
DS-GA.3001
Embodied
Learning and
Vision

Mengye Ren

NYU

Spring 2025

embodied-learning-vision-course.github.io

Lecture Slides for Note Taking

Energy-Based Learning

• Example: RBMs
• Energy:

Hinton. Restricted Boltzmann Machines.

E(v, h) = −

∑
i,j vihjwij .

∂ log p(v)
∂wij

=< vihj >
0
− < vihj >

∞ .

p(hj = 1|vi) = σ(
∑

ij viwij).

Gibbs

General EBMs

• Inference requires running gradient descent and MCMC samples
(Langevin samples).

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurIPS 2019.

General EBMs

• Inference requires running gradient descent and MCMC samples
(Langevin samples).

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurIPS 2019.

x̃
k = ˜

x
k−1 − λ

2
∇xEθ(x̃

k−1) + ωk,ωk ∼ N (0,λ).

∇θL = Ex∼pD
[∇θEθ(x

+)]− Ex∼qθ [∇θEθ(x
−)].

tfpmeEe

of noise

F YET negative

gradient descent on input

General EBMs

• Inference requires running gradient descent and MCMC samples
(Langevin samples).

• Can be applied on hand manipulation trajectory generation.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurIPS 2019.

x̃
k = ˜

x
k−1 − λ

2
∇xEθ(x̃

k−1) + ωk,ωk ∼ N (0,λ).

∇θL = Ex∼pD
[∇θEθ(x

+)]− Ex∼qθ [∇θEθ(x
−)].

General EBMs

• Inference requires running gradient descent and MCMC samples
(Langevin samples).

• Can be applied on hand manipulation trajectory generation.
• Good results in generation but still not a generalized

representation learning algorithm.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurIPS 2019.

x̃
k = ˜

x
k−1 − λ

2
∇xEθ(x̃

k−1) + ωk,ωk ∼ N (0,λ).

∇θL = Ex∼pD
[∇θEθ(x

+)]− Ex∼qθ [∇θEθ(x
−)].

features

Self-Supervised Visual Learning

• Match the same image (with severe augmentation)

Self-Supervised Visual Learning

• Match the same image (with severe augmentation)
• Joint embedding approach: Apply loss on the embedding level.

Self-Supervised Visual Learning

• Match the same image (with severe augmentation)
• Joint embedding approach: Apply loss on the embedding level.
• Use negative examples (contrastive) or not (non-contrastive).

O

Self-Supervised Visual Learning

• Match the same image (with severe augmentation)
• Joint embedding approach: Apply loss on the embedding level.
• Use negative examples (contrastive) or not (non-contrastive).
• Energy is defined between a pair of images.

Several Embedding Loss Formulations

• Instance Classification:

Wu et al., 2018

Several Embedding Loss Formulations

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

Wu et al., 2018

Chen et al. 2020

ℓi,j = − log
exp(sim(zi,zj)/τ)∑2N

k=1 [k ̸=i] exp(sim(zi,zk)/τ)
.

Softmax

0

Several Embedding Loss Formulations

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

• Non-contrastive Learning (Positive Only)
• Moving Average [Grill et al., 2020]
• Stop Gradient [Chen & He, 2020]

Wu et al., 2018

Chen et al. 2020

ℓi,j = − log
exp(sim(zi,zj)/τ)∑2N

k=1 [k ̸=i] exp(sim(zi,zk)/τ)
.

its it

Several Embedding Loss Formulations

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

• Non-contrastive Learning (Positive Only)
• Moving Average [Grill et al., 2020]
• Stop Gradient [Chen & He, 2020]

• Use of projectors and predictors

Wu et al., 2018

Chen et al. 2020

ℓi,j = − log
exp(sim(zi,zj)/τ)∑2N

k=1 [k ̸=i] exp(sim(zi,zk)/τ)
.

Several Embedding Loss Formulations

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

• Non-contrastive Learning (Positive Only)
• Moving Average [Grill et al., 2020]
• Stop Gradient [Chen & He, 2020]

• Use of projectors and predictors

Wu et al., 2018

Chen et al. 2020

Chen et al. 2020

ℓi,j = − log
exp(sim(zi,zj)/τ)∑2N

k=1 [k ̸=i] exp(sim(zi,zk)/τ)
.

Several Embedding Loss Formulations

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

• Non-contrastive Learning (Positive Only)
• Moving Average [Grill et al., 2020]
• Stop Gradient [Chen & He, 2020]

• Use of projectors and predictors

Wu et al., 2018

Chen & He, 2021Chen et al. 2020

Chen et al. 2020

ℓi,j = − log
exp(sim(zi,zj)/τ)∑2N

k=1 [k ̸=i] exp(sim(zi,zk)/τ)
.

Several Embedding Loss Formulations

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

• Non-contrastive Learning (Positive Only)
• Moving Average [Grill et al., 2020]
• Stop Gradient [Chen & He, 2020]

• Use of projectors and predictors
• Use of co-variance regularization

Wu et al., 2018

Zbontar et al. 2021
Bardes et al. 2021Chen & He, 2021Chen et al. 2020

Chen et al. 2020

ℓi,j = − log
exp(sim(zi,zj)/τ)∑2N

k=1 [k ̸=i] exp(sim(zi,zk)/τ)
.

I

DINO

• Knowledge distillation between a student
and a teacher network.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

DINO

• Knowledge distillation between a student
and a teacher network.
• Student:

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

ps(x) =
exp(gθs (x)i/τs)∑
k
exp (gθs (x)k/τs)

. 0

DINO

• Knowledge distillation between a student
and a teacher network.
• Student:

• Minimize CE:

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

ps(x) =
exp(gθs (x)i/τs)∑
k
exp (gθs (x)k/τs)

.

w

DINO

• Knowledge distillation between a student
and a teacher network.
• Student:

• Minimize CE:

• Stop gradient on the teacher (no true label).

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

ps(x) =
exp(gθs (x)i/τs)∑
k
exp (gθs (x)k/τs)

.

DINO

• Knowledge distillation between a student
and a teacher network.
• Student:

• Minimize CE:

• Stop gradient on the teacher (no true label).
• Teacher network has EMA weights copied

from student (prevent collapse).
Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

ps(x) =
exp(gθs (x)i/τs)∑
k
exp (gθs (x)k/τs)

.

Preventing Collapse

• Cross entropy objective can make both sides collapse to uniform
distribution.
• Apply sharpening, apply a temperature term on both teacher and student.
• The higher the temperature, the more uniform.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

softmax(g/τ)To

Preventing Collapse

• Cross entropy objective can make both sides collapse to uniform
distribution.
• Apply sharpening, apply a temperature term on both teacher and student.
• The higher the temperature, the more uniform.

• It can also collapse into always activating a single unit.
• Mean statistics:

• Center teacher prediction:

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

softmax(g/τ)

ct = mct−1 + (1−m) 1

B

∑B

i=1
gθt(xi)

pt(x) =
exp((gθt (x)i−ct)/τt)∑
k
exp ((gθt (x)k−ct)/τt)

.

E
O

Of

Centering and Sharpening

• Only centering: Always uniform distribution, high entropy, easy to
guess.
• Only sharpening: Collapsed into one unit, easy to guess, low loss, but

no real learning.

Visualizing Attention

• The [CLS] token is an extra token
added to summarize the whole
image into a vector.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

0 00

0

Visualizing Attention

• The [CLS] token is an extra token
added to summarize the whole
image into a vector.
• Visualize the attention map of

different attention heads using
different colors.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

Visualizing Attention

• The [CLS] token is an extra token
added to summarize the whole
image into a vector.
• Visualize the attention map of

different attention heads using
different colors.
• Showing understanding of

different objects and parts.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

Visualizing Attention

• We can also visualize the attention by querying from a location.
• Weak separation of objects.

o 0

Why Does SSL Work?

• The unsupervised loss is a
surrogate. If an image belongs
to a similarity class, it also
belongs to the same semantic
class.
• The choice of similarity class

matters.

Aurora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning.
Saunshi et al. Understanding Contrastive Learning Requires Incorporating Inductive Biases. 2022.

