_i^1(t)$$
 $i=1...N_1$

$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

• General form:

$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

• When $F(z) = z^2$ it gives the classic HN.

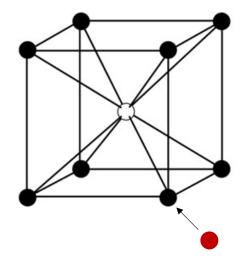


$$\nabla_{s_i} E = -\sum_j W_{ij} s_j$$
$$s_i \leftarrow \operatorname{sign}(\sum_j^j W_{ij} s_j)$$

$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

- When $F(z) = z^2$ it gives the classic HN.
- Transformer-like attention operation:

$$\boldsymbol{Z} \leftarrow \operatorname{softmax}(\beta \boldsymbol{X} \boldsymbol{W}_q \boldsymbol{W}_k^{\top} \boldsymbol{Y}^{\top}) \boldsymbol{Y}_i \boldsymbol{W}_v.$$



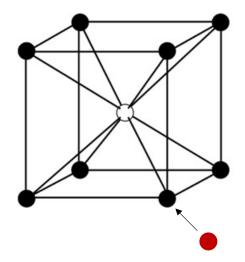
$$\nabla_{s_i} E = -\sum_j W_{ij} s_j$$
$$s_i \leftarrow \operatorname{sign}(\sum_j^j W_{ij} s_j)$$

$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

- When $F(z) = z^2$ it gives the classic HN.
- Transformer-like attention operation:

$$\boldsymbol{Z} \leftarrow \operatorname{softmax}(\beta \boldsymbol{X} \boldsymbol{W}_q \boldsymbol{W}_k^{\top} \boldsymbol{Y}^{\top}) \boldsymbol{Y}_i \boldsymbol{W}_v.$$

$$S \leftarrow \operatorname{softmax}(\beta S \Xi^{\top}) \Xi.$$



$$\nabla_{s_i} E = -\sum_j W_{ij} s_j$$
$$s_i \leftarrow \operatorname{sign}(\sum_j^j W_{ij} s_j)$$

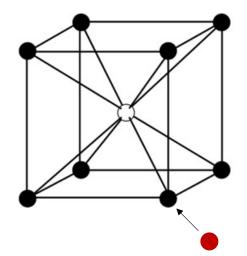
$$E = -\sum_{k} F(\sum_{i} \xi_{i}^{k} s_{i}).$$

- When $F(z) = z^2$ it gives the classic HN.
- Transformer-like attention operation:

$$\boldsymbol{Z} \leftarrow \operatorname{softmax}(\beta \boldsymbol{X} \boldsymbol{W}_q \boldsymbol{W}_k^{\top} \boldsymbol{Y}^{\top}) \boldsymbol{Y}_i \boldsymbol{W}_v.$$

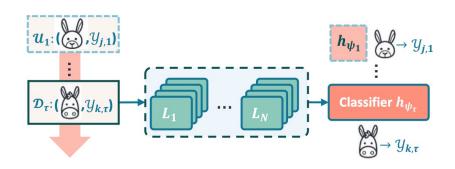
$$S \leftarrow \operatorname{softmax}(\beta S \Xi^{\top}) \Xi.$$

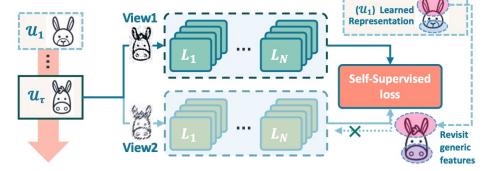
$$E = -\operatorname{logsumexp}(\beta, \mathbf{\Xi}^{\top} \mathbf{s}) + \frac{1}{2} \mathbf{s}^{\top} \mathbf{s} + \beta^{-1} \log N + \frac{1}{2} M^{2}.$$



$$\nabla_{s_i} E = -\sum_j W_{ij} s_j$$
$$s_i \leftarrow \operatorname{sign}(\sum_j^j W_{ij} s_j)$$

• Learning from a stream of unlabeled inputs.

