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Energy-Based Learning
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* Example: RBMs
* Energy: E(v,h) = =2, ;vihjwy;.
p(hj = 1lv;) = U(Zz‘j ViWij).
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Hinton. Restricted Boltzmann Machines. G éé.j’ 1 NYU




General EBMs

* Inference requires running gradient descent and MCMC samples
(Langevin samples).

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.
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General EBMs

* Inference requires running gradient descent and MCMC samples
(Langevin samples).

%k = xk=1 — AV, Ep(xF1) + Wk, Wk ~ N(0, ).

VoL = Expp [VoLo(x")] — Exwgy [VoEo(x7)].

* Can be applied on hand ma%lati{;trajectory generation.
E

X T

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.
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General EBMs festurg ¢

* Inference requires running gradient descent and MCMC samples
(Langevin samples).

%k = xk=1 — AV, Ep(xF1) + Wk, Wk ~ N(0, ).
VoL = Exnpp [VoLo(xT)] — Exngy [VoLo(x7)].

* Can be applied on hand manipulation trajectory generation.

* Good results in generation but still not a generalized
representation learning algorithm.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.



Self-Supervised Visual Learning

* Match the same image (with severe augmentation)

Maximize agreement

Zi j
4 y
9() 9()
h; <— Representation —» h;
A
(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter) f () f ()

8
8
<.

(f) Rotate {90°, 180°, 270° (g) Cutout aussian noise SS; (j) Sobel filtering




Self-Supervised Visual Learning

* Match the same image (with severe augmentation)

* Joint embedding approach: Apply loss on the embédding level.

Maximize agreement

Zi J
A
9() 9()
h; <— Representation —» h;
A
(a) Original (b)C op and resize  (c) Crop, resiz (andﬂp)(d)Cl r distort. (drop) (e) Color distort. (jitter) fe) 7()
T ;
b4
> i

(f) Rotate {90°, 180°, 270°} (g) Cutout




Self-Supervised Visual Learning

* Match the same image (with severe augmentation)
* Joint embedding approach: Apply loss on the embedding level.
* Use negative examples (contrastive) or not (non-contrastive).

Maximize agreement
Zi A Zj
Ty 5y , T
= ﬁ e 1 A h; <+— Representation —» h;
(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter) f () f ()
Z;
A
> A

(f) Rotate {90°,180°,270°} (g) Cutout




Self-Supervised Visual Learning

* Match the same image (with severe augmentation)

* Joint embedding approach: Apply loss on the embedding level.
* Use negative examples (contrastive) or not (non-contrastive).
* Energy is defined between a pair of images.

Maximize agreement

h; <— Representation —» h;
A

(f) Rotate {90°, 180°, 270° (g) Cutout




Several Embedding Loss Formulations

Wu et al.,, 2018

* |nstance Classification:

128D Unit Sphere




Several Embedding Loss Formulations
Wu et al.,, 2018

CNN backbone "‘,: 1-th image Gv?;b
o eification i [ ,
* Instance Classitication: T W | Moy h\»

-
Vn

2048D
fo(x) 128D Unit Sphere
Sofemay i

exp(sim(z; (z})/7)

k=1 L[k#1] eXp(SE(Z’ivzk)/T) '

Chen et al. 2020




Several Embedding Loss Formulations

Wu et al.,, 2018

CNN backbone 1-th image :,’1
low dim L2 norm / E 2-th image Vz {
Dol .
* Instance Classification: - || [ o] e e (D
128D 128D \ E n-1 th image V3 A\
epr ¥ n-thimage X.Z:‘l
——— V,

exp(sim(z;,z;)/7)
w1 Lirsd) exp(sim(=i,2x)/7) "

* Non-contrastive Learning (Positive Only) = ©  Chenetal. 2020
* Moving Average [Grill et al., 2020] 7;/'—’5
* Stop Gradient [Chen & He, 2020]
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Several Embedding Loss Formulations

Wu et al.,, 2018

CNN backbone B 1-thimage o
. [ . ow di nor / B 2imase V3 g
* Instance Classification: B e e (4

s} n
fo(x) 128D Unit Sphere

* Contrastive Learning: Cross entropy on pairs

exp(sim(z;,z;)/7)
L1gzq) exp(sim(zq,2x)/7) "

Chen et al. 2020

Ui =—1
Y 08 SN

* Non-contrastive Learning (Positive Only)

* Moving Average [Grill et al., 2020]
* Stop Gradient [Chen & He, 2020]

* Use of projectors and predictors




Several Embedding Loss Formulations

Wu et al.,, 2018

CNN backbone » . / P aA..,lage ‘XI; |
. lassification: — 3
Instance Classification: s o | Moy h\

128D Unit Sphere

exp(sim(z;,z;)/7)
i1 Lgosq) exp(sim(z4,2k)/7)