Z Zi classification ATtil It

SSL with Motion

• Can we use adjacent frames as self-supervision?
• Objects move densely throughout the image.A. Flow Equivariance Learning B. Pooled and Dense Learning

T
<latexit sha1_base64="C9GlttJGukZ6KFAql98D/7tz7I8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10G3Xvqt54vK4174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AjnuRbg==</latexit>

Feature space

Flow

T �1
<latexit sha1_base64="92i8tzG/QZjvznOnIIZJ/QicAHk=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCF0tSC3osePFYoa2FNpbNdtMu3WzC7qZQQv6JFw+KePWfePPfuGlz0NaBhWHmPd7s+DFnSjvOt1Xa2Nza3invVvb2Dw6P7OOTrooSSWiHRDySPR8rypmgHc00p71YUhz6nD7607vcf5xRqVgk2noeUy/EY8ECRrA20tC2ByHWE4J52s6e0is3G9pVp+YsgNaJW5AqFGgN7a/BKCJJSIUmHCvVd51YeymWmhFOs8ogUTTGZIrHtG+owCFVXrpInqELo4xQEEnzhEYL9fdGikOl5qFvJvOcatXLxf+8fqKDWy9lIk40FWR5KEg40hHKa0AjJinRfG4IJpKZrIhMsMREm7IqpgR39cvrpFuvude1+kOj2mwUdZThDM7hEly4gSbcQws6QGAGz/AKb1ZqvVjv1sdytGQVO6fwB9bnD2oPk3c=</latexit>

Encoder

Encoder

Frame	'!

Frame	'!"∆!

!"!
!"!"#!

= 1
&' !"! − !"!"#! $

Frame	'!

	"!"#$"

	"%&&'

Frame	'!"∆!Flow

Decoder EncoderDecoder

pool 	pool

Encoder

subcrop subcrop

T
<latexit sha1_base64="C9GlttJGukZ6KFAql98D/7tz7I8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10G3Xvqt54vK4174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AjnuRbg==</latexit>

T �1
<latexit sha1_base64="92i8tzG/QZjvznOnIIZJ/QicAHk=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCF0tSC3osePFYoa2FNpbNdtMu3WzC7qZQQv6JFw+KePWfePPfuGlz0NaBhWHmPd7s+DFnSjvOt1Xa2Nza3invVvb2Dw6P7OOTrooSSWiHRDySPR8rypmgHc00p71YUhz6nD7607vcf5xRqVgk2noeUy/EY8ECRrA20tC2ByHWE4J52s6e0is3G9pVp+YsgNaJW5AqFGgN7a/BKCJJSIUmHCvVd51YeymWmhFOs8ogUTTGZIrHtG+owCFVXrpInqELo4xQEEnzhEYL9fdGikOl5qFvJvOcatXLxf+8fqKDWy9lIk40FWR5KEg40hHKa0AjJinRfG4IJpKZrIhMsMREm7IqpgR39cvrpFuvude1+kOj2mwUdZThDM7hEly4gSbcQws6QGAGz/AKb1ZqvVjv1sdytGQVO6fwB9bnD2oPk3c=</latexit>

frameframe

SSL with Motion

• Perform SSL in multiple scales (small objects vs. big regions).

Wang et al. PooDLe: Pooled and Dense Self-Supervised Learning from Naturalistic Videos. ICLR 2025.

A. Flow Equivariance Learning B. Pooled and Dense Learning

T
<latexit sha1_base64="C9GlttJGukZ6KFAql98D/7tz7I8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10G3Xvqt54vK4174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AjnuRbg==</latexit>

Feature space

Flow

T �1
<latexit sha1_base64="92i8tzG/QZjvznOnIIZJ/QicAHk=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCF0tSC3osePFYoa2FNpbNdtMu3WzC7qZQQv6JFw+KePWfePPfuGlz0NaBhWHmPd7s+DFnSjvOt1Xa2Nza3invVvb2Dw6P7OOTrooSSWiHRDySPR8rypmgHc00p71YUhz6nD7607vcf5xRqVgk2noeUy/EY8ECRrA20tC2ByHWE4J52s6e0is3G9pVp+YsgNaJW5AqFGgN7a/BKCJJSIUmHCvVd51YeymWmhFOs8ogUTTGZIrHtG+owCFVXrpInqELo4xQEEnzhEYL9fdGikOl5qFvJvOcatXLxf+8fqKDWy9lIk40FWR5KEg40hHKa0AjJinRfG4IJpKZrIhMsMREm7IqpgR39cvrpFuvude1+kOj2mwUdZThDM7hEly4gSbcQws6QGAGz/AKb1ZqvVjv1sdytGQVO6fwB9bnD2oPk3c=</latexit>

Encoder

Encoder

Frame	'!

Frame	'!"∆!

!"!
!"!"#!

= 1
&' !"! − !"!"#! $

Frame	'!

	"!"#$"

	"%&&'

Frame	'!"∆!Flow

Decoder EncoderDecoder

pool 	pool

Encoder

subcrop subcrop

T
<latexit sha1_base64="C9GlttJGukZ6KFAql98D/7tz7I8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10G3Xvqt54vK4174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AjnuRbg==</latexit>

T �1
<latexit sha1_base64="92i8tzG/QZjvznOnIIZJ/QicAHk=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCF0tSC3osePFYoa2FNpbNdtMu3WzC7qZQQv6JFw+KePWfePPfuGlz0NaBhWHmPd7s+DFnSjvOt1Xa2Nza3invVvb2Dw6P7OOTrooSSWiHRDySPR8rypmgHc00p71YUhz6nD7607vcf5xRqVgk2noeUy/EY8ECRrA20tC2ByHWE4J52s6e0is3G9pVp+YsgNaJW5AqFGgN7a/BKCJJSIUmHCvVd51YeymWmhFOs8ogUTTGZIrHtG+owCFVXrpInqELo4xQEEnzhEYL9fdGikOl5qFvJvOcatXLxf+8fqKDWy9lIk40FWR5KEg40hHKa0AjJinRfG4IJpKZrIhMsMREm7IqpgR39cvrpFuvude1+kOj2mwUdZThDM7hEly4gSbcQws6QGAGz/AKb1ZqvVjv1sdytGQVO6fwB9bnD2oPk3c=</latexit>

frameframe

SSL with Time

• Use time as an additional source
of supervision.

Misra et al. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. ECCV 2016.
Sermanet et al. Time-Contrastive Networks: Self-Supervised Learning from Video. ICRA 2018.
Orhan et al. Self-Supervised Learning through the Eyes of a Child. NeurIPS 2020.

aiffiti

SSL with Time

• We can segment videos into meaningful events.
• Leverage the spatiotemporal continuity structure.

Yang & Ren. Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from
Egocentric Videos. arXiv 2025.

1

SSL for Visual Control

Yarats. Reinforcement Learning with Prototypical Representations. ICML 2021.

SSL for Visual Control

Cui et al. DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control. NeurIPS 2024.

Not augment
just lidfames

SSL for Visual Control

Wu et al. Policy Pre-training for Autonomous Driving via Self-supervised Geometric Modeling. ICLR 2023.

8

BabyCam

• Run visual learning algorithms on baby
headcam videos.

Summary

• Representation learning leverage the information in unlabeled data.

Summary

• Representation learning leverage the information in unlabeled data.
• A foundation for sensorimotor learning.

Summary

• Representation learning leverage the information in unlabeled data.
• A foundation for sensorimotor learning.
• Inductive biases matter.

Summary

• Representation learning leverage the information in unlabeled data.
• A foundation for sensorimotor learning.
• Inductive biases matter.
• Possible learning objectives for egocentric videos.

Summary

• Representation learning leverage the information in unlabeled data.
• A foundation for sensorimotor learning.
• Inductive biases matter.
• Possible learning objectives for egocentric videos.
• Incorporate 3D vision and actions for downstream planning.

Emergent Attention, Object Discovery

• SSL representations show awareness of object classes and instance
identities.

Emergent Attention, Object Discovery

• SSL representations show awareness of object classes and instance
identities.
• Why does attention show awareness of objects?

Emergent Attention, Object Discovery

• SSL representations show awareness of object classes and instance
identities.
• Why does attention show awareness of objects?
• The network is encouraged to associate different parts of the objects

together in order to identify whether two inputs belong to the same
image or not.

Emergent Attention, Object Discovery

• SSL representations show awareness of object classes and instance
identities.
• Why does attention show awareness of objects?
• The network is encouraged to associate different parts of the objects

together in order to identify whether two inputs belong to the same
image or not.
• Attending to semantically similar parts facilitates the process.