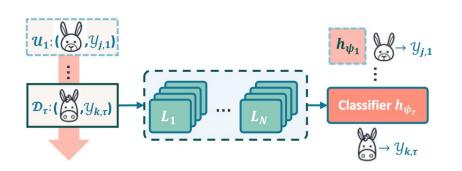


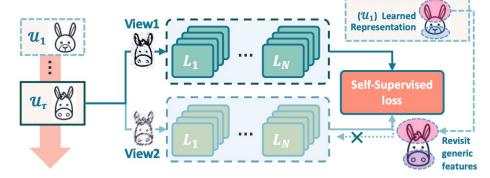


SUPERVISED CONTINUAL LEARNING (SCL)

Unsupervised Continual Learning (UCL)

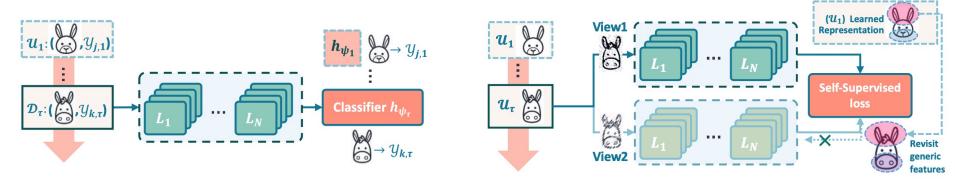
- Learning from a stream of unlabeled inputs.
- Bring SSL to the dynamic world.





Unsupervised Continual Learning (UCL)

- Learning from a stream of unlabeled inputs.
- Bring SSL to the dynamic world.
- SSL can still suffer from distributional shifts.

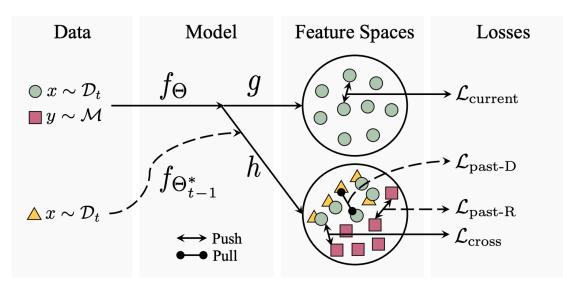


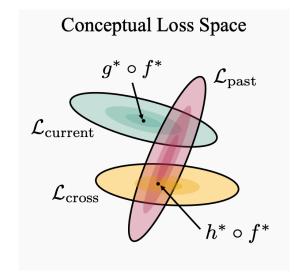
SUPERVISED CONTINUAL LEARNING (SCL)

Unsupervised Continual Learning (UCL)

• Integrating learning objectives of both past and present.

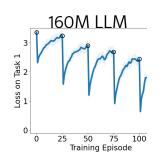
Current Past (Distillation) Past (Replay) Cross-Consolidation
$$\mathcal{L}(X;g\circ f_t) + \mathcal{L}(X,X;h\circ f_{t-1},h\circ f_t) + \mathcal{L}(Y;h\circ f_t) + \mathcal{L}(X,Y;h\circ f_t)$$

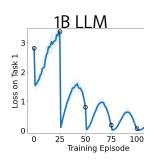




Outlooks

• Understand continual learning at scale

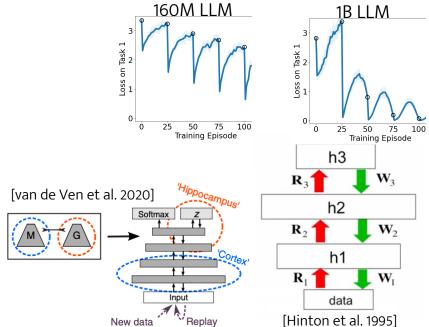




[Mayo et al. 2023]

Outlooks

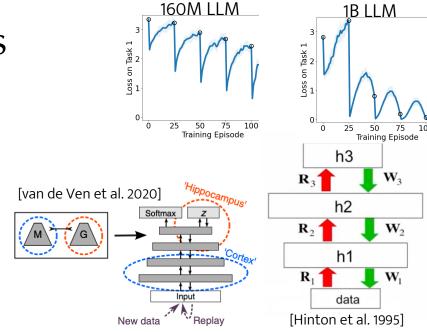
- Understand continual learning at scale
- Unified learning architecture, objective and replay, role of sleep



[Mayo et al. 2023]

Outlooks

- Understand continual learning at scale
- Unified learning architecture, objective and replay, role of sleep
- Continual learning with real world structure



Typical setting of human learning [Mayo et al. 2023]

• Regularization, Distillation, Architecture Expansion/Isolation

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning
- Integration of memory and representations

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning
- Integration of memory and representations
- Combination with self-supervised learning

- Regularization, Distillation, Architecture Expansion/Isolation
- Frozen representation: prompt learning
- Integration of memory and representations
- Combination with self-supervised learning
- Exploration of multimodal continual learning from embodied environments