Emergent Attention, Object Discovery

• SSL representations show awareness of object classes and instance
identities.
• Why does attention show awareness of objects?
• The network is encouraged to associate different parts of the objects

together in order to identify whether two inputs belong to the same
image or not.
• Attending to semantically similar parts facilitates the process.
• The network is a hierarchical information processing pipeline – Lower

layers integrate more granular and smaller neighborhood.

Weak-to-Strong Supervision

• General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.

Weak-to-Strong Supervision

• General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.
• Then use these masks as pseudo labels and supervise the network to

predict these low-quality masks.e

Weak-to-Strong Supervision

• General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.
• Then use these masks as pseudo labels and supervise the network to

predict these low-quality masks.
• Question: how do we come up with masks? What loss is used to

supervise the network?

Graph Cut

• Segmentation is essentially a
clustering problem.

Graph Cut

• Segmentation is essentially a
clustering problem.
• We can transform the clustering

problem with the graph cut problem.

Graph Cut

• Segmentation is essentially a
clustering problem.
• We can transform the clustering

problem with the graph cut problem.
• Pixel = node.

Graph Cut

• Segmentation is essentially a
clustering problem.
• We can transform the clustering

problem with the graph cut problem.
• Pixel = node.
• Affinity between the two pixels =

edge value (flow).

Graph Cut

• Segmentation is essentially a
clustering problem.
• We can transform the clustering

problem with the graph cut problem.
• Pixel = node.
• Affinity between the two pixels =

edge value (flow).
• Objective: Cut the graph into

disconnected components with a
minimum sum of edge values.

Vit tokens

Normalized Graph Cut (NCut)

• How to prevent cutting
small isolated nodes?

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

Normalized Graph Cut (NCut)

• How to prevent cutting
small isolated nodes?
• Normalize by the total

edge connections of a
group to all the nodes.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

Ncut(A,B) = cut(A,B)
assoc(A,V) +

cut(A,B)
assoc(B,V) . I

NCut Details (Optional)

• A form of spectral clustering.
• Degree matrix !	#	×	#	with %! on the diagonal.
• Weight matrix &	#	×	#	symmetric '!" .
• Selection vector (! = 1 if + ∈ - otherwise −1.
• Solve the minimization:
• Generalized eigenvalue system:
• Let

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

miny
y⊤(D−W)y

y⊤Dy
y = (1 + x)−

∑
i|xi>0

di
∑

i|xi<0
di
(1− x).

(D −W)y = λDy.

z = D1/2y D
−

1

2 (D −W)D−

1

2 z = λz.

NCut

• Sort the eigenvectors from the
smallest to the largest.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

NCut

• Sort the eigenvectors from the
smallest to the largest.
• This was a classic image

segmentation technique
operating directly on image
intensity.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

NCut

• Sort the eigenvectors from the
smallest to the largest.
• This was a classic image

segmentation technique
operating directly on image
intensity.
• Now, instead of segmenting

pixels, we can directly segment
semantically meaningful
representations from self-
supervision.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

MaskCut

• Use a pretrained DINO ViT network.

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

o

MaskCut

• Use a pretrained DINO ViT network.
• Use the “key” features from the last attention layer:

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Wij =
KiKj

∥Ki∥2∥Kj∥2

MaskCut

• Use a pretrained DINO ViT network.
• Use the “key” features from the last attention layer:
• Iterative NCut on the pairwise matrix by masking out the regions

from previous stages.

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Wij =
KiKj

∥Ki∥2∥Kj∥2

Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.
• Select the predictions with the highest confidence score and use

them as labels.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.
• Select the predictions with the highest confidence score and use

them as labels.
• Neural networks can learn from the noisy labels and output smoother

predictions.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

More Visualization

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Pseudo Labels in 3D

Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.

a

Iterative Refinement of Pseudo Labels

Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.

0

Slot Attention Networks

• Can we learn clustering as an end-to-
end operation?

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

Tent
encoding

Q

8

Slot Attention Networks

• Can we learn clustering as an end-to-
end operation?
• Slot attention is inspired by the

success of the attention mechanism.

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

Slot Attention Networks

• Can we learn clustering as an end-to-
end operation?
• Slot attention is inspired by the

success of the attention mechanism.
• Each “slot” attends to a region of the

image and stores an object centric
representation.

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	(∈ ℝ#×% (after encoder), Slots: 1 ∈ ℝ&×% . Normalize:
21'() = 3# 1'() .

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

I

Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	(∈ ℝ#×% (after encoder), Slots: 1 ∈ ℝ&×% . Normalize:
21'() = 3# 1'() .

• Attention over slots:

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

at,i,j =

1√
D
k(xi)·q(m̃j)

⊤

∑
j

1√
D
k(xi)·q(m̃j)⊤

.

0

Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	(∈ ℝ#×% (after encoder), Slots: 1 ∈ ℝ&×% . Normalize:
21'() = 3# 1'() .

• Attention over slots:
• Updates:

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

at,i,j =

1√
D
k(xi)·q(m̃j)

⊤

∑
j

1√
D
k(xi)·q(m̃j)⊤

.

utj =
∑

i atijv(xi).0

Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	(∈ ℝ#×% (after encoder), Slots: 1 ∈ ℝ&×% . Normalize:
21'() = 3# 1'() .

• Attention over slots:
• Updates:
• Write into slots:

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

at,i,j =

1√
D
k(xi)·q(m̃j)

⊤

∑
j

1√
D
k(xi)·q(m̃j)⊤

.

utj =
∑

i atijv(xi).

mt = GRU(mt−1, ut) +MLP (m̃t−1).
prevmen updates

00

Slot Attention Networks

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

o o

Complex-Valued Autoencoders (CAEs)

• The complex number can
represent magnitude and
phase:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

z = m · e
iϕ

∈ C.
FII

0 Titus
dimension

Complex-Valued Autoencoders (CAEs)

• The complex number can
represent magnitude and
phase:
• Each pixel starts with an

initial phase 0.

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

z = m · e
iϕ

∈ C.

Complex-Valued Autoencoders (CAEs)

• The complex number can
represent magnitude and
phase:
• Each pixel starts with an

initial phase 0.

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

z = m · e
iϕ

∈ C.

ẑ = fdec(fenc(x)) ∈ C
h×w.O t

Complex-Valued Autoencoders (CAEs)

• The complex number can
represent magnitude and
phase:
• Each pixel starts with an

initial phase 0.

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

z = m · e
iϕ

∈ C.

ẑ = fdec(fenc(x)) ∈ C
h×w.

x̂ = fout(ẑ) ∈ R
h×w.O

CAE: More Details

• Apply weights separately to real and imaginary:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

ψ = fw(z) = fw(Re(z)) + fw(Im(z)) · i ∈ Cdout

CAE: More Details

• Apply weights separately to real and imaginary:

• Bias on magnitude and phase:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

ψ = fw(z) = fw(Re(z)) + fw(Im(z)) · i ∈ Cdout

mψ = |ψ|+ bm ∈ R
dout ϕψ = arg(ψ) + bϕ ∈ R

dout

0

CAE: More Details

• Apply weights separately to real and imaginary:

• Bias on magnitude and phase:

• Gating:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

ψ = fw(z) = fw(Re(z)) + fw(Im(z)) · i ∈ Cdout

mψ = |ψ|+ bm ∈ R
dout ϕψ = arg(ψ) + bϕ ∈ R

dout

χ = fw(|z|) + bm ∈ R
dout

mz = 0.5 ·mψ + 0.5 · χ ∈ R
dout

o

CAE: More Details

• Apply weights separately to real and imaginary:

• Bias on magnitude and phase:

• Gating:

• Activation:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

ψ = fw(z) = fw(Re(z)) + fw(Im(z)) · i ∈ Cdout

mψ = |ψ|+ bm ∈ R
dout ϕψ = arg(ψ) + bϕ ∈ R

dout

χ = fw(|z|) + bm ∈ R
dout

mz = 0.5 ·mψ + 0.5 · χ ∈ R
dout

z
′ = ReLU(BatchNorm(mz)) · e

iϕψ ∈ C
dout

mtg pthase

Complex-Valued Autoencoders

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

Summary: Object Discovery

• Combine deep features with clustering algorithms.

Summary: Object Discovery

• Combine deep features with clustering algorithms.
• Pseudo-labels to train detector networks.

Summary: Object Discovery

• Combine deep features with clustering algorithms.
• Pseudo-labels to train detector networks.
• Creative end-to-end learning-based solutions exist, but there are still

plenty room for improvement.
• Possible to train from scratch!

Summary: Object Discovery

• Combine deep features with clustering algorithms.
• Pseudo-labels to train detector networks.
• Creative end-to-end learning-based solutions exist, but there are still

plenty room for improvement.
• Possible to train from scratch!

• What do we make use of the discovered objects? Is it better to keep
the awareness in the latent space?

Module 4:
World Models and End-to-End Planning

World Models: Predicting Future

World Models: Predicting Future

• There is a debate whether predicting future is necessary.

World Models: Predicting Future

• There is a debate whether predicting future is necessary.
• Data efficiency
• Predicting future can “simulate” roll out without querying for outcomes.
• Leveraging the massive amount of data in past experiences (not just the final

reward).

World Models: Predicting Future

• There is a debate whether predicting future is necessary.
• Data efficiency
• Predicting future can “simulate” roll out without querying for outcomes.
• Leveraging the massive amount of data in past experiences (not just the final

reward).
• Long-horizon planning: Predicting high-level future steps is needed.

World Models: Predicting Future

• There is a debate whether predicting future is necessary.
• Data efficiency
• Predicting future can “simulate” roll out without querying for outcomes.
• Leveraging the massive amount of data in past experiences (not just the final

reward).
• Long-horizon planning: Predicting high-level future steps is needed.
• Can representations learned from SSL help us build better

prediction?

Model-Predictive Control (MPC)

• A classic example of world models.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

Model-Predictive Control (MPC)

• A classic example of world models.
• Analytical forms, complete knowledge of the dynamical system.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

Model-Predictive Control (MPC)

• A classic example of world models.
• Analytical forms, complete knowledge of the dynamical system.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

dx

dt
= f(x,u, t)

y = h(x,u, t)

x(t0) = x0

General Form:

it control

Model-Predictive Control (MPC)

• A classic example of world models.
• Analytical forms, complete knowledge of the dynamical system.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

dx

dt
= f(x,u, t)

y = h(x,u, t)

x(t0) = x0

General Form: Linear Form:

dx

dt
= Ax+Bu

y = Cx+Du

x(t0) = x0

Model-Predictive Control (MPC)

• A classic example of world models.
• Analytical forms, complete knowledge of the dynamical system.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

dx

dt
= f(x,u, t)

y = h(x,u, t)

x(t0) = x0

General Form: Linear Form:

dx

dt
= Ax+Bu

y = Cx+Du

x(t0) = x0

Optimize Value/Cost Function:

minu J(x(0),u)ok

Model-Predictive Control (MPC)

• A classic example of world models.
• Analytical forms, complete knowledge of the dynamical system.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

dx

dt
= f(x,u, t)

y = h(x,u, t)

x(t0) = x0

General Form: Linear Form:

dx

dt
= Ax+Bu

y = Cx+Du

x(t0) = x0

Optimize Value/Cost Function:

minu J(x(0),u)

Quadratic Form (LQR):

J =
∫
∞

0
x
⊤Qx+ u

⊤Ru dt.

To
reach Kooth

Model-Predictive Control (MPC)

• A classic example of world models.
• Analytical forms, complete knowledge of the dynamical system.

• Example: Cars: x: position velocity angle angular velocity; u: jerk and
angular accel.;

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

dx

dt
= f(x,u, t)

y = h(x,u, t)

x(t0) = x0

General Form: Linear Form:

dx

dt
= Ax+Bu

y = Cx+Du

x(t0) = x0

Optimize Value/Cost Function:

minu J(x(0),u)

Quadratic Form (LQR):

J =
∫
∞

0
x
⊤Qx+ u

⊤Ru dt.

Trajectory Prediction as Object Detection

• We also need to predict external
dynamic objects.

Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018.

go

Trajectory Prediction as Object Detection

• We also need to predict external
dynamic objects.
• How to capture multiple modes?

Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018.

Trajectory Prediction as Object Detection

• We also need to predict external
dynamic objects.
• How to capture multiple modes?
• Discrete intention prediction

problem:
• keep lane, turn left/right, left/right

change lane, stopping, parked, etc.

Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018.

Trajectory Prediction as Object Detection

• We also need to predict external
dynamic objects.
• How to capture multiple modes?
• Discrete intention prediction

problem:
• keep lane, turn left/right, left/right

change lane, stopping, parked, etc.
• Output multiple trajectories

Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018.

Trajectory Prediction as Object Detection

• We also need to predict external
dynamic objects.
• How to capture multiple modes?
• Discrete intention prediction

problem:
• keep lane, turn left/right, left/right

change lane, stopping, parked, etc.
• Output multiple trajectories
• Requires high-level action labels.

Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018.

Latent Sequence World Model for RL

• Autoencoder to ensure the latent
representations are meaningful.

Hafner et al. Mastering Diverse Domains through World Models. 2023.

zt ∼ qφ(zt | ht, xt)

x̂t ∼ pφ(x̂t | ht, zt) 0

Latent Sequence World Model for RL

• Autoencoder to ensure the latent
representations are meaningful.

• Learn a sequence model to predict
the latent conditioned on previous
action.

Hafner et al. Mastering Diverse Domains through World Models. 2023.

zt ∼ qφ(zt | ht, xt)

x̂t ∼ pφ(x̂t | ht, zt)

ht = fφ(ht−1, zt−1, at−1)

ẑt ∼ pφ(ẑt | ht)

input

y

0
00

Incorporating Rewards

• Predicting reward

Hafner et al. Mastering Diverse Domains through World Models. 2023.

r̂t ∼ pφ(r̂t | ht, zt) 0

Incorporating Rewards

• Predicting reward

• Reconstruction, reward, continue

Hafner et al. Mastering Diverse Domains through World Models. 2023.

r̂t ∼ pφ(r̂t | ht, zt)

Lpred(φ) = − log pφ(xt | zt, ht)− log pφ(rt | zt, ht)− log pφ(ct | zt, ht)

retnstruction Fad Intinuation

Incorporating Rewards

• Predicting reward

• Reconstruction, reward, continue

• Dynamics: Predicting future z

Hafner et al. Mastering Diverse Domains through World Models. 2023.

r̂t ∼ pφ(r̂t | ht, zt)

Lpred(φ) = − log pφ(xt | zt, ht)− log pφ(rt | zt, ht)− log pφ(ct | zt, ht)

Ldyn(φ) = max(1,KL[sg(qφ(zt | ht, xt) ∥ pφ(zt|ht))]O X 0
Stopgradient

Incorporating Rewards

• Predicting reward

• Reconstruction, reward, continue

• Dynamics: Predicting future z

• Align representation

Hafner et al. Mastering Diverse Domains through World Models. 2023.

r̂t ∼ pφ(r̂t | ht, zt)

Lpred(φ) = − log pφ(xt | zt, ht)− log pφ(rt | zt, ht)− log pφ(ct | zt, ht)

Ldyn(φ) = max(1,KL[sg(qφ(zt | ht, xt) ∥ pφ(zt|ht))]

Lrep = max(1,KL[qφ(zt|ht, xt) ∥ sg(pφ(zt|ht))])

Incorporating Rewards

• How to use WM in planning?
Predicting value by simulate a batch
of trajectories.

Hafner et al. Mastering Diverse Domains through World Models. 2023.

O

Incorporating Rewards

• How to use WM in planning?
Predicting value by simulate a batch
of trajectories.
• Actor-Critic RL:

Hafner et al. Mastering Diverse Domains through World Models. 2023.

at ∼ πθ(at | st) vψ(Rt | st)

Of 0

Incorporating Rewards

• How to use WM in planning?
Predicting value by simulate a batch
of trajectories.
• Actor-Critic RL:

• Learning a critic:

Hafner et al. Mastering Diverse Domains through World Models. 2023.

at ∼ πθ(at | st) vψ(Rt | st)

Categorical distribution

Lφ = −
∑T

t=1
log pφ(R

λ
t | st) st = {ht, zt}

Sum of discounted future rewards

Rλ
t
= rt + γct[(1− λ)vt + λRλ

t+1] R
λ

T
= vT

Supervise critic

Actor Learning

• Learn a policy network

Levine. Policy Gradients. Deep RL course. 2017.

at ∼ πθ(at | st)

Actor Learning

• Learn a policy network
• REINFORCE algorithm [Williams 1992]

Levine. Policy Gradients. Deep RL course. 2017.

at ∼ πθ(at | st)

Entropy RegularizerNormalization
L(θ) = −

∑T

t=1
sg((Rλ

t − vφ(st))/max(1, S)) log πθ(at | st) + ηH[πθ(at | st)]

O

critict

Actor Learning

• Learn a policy network
• REINFORCE algorithm [Williams 1992]

• Notes on policy gradient:

Levine. Policy Gradients. Deep RL course. 2017.

at ∼ πθ(at | st)

Entropy RegularizerNormalization
L(θ) = −

∑T

t=1
sg((Rλ

t − vφ(st))/max(1, S)) log πθ(at | st) + ηH[πθ(at | st)]

Actor Learning

• Learn a policy network
• REINFORCE algorithm [Williams 1992]

• Notes on policy gradient:

Levine. Policy Gradients. Deep RL course. 2017.

πθ(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)
πθ(τ)

= ∇θπθ(τ).

at ∼ πθ(at | st)

Entropy RegularizerNormalization
L(θ) = −

∑T

t=1
sg((Rλ

t − vφ(st))/max(1, S)) log πθ(at | st) + ηH[πθ(at | st)]

Actor Learning

• Learn a policy network
• REINFORCE algorithm [Williams 1992]

• Notes on policy gradient:

Levine. Policy Gradients. Deep RL course. 2017.

πθ(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)
πθ(τ)

= ∇θπθ(τ).

πθ(τ) = πθ(s1, a1, . . . , sT , aT) = p(s1)
∏T

t=1
πθ(at|st)p(st+1|st, at).

at ∼ πθ(at | st)

Entropy RegularizerNormalization
L(θ) = −

∑T

t=1
sg((Rλ

t − vφ(st))/max(1, S)) log πθ(at | st) + ηH[πθ(at | st)]

Actor Learning

• Learn a policy network
• REINFORCE algorithm [Williams 1992]

• Notes on policy gradient:

Levine. Policy Gradients. Deep RL course. 2017.

πθ(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)
πθ(τ)

= ∇θπθ(τ).

πθ(τ) = πθ(s1, a1, . . . , sT , aT) = p(s1)
∏T

t=1
πθ(at|st)p(st+1|st, at).

log πθ(τ) = log p(s1) +
∑T

t=1
log πθ(at|st) + log p(st+1|st, at).

at ∼ πθ(at | st)

Entropy RegularizerNormalization
L(θ) = −

∑T

t=1
sg((Rλ

t − vφ(st))/max(1, S)) log πθ(at | st) + ηH[πθ(at | st)]0
0
IF

Actor Learning

• Learn a policy network
• REINFORCE algorithm [Williams 1992]

• Notes on policy gradient:

Levine. Policy Gradients. Deep RL course. 2017.

πθ(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)
πθ(τ)

= ∇θπθ(τ).

πθ(τ) = πθ(s1, a1, . . . , sT , aT) = p(s1)
∏T

t=1
πθ(at|st)p(st+1|st, at).

log πθ(τ) = log p(s1) +
∑T

t=1
log πθ(at|st) + log p(st+1|st, at).

L(θ) = Eτ∼πθ(τ)[r(τ)] =
∫
πθr(τ)dτ.

at ∼ πθ(at | st)

Entropy RegularizerNormalization
L(θ) = −

∑T

t=1
sg((Rλ

t − vφ(st))/max(1, S)) log πθ(at | st) + ηH[πθ(at | st)]

Actor Learning

• Learn a policy network
• REINFORCE algorithm [Williams 1992]

• Notes on policy gradient:

Levine. Policy Gradients. Deep RL course. 2017.

πθ(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)
πθ(τ)

= ∇θπθ(τ).

πθ(τ) = πθ(s1, a1, . . . , sT , aT) = p(s1)
∏T

t=1
πθ(at|st)p(st+1|st, at).

log πθ(τ) = log p(s1) +
∑T

t=1
log πθ(at|st) + log p(st+1|st, at).

L(θ) = Eτ∼πθ(τ)[r(τ)] =
∫
πθr(τ)dτ.

∇L(θ) =
∫
∇πθr(τ)dτ =

∫
πθ(τ)∇ log πθr(τ)dτ = Eτ∼π log πθr(τ).

at ∼ πθ(at | st)

Entropy RegularizerNormalization
L(θ) = −

∑T

t=1
sg((Rλ

t − vφ(st))/max(1, S)) log πθ(at | st) + ηH[πθ(at | st)]

O Ftainover

When Do We Need A Learned Actor?

• For low dimensional or discrete problems, we can directly take the
argmax of the value function.

When Do We Need A Learned Actor?

• For low dimensional or discrete problems, we can directly take the
argmax of the value function.
• For problems with a good model, we can roll out and sample many

future trajectories. Evaluation can be done in real time with GPU.

When Do We Need A Learned Actor?

• For low dimensional or discrete problems, we can directly take the
argmax of the value function.
• For problems with a good model, we can roll out and sample many

future trajectories. Evaluation can be done in real time with GPU.
• For general control problems, learning a separate actor can be a

general solution without invoking domain knowledge.

Semantic Occupancy Volume Prediction

• 4-D volume: H, W, T, C (class)

Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations. ECCV 2020.

o
t,c

i,j

Semantic Occupancy Volume Prediction

• 4-D volume: H, W, T, C (class)
• Doesn’t grow with the increasing

number of actors.

Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations. ECCV 2020.

o
t,c

i,j

fixeddimensional

Semantic Occupancy Volume Prediction

• 4-D volume: H, W, T, C (class)
• Doesn’t grow with the increasing

number of actors.
• Recurrent occupancy updates for

further into the future.

Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations. ECCV 2020.

o
t,c

i,j

lt,c = lt−1,c + U
t
θ(focc, l

0:t−1,c)

prevoce networkOCC
next

Multi-Agents Joint Prediction

• Joint predict future trajectories by
attending to other actors.

Li et al. End-to-end Contextual Perception and Prediction with Interaction Transformer. IROS 2020.

Multi-Agents Joint Prediction

• Joint predict future trajectories by
attending to other actors.

Li et al. End-to-end Contextual Perception and Prediction with Interaction Transformer. IROS 2020.

Latent Prediction + MPC

• Using MPC on the latent space of
pretrained visual encoders.
• Learn a predictor of latent states

conditioned on actions.

Zhou et al. DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning. 2024.

World Model in Video Prediction

• Text+action conditioned generation. Diffusion decoder.

Hu et al. GAIA-1: A Generative World Model for Autonomous Driving. arXiv 2023.

• x

• x

World Model in 3D volume prediction

• Autoregressively predict future 3D point clouds.

Zhang et al. Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion. ICLR 2024.

Summary: World Models

Summary: World Models

• Explicit object representation
• Traditional, light weight, instance-specific, hard to learn jointly

Summary: World Models

• Explicit object representation
• Traditional, light weight, instance-specific, hard to learn jointly

• Differentiable occupancy, motion field
• Relatively heavy, spatially grounded, end-to-end learnable

Summary: World Models

• Explicit object representation
• Traditional, light weight, instance-specific, hard to learn jointly

• Differentiable occupancy, motion field
• Relatively heavy, spatially grounded, end-to-end learnable

• Global latent, RNNs, graph landmarks
• General-purpose, unstructured

Summary: World Models

• Explicit object representation
• Traditional, light weight, instance-specific, hard to learn jointly

• Differentiable occupancy, motion field
• Relatively heavy, spatially grounded, end-to-end learnable

• Global latent, RNNs, graph landmarks
• General-purpose, unstructured

• Raw video/3D prediction
• Expensive, good for simulation

Imitation Learning

• The explicit policy model, supervised learning (behavior cloning)
â = fθ(x) L = mini∥ai − â∥2

2
L = − log âj

Imitation Learning

• The explicit policy model, supervised learning (behavior cloning)

• Energy-based (cost-based) approach

â = fθ(x) L = mini∥ai − â∥2
2

L = − log âj

p(τ | x) = exp(E(x,τ))∫
τ
exp(E(x,τ))

τ⋆ = argmin
τ
E(x, τ)

Imitation Learning

• The explicit policy model, supervised learning (behavior cloning)

• Energy-based (cost-based) approach

• Dataset Aggregation (DAgger)
• Learned policy may deviate from experts
• Need to collect more groundtruths

â = fθ(x) L = mini∥ai − â∥2
2

L = − log âj

p(τ | x) = exp(E(x,τ))∫
τ
exp(E(x,τ))

τ⋆ = argmin
τ
E(x, τ)

Direct Policy Learning from Diffusion

• Error prediction network is
conditioned on observation features.

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023

Ak−1

t = α(Ak
t − γϵθ(Ot, A

k
t , k) +N (0,σ2I)).

L = MSE(ϵk, ϵθ(Ot, At + ϵk, k)).

Cost/Value Volume Reasoning

• Interpretability (both costs and planner inputs)

Rasterization Semantic Occupancy

Cost/Value Volume Reasoning

• Interpretability (both costs and planner inputs)
• Use spatial geometry to form cost from explicit objects

Rasterization Semantic Occupancy

Cost/Value Volume Reasoning

• Interpretability (both costs and planner inputs)
• Use spatial geometry to form cost from explicit objects
• Predict spatial cost volume
• Rasterize the scene for spatial inputs
• Predict soft occupancy volumes (present and future)

Rasterization Semantic Occupancy

Learning Through Interpretable Predictions

• Semantic occupancy, motion field,
mapping, etc. as intermediate predictions.

Casas et al. MP3: A Unified Model to Map, Perceive, Predict and Plan. CVPR 2021.

Learning Through Interpretable Predictions

• Semantic occupancy, motion field,
mapping, etc. as intermediate predictions.
• Differentiable, supports end-to-end

interpretable learning from perception to
planning.

Casas et al. MP3: A Unified Model to Map, Perceive, Predict and Plan. CVPR 2021.

Max-Margin Planning with Explicit Cost Volume

• If we have an explicit cost volume, the cost of a trajectory can be
directly queried.

Zeng et al. End-to-end Interpretable Neural Motion Planner. CVPR 2019.

Max-Margin Planning with Explicit Cost Volume

• If we have an explicit cost volume, the cost of a trajectory can be
directly queried.
• We can use the max-margin objective to make the groundtruth

trajectory have lower costs.

Zeng et al. End-to-end Interpretable Neural Motion Planner. CVPR 2019.

argmin
θ

∑

{(x̂t

i
,ŷt

i
)}i=1...N

max
i

T∑

t=1

Ct
θ[xt, yt]− Ct

θ[x̂
t
i, ŷ

t
i] + dti

Max-Margin Planning with Explicit Cost Volume

• If we have an explicit cost volume, the cost of a trajectory can be
directly queried.
• We can use the max-margin objective to make the groundtruth

trajectory have lower costs.
• Find the lowest cost trajectory among a batch of samples.

Zeng et al. End-to-end Interpretable Neural Motion Planner. CVPR 2019.

argmin
θ

∑

{(x̂t

i
,ŷt

i
)}i=1...N

max
i

T∑

t=1

Ct
θ[xt, yt]− Ct

θ[x̂
t
i, ŷ

t
i] + dti

Max-Margin Planning with Explicit Cost Volume

• If we have an explicit cost volume, the cost of a trajectory can be
directly queried.
• We can use the max-margin objective to make the groundtruth

trajectory have lower costs.
• Find the lowest cost trajectory among a batch of samples.
• Low-dimensional/known dynamics problems: External samplers

Zeng et al. End-to-end Interpretable Neural Motion Planner. CVPR 2019.

argmin
θ

∑

{(x̂t

i
,ŷt

i
)}i=1...N

max
i

T∑

t=1

Ct
θ[xt, yt]− Ct

θ[x̂
t
i, ŷ

t
i] + dti

Max-Margin Planning with Explicit Cost Volume

• If we have an explicit cost volume, the cost of a trajectory can be
directly queried.
• We can use the max-margin objective to make the groundtruth

trajectory have lower costs.
• Find the lowest cost trajectory among a batch of samples.
• Low-dimensional/known dynamics problems: External samplers
• In general, needs to perform optimization (e.g. DP)

Zeng et al. End-to-end Interpretable Neural Motion Planner. CVPR 2019.

argmin
θ

∑

{(x̂t

i
,ŷt

i
)}i=1...N

max
i

T∑

t=1

Ct
θ[xt, yt]− Ct

θ[x̂
t
i, ŷ

t
i] + dti

EBM Planning

• Energy-based framework also needs negative samples.

Florence et al. Implicit Behavioral Cloning. CoRL 2021.

EBM Planning

• Energy-based framework also needs negative samples.
• “Pick” the groundtruth sample among others.

Florence et al. Implicit Behavioral Cloning. CoRL 2021.

EBM Planning

• Energy-based framework also needs negative samples.
• “Pick” the groundtruth sample among others.
• If there isn’t an external sampler, we can either use autoregressive

energy of sampling one dimension at a time, or gradient-based
Langevin MCMC.

Florence et al. Implicit Behavioral Cloning. CoRL 2021.

EBM Planning

• Energy-based framework also needs negative samples.
• “Pick” the groundtruth sample among others.
• If there isn’t an external sampler, we can either use autoregressive

energy of sampling one dimension at a time, or gradient-based
Langevin MCMC.

Florence et al. Implicit Behavioral Cloning. CoRL 2021.

Langevin MCMC: ỹ
k
i
= ỹ

k−1

i
− λ

(

1

2
∇yEθ(xi,y

k−1

i
) + ωk

)

,ωk ∼ N (0,σ).

EBM Planning

• Energy-based framework also needs negative samples.
• “Pick” the groundtruth sample among others.
• If there isn’t an external sampler, we can either use autoregressive

energy of sampling one dimension at a time, or gradient-based
Langevin MCMC.

Florence et al. Implicit Behavioral Cloning. CoRL 2021.

Langevin MCMC: ỹ
k
i
= ỹ

k−1

i
− λ

(

1

2
∇yEθ(xi,y

k−1

i
) + ωk

)

,ωk ∼ N (0,σ).

L =
∑

i − log(pθ(yi | x, {ỹi}j) pθ(yi | x, {ỹi}j =
e−Eθ(xi,yi)

e−Eθ(xi,yi)+
∑

j e
−Eθ(xi+ỹi,j)

Loss:

Value Iteration Networks

• A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.

Tamar et al. Value Iteration Networks. NeurIPS 2016.

Value Iteration Networks

• A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.
• Classic VI altorithm:

Tamar et al. Value Iteration Networks. NeurIPS 2016.

Value Iteration Networks

• A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.
• Classic VI altorithm:

Tamar et al. Value Iteration Networks. NeurIPS 2016.

V
∗(s) = maxπ V

π(s)

Value Iteration Networks

• A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.
• Classic VI altorithm:

Tamar et al. Value Iteration Networks. NeurIPS 2016.

V π(s) = E
π
∑

∞

t=0
γtr(st, at)

V
∗(s) = maxπ V

π(s)

Value Iteration Networks

• A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.
• Classic VI altorithm:

Tamar et al. Value Iteration Networks. NeurIPS 2016.

V π(s) = E
π
∑

∞

t=0
γtr(st, at)

V
∗(s) = maxπ V

π(s)

Qn(s, a) = R(s, a) + γ
∑

s
′ P (s′|s, a)Vn(s

′)

Value Iteration Networks

• A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.
• Classic VI altorithm:

Tamar et al. Value Iteration Networks. NeurIPS 2016.

V π(s) = E
π
∑

∞

t=0
γtr(st, at)

V
∗(s) = maxπ V

π(s)

Qn(s, a) = R(s, a) + γ
∑

s
′ P (s′|s, a)Vn(s

′)

Vn+1(s) = maxa Qn(s, a)

Value Iteration Networks

• A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.
• Classic VI altorithm:

Tamar et al. Value Iteration Networks. NeurIPS 2016.

V π(s) = E
π
∑

∞

t=0
γtr(st, at)

V
∗(s) = maxπ V

π(s)

Qn(s, a) = R(s, a) + γ
∑

s
′ P (s′|s, a)Vn(s

′)

Vn+1(s) = maxa Qn(s, a)

π∗(s) = argmax
a
Q∞(s, a)

Value Iteration Networks

• Reward and previous value are fed into a CNN to generate Q of A
channels. Transition matrix is convolutional kernel. Then Max-Pooling.

Tamar et al. Value Iteration Networks. NeurIPS 2016.

Qn(s, a) = R(s, a) + γ
∑

s
′ P (s′|s, a)Vn(s

′) Vn+1(s) = maxa Qn(s, a)

Value Iteration Networks

• Select the current state and choose an action from softmax.

Tamar et al. Value Iteration Networks. NeurIPS 2016.

â ∼ softmaxa(Q(s, a))

Value Iteration Networks

• A baseline would be to untie the weights through iterations, more
like a feedforward CNN.
• Achieve more training data efficiency by imposing the structure.

Tamar et al. Value Iteration Networks. NeurIPS 2016.

Backprop through Planning

• Treat planning as an end-to-end layer. Can be used for RL/Imitation.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

Backprop through Planning

• Treat planning as an end-to-end layer. Can be used for RL/Imitation.
• Option 1: Unrolling a finite number of steps

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

Backprop through Planning

• Treat planning as an end-to-end layer. Can be used for RL/Imitation.
• Option 1: Unrolling a finite number of steps
• Option 2: Solve till convergence, backprop for a finite step

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

Backprop through Planning

• Treat planning as an end-to-end layer. Can be used for RL/Imitation.
• Option 1: Unrolling a finite number of steps
• Option 2: Solve till convergence, backprop for a finite step
• Option 3: Converged at fixed point: Implicit differentiation

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

Implicit Differentiation

• Unconstrained case

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

x
∗ = argmin

x

f(x;θ).

0 =
d

dθ
Jf,x∗(x∗;θ)

0 =
∂

∂x∗
Jf,x∗(x∗;θ)

∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

0 = Hf,x∗(x∗;θ)
∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

∂x∗

∂θ
= Hf,x∗(x∗;θ)−1

∂

∂θ
Jf,x∗(x∗;θ).

Optimizerx0 x
∗

xt

f(xt)− f(xt−1) ≤ ϵ?

Implicit Differentiation

• Unconstrained case

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

x
∗ = argmin

x

f(x;θ).

0 =
d

dθ
Jf,x∗(x∗;θ)

0 =
∂

∂x∗
Jf,x∗(x∗;θ)

∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

0 = Hf,x∗(x∗;θ)
∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

∂x∗

∂θ
= Hf,x∗(x∗;θ)−1

∂

∂θ
Jf,x∗(x∗;θ).

Optimizerx0 x
∗

xt

f(xt)− f(xt−1) ≤ ϵ?

Implicit Differentiation

• Unconstrained case

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

x
∗ = argmin

x

f(x;θ).

0 =
d

dθ
Jf,x∗(x∗;θ)

0 =
∂

∂x∗
Jf,x∗(x∗;θ)

∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

0 = Hf,x∗(x∗;θ)
∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

∂x∗

∂θ
= Hf,x∗(x∗;θ)−1

∂

∂θ
Jf,x∗(x∗;θ).

Optimizerx0 x
∗

xt

f(xt)− f(xt−1) ≤ ϵ?

Implicit Differentiation

• Unconstrained case

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

x
∗ = argmin

x

f(x;θ).

0 =
d

dθ
Jf,x∗(x∗;θ)

0 =
∂

∂x∗
Jf,x∗(x∗;θ)

∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

0 = Hf,x∗(x∗;θ)
∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

∂x∗

∂θ
= Hf,x∗(x∗;θ)−1

∂

∂θ
Jf,x∗(x∗;θ).

Optimizerx0 x
∗

xt

f(xt)− f(xt−1) ≤ ϵ?

Implicit Differentiation

• Unconstrained case

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

x
∗ = argmin

x

f(x;θ).

0 =
d

dθ
Jf,x∗(x∗;θ)

0 =
∂

∂x∗
Jf,x∗(x∗;θ)

∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

0 = Hf,x∗(x∗;θ)
∂x∗

∂θ
+

∂

∂θ
Jf,x∗(x∗;θ)

∂x∗

∂θ
= Hf,x∗(x∗;θ)−1

∂

∂θ
Jf,x∗(x∗;θ).

Optimizerx0 x
∗

xt

f(xt)− f(xt−1) ≤ ϵ?

Implicit Differentiation

• How to compute Hessian inverse
vector product?

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

Implicit Differentiation

• How to compute Hessian inverse
vector product?
• Conjugate gradient, solve

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

Conjugate Gradient Method

Ax = b

Implicit Differentiation

• How to compute Hessian inverse
vector product?
• Conjugate gradient, solve
• Neumann series (finite truncation)

• Same as backprop the last K steps
(Option 2).

• Memory savings.

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

(I −A)−1 =
∑

∞

k=0
A

k
.

Conjugate Gradient Method

Ax = b

Differentiable LQR

• Now add linear equality
constraints on the dynamics
and initialization.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
τ1:T

T∑

t=1

1

2
τ⊤
t
Ctτt

subject to xt+1 = Ftτt + ft, x1 = xinit.τ1:T = {xt, ut}1:T

Differentiable LQR

• Now add linear equality
constraints on the dynamics
and initialization.

• Chain rule:

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
τ1:T

T∑

t=1

1

2
τ⊤
t
Ctτt

subject to xt+1 = Ftτt + ft, x1 = xinit.τ1:T = {xt, ut}1:T

∂ℓ

∂θ
=

∂ℓ

∂τ⋆

1:T

∂τ
⋆

1:T

∂θ
.

Differentiable LQR

• Now add linear equality
constraints on the dynamics
and initialization.

• Chain rule:

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
τ1:T

T∑

t=1

1

2
τ⊤
t
Ctτt

subject to xt+1 = Ftτt + ft, x1 = xinit.τ1:T = {xt, ut}1:T

∂ℓ

∂θ
=

∂ℓ

∂τ⋆

1:T

∂τ
⋆

1:T

∂θ
.

x
∗ = argmin

1

2
x
⊤Qx+ c

⊤
x

subject to Ax = b.

General QP:

Differentiable LQR

• Now add linear equality
constraints on the dynamics
and initialization.

• Chain rule:
• KKT:

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
τ1:T

T∑

t=1

1

2
τ⊤
t
Ctτt

subject to xt+1 = Ftτt + ft, x1 = xinit.τ1:T = {xt, ut}1:T

∂ℓ

∂θ
=

∂ℓ

∂τ⋆

1:T

∂τ
⋆

1:T

∂θ
.

x
∗ = argmin

1

2
x
⊤Qx+ c

⊤
x

subject to Ax = b.

General QP:

Differentiable LQR

• Now add linear equality
constraints on the dynamics
and initialization.

• Chain rule:
• KKT:

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
τ1:T

T∑

t=1

1

2
τ⊤
t
Ctτt

subject to xt+1 = Ftτt + ft, x1 = xinit.τ1:T = {xt, ut}1:T

∂ℓ

∂θ
=

∂ℓ

∂τ⋆

1:T

∂τ
⋆

1:T

∂θ
.

[

Q A⊤

A 0

] [

x
∗

λ
∗

]

=

[

−c

b

]

K

[

x
∗

λ
∗

]

= v. In classic LQR solver, the Riccati recursion solves this linear system.

x
∗ = argmin

1

2
x
⊤Qx+ c

⊤
x

subject to Ax = b.

General QP:

Differentiable LQR

• Apply differentiation

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

d

dθ

(

K

[

x
∗

λ
∗

])

=
dv

dθ
.

dK

dθ

[

x
∗

λ
∗

]

+K

[

dx
∗

dθ
dλ

∗

dθ

]

=
dv

dθ

Differentiable LQR

• Apply differentiation

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

d

dθ

(

K

[

x
∗

λ
∗

])

=
dv

dθ
.

dK

dθ

[

x
∗

λ
∗

]

+K

[

dx
∗

dθ
dλ

∗

dθ

]

=
dv

dθ

K

[

dx
∗

dθ
dλ

∗

dθ

]

= K

[

dx
∗

dc

dx
∗

db

dx
∗

dQ
dx

∗

dA
dλ

∗

dc

dλ
∗

db

dλ
∗

dQ
dλ

∗

dA

]

=

[

−I 0 −x
∗

−λ
∗

0 I 0 −x
∗

]

Differentiable LQR

• Apply differentiation

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

d

dθ

(

K

[

x
∗

λ
∗

])

=
dv

dθ
.

dK

dθ

[

x
∗

λ
∗

]

+K

[

dx
∗

dθ
dλ

∗

dθ

]

=
dv

dθ

K

[

dx
∗

dθ
dλ

∗

dθ

]

= K

[

dx
∗

dc

dx
∗

db

dx
∗

dQ
dx

∗

dA
dλ

∗

dc

dλ
∗

db

dλ
∗

dQ
dλ

∗

dA

]

=

[

−I 0 −x
∗

−λ
∗

0 I 0 −x
∗

]

K
∂ℓ

∂z∗

[

dx
∗

dc

dx
∗

db
dλ

∗

dc

dλ
∗

db

]

=

[

−

∂ℓ

∂x∗

0

]

Kd
∗

=

[

−

∂ℓ

∂x∗

0

]

Differentiable LQR

• Apply differentiation

• Equivalent QP:

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

d

dθ

(

K

[

x
∗

λ
∗

])

=
dv

dθ
.

dK

dθ

[

x
∗

λ
∗

]

+K

[

dx
∗

dθ
dλ

∗

dθ

]

=
dv

dθ

K

[

dx
∗

dθ
dλ

∗

dθ

]

= K

[

dx
∗

dc

dx
∗

db

dx
∗

dQ
dx

∗

dA
dλ

∗

dc

dλ
∗

db

dλ
∗

dQ
dλ

∗

dA

]

=

[

−I 0 −x
∗

−λ
∗

0 I 0 −x
∗

]

K
∂ℓ

∂z∗

[

dx
∗

dc

dx
∗

db
dλ

∗

dc

dλ
∗

db

]

=

[

−

∂ℓ

∂x∗

0

]

Kd
∗

=

[

−

∂ℓ

∂x∗

0

]

d
∗ = argmin

d

1

2
d
⊤Qd+

∂ℓ

∂x∗

⊤

d,

subject to Ad = 0.

Differentiable LQR

• Apply differentiation

• Equivalent QP:

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

d

dθ

(

K

[

x
∗

λ
∗

])

=
dv

dθ
.

dK

dθ

[

x
∗

λ
∗

]

+K

[

dx
∗

dθ
dλ

∗

dθ

]

=
dv

dθ

K

[

dx
∗

dθ
dλ

∗

dθ

]

= K

[

dx
∗

dc

dx
∗

db

dx
∗

dQ
dx

∗

dA
dλ

∗

dc

dλ
∗

db

dλ
∗

dQ
dλ

∗

dA

]

=

[

−I 0 −x
∗

−λ
∗

0 I 0 −x
∗

]

K
∂ℓ

∂z∗

[

dx
∗

dc

dx
∗

db
dλ

∗

dc

dλ
∗

db

]

=

[

−

∂ℓ

∂x∗

0

]

Kd
∗

=

[

−

∂ℓ

∂x∗

0

]

d
∗ = argmin

d

1

2
d
⊤Qd+

∂ℓ

∂x∗

⊤

d,

subject to Ad = 0.

∂ℓ

∂Q
=

1

2
(d∗

x
⊗ x

∗ + x
∗

⊗ d
∗

x
)

∂ℓ

∂A
= d

∗

λ
⊗ x

∗ + λ
∗

⊗ d
∗

x
.

Differentiable LQR

• The backward pass can also be formulated as a LQR problem.
• Swap 5 to ∇*⋆ℓ and 8 to 0.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

Differentiable MPC

• What about general MPC?

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
x1:T∈X ,u1:T∈U

T∑

t=1

Ct(xt, ut)

subject to xt+1 = f(xt, ut), x1 = xinit.

Differentiable MPC

• What about general MPC?

• Use Taylor expansion to approximate.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
x1:T∈X ,u1:T∈U

T∑

t=1

Ct(xt, ut)

subject to xt+1 = f(xt, ut), x1 = xinit.

C̃i
θ,t = Cθ

,
t(τ

i
t) + pit

⊤
(τt − τ it) +

1

2
(τt − τ it)

⊤Hi
t(τt − τ it).

Differentiable MPC

• What about general MPC?

• Use Taylor expansion to approximate.

• Fixed point iteration.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
x1:T∈X ,u1:T∈U

T∑

t=1

Ct(xt, ut)

subject to xt+1 = f(xt, ut), x1 = xinit.

C̃i
θ,t = Cθ

,
t(τ

i
t) + pit

⊤
(τt − τ it) +

1

2
(τt − τ it)

⊤Hi
t(τt − τ it).

τ i+1 = argmin
τ

∑
T

t
C̃i

t
(τ i

t
).

Differentiable MPC

• What about general MPC?

• Use Taylor expansion to approximate.

• Fixed point iteration.

• Backward only depends on final quadratic approximation.
Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

argmin
x1:T∈X ,u1:T∈U

T∑

t=1

Ct(xt, ut)

subject to xt+1 = f(xt, ut), x1 = xinit.

C̃i
θ,t = Cθ

,
t(τ

i
t) + pit

⊤
(τt − τ it) +

1

2
(τt − τ it)

⊤Hi
t(τt − τ it).

τ i+1 = argmin
τ

∑
T

t
C̃i

t
(τ i

t
).

Behavioral vs. Trajectory Planning

• Gradient-based optimization provides a locally optimized trajectory.

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.

Obstacle Driving Path Lane Headway

Behavioral vs. Trajectory Planning

• Gradient-based optimization provides a locally optimized trajectory.
• Samples may be needed for reasoning global structure.

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.

Obstacle Driving Path Lane Headway

Behavioral vs. Trajectory Planning

• Gradient-based optimization provides a locally optimized trajectory.
• Samples may be needed for reasoning global structure.
• Can learn together using the same learned costs.

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.

Obstacle Driving Path Lane Headway

Planning with Social Reasoning

• Jointly reason the future trajectories of multiple agents as an energy-
based graphical model.

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.

p(s1, . . . , sN | X) = 1

Z
exp(−Eθ(s1, . . . , sN) | X)

Planning with Social Reasoning

• Jointly reason the future trajectories of multiple agents as an energy-
based graphical model.
• Trajectory Goodness + Collision.

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.

p(s1, . . . , sN | X) = 1

Z
exp(−Eθ(s1, . . . , sN) | X)

E(si, sj) = γ if si collides sj

∑
i Eθ(si | X) +

∑
i ̸=j E(si, sj)

Planning with Social Reasoning

• Jointly reason the future trajectories of multiple agents as an energy-
based graphical model.
• Trajectory Goodness + Collision.
• Batch of trajectory samples.

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.

p(s1, . . . , sN | X) = 1

Z
exp(−Eθ(s1, . . . , sN) | X)

E(si, sj) = γ if si collides sj

∑
i Eθ(si | X) +

∑
i ̸=j E(si, sj)

Planning with Social Reasoning

• Jointly reason the future trajectories of multiple agents as an energy-
based graphical model.
• Trajectory Goodness + Collision.
• Batch of trajectory samples.
• Classification of groundtruth trajectory.

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.

p(s1, . . . , sN | X) = 1

Z
exp(−Eθ(s1, . . . , sN) | X)

E(si, sj) = γ if si collides sj

∑
i Eθ(si | X) +

∑
i ̸=j E(si, sj)

Summary: End-to-End Planning

• Direct Policy Prediction
• Condition perception features into the model
• Use of diffusion models

Summary: End-to-End Planning

• Direct Policy Prediction
• Condition perception features into the model
• Use of diffusion models

• Cost Learning (IRL) from Experts
• Max-margin, max-entropy/EBM
• Need negative samples
• Can be combined with efficient external samplers
• Cost volume prediction: parametric + non-parametric

Summary: End-to-End Planning

• Direct Policy Prediction
• Condition perception features into the model
• Use of diffusion models

• Cost Learning (IRL) from Experts
• Max-margin, max-entropy/EBM
• Need negative samples
• Can be combined with efficient external samplers
• Cost volume prediction: parametric + non-parametric

• Differentiable Planner
• Backprop through local optimization
• Can be memory efficient, implicit differentiation