* Non-contrastive Learning (Positive Only) Chen et al. 2020

* Moving Average [Grill et al., 2020]
* Stop Gradient [Chen & He, 2020]  i= ™7

h; <— Representation —» h;
~

* Use of projectors and predictors @g é
\>>Xiyfﬁ/

Chen et al. 2020




Several Embedding Loss Formulations

Wu et al.,, 2018

CNN backbone » . / P aA..,lage ‘XI; |
. lassification: — 3
Instance Classification: s o | Moy h\

128D Unit Sphere

exp(sim(z;,z;)/7)
i1 Lgosq) exp(sim(z4,2k)/7)

* Non-contrastive Learning (Positive Only) Chen et al. 2020
* Moving Average [Grill et al., 2020]
* Stop Gradient [Chen & He, 2020] I oo

* Use of projectors and predictors @g

encoder encoder
z (51
\M
image T

Chen et al. 2020 Chen & He, 2021

h; <— Representation —» h;
~
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Several Embedding Loss Formulations

Wu et al.,, 2018

CNN backbone » . / P aA..,lage ‘XI; |
. lassification: — 3
Instance Classification: s o | Moy h\

nY

128D Unit Sphere

exp(sim(z;,z;)/7)
w1 Lirsd) exp(sim(=i,2x)/7) "

* Non-contrastive Learning (Positive Only) Chenetal. 2020
_* Moving Average [Grill et al., 2020] /*ZA 522?22?1 cross cor
* Stop Gradient [Chen & He, 2020] n L e O Ler z
* Use of projectors and predictors é o é ) Vol e f--"'
* Use of co-variance regularization e T ) Zbontaretal. 202
T — ——Chen et al. 2020 Chen & He, 2021 Bardes et al. 2021

NYU




* Knowledge distillation between a student :

and a teacher network.

Sgt/

softmax softmax
|
centering
|

student ggs — | teacher gg

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




DINO

* Knowledge distillation between a student
and a teacher network.

. . exp(go, ()i /Ts)
StUdent. Zk; oxp (993 @)k /7s)

rifil

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

Global View 1
224x224

Global View 2
224x224

Local
View 2
96x96
Local
View 1
96x96 Local
View 3

96x96

=)

softmax

student ggs

cma

softmax

ccntcnng
I

teacher gg;

ANYU




* Knowledge distillation between a student s X
and a teacher network. loss:
exp(go (£)i/Ts) Q -pzlogpi @
[ ] . _
Student: ps(x) S—oxp (06 (DL /70T .
softmax softmax
. . . . |
* Minimize CE: ming H (p:(x), ps(x)). centering
3¢ J 1
cma
student gg — | teacher gg

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




 Knowledge distillation between a student X
and a teacher network. loss:
exp(go (£)i/Ts) Q -pzlogpi @
[ ] . —
StUdent. pS (x) Zk eXp (g@s (m)k/Ts) . Sg
softmax softmax
. . . . |
* Minimize CE: ming H (p:(x), ps(x)). centering
|
student g6s ~m, teacher got

* Stop gradient on the teacher (no true label).

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




DINO

* Knowledge distillation between a student

and a teacher network.

* Student: ps(z) = ziii(fﬁée(f 2%?’/)@)'

* Minimize CE: ming H (p¢(z), ps(x)).

* Stop gradient on the teacher (no true label)

* Teacher network has EMA weights copied

from student (prevent collapse).

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

Global View 1
224x224 Local
View 2
/_gx%
Local /]
View 1
96x96 Local
View 3
Global View 2 96x96
224x224
loss:

Sg
softmax softmax
P l

— centering
|
cma
student gg — > | teacher gg
(V% °
CLs. A NYU
]




/\ Preventing Collapse

* Cross entropy objective can make both sides collapse to uniform
distribution.

* Apply sharpening, apply a temperature term on both teacher and student.
. softr—@(é@ The higher the temperature, the more uniform.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




Preventing Collapse

* Cross entropy objective can make both sides collapse to uniform
distribution.

* Apply sharpening, apply a temperature term on both teacher and st@t.
e softmax(g/7) The higher the temperature, the more uniform.

* It can also collapse into always activating a single unit.
_ 1 B
* Mean statistics: @:met_l +(1—=m)5 > 2 96, (Ts)

* Center teacher prediction: p:(x ex@((ge, ()i ct)/Tt)

Tk exp (e, (@)K —ce)/Te) |
D. 9 ﬂ) )

, @
Caron et al. Emerging Proper N SefSu,oerwse cmsformers ICCV 2021. 1 NYU




Centering and Sharpening

* Only centering: Always uniform distribution, high entropy, easy to
guess.

* Only sharpening: Collapsed into one unit, easy to guess, low loss, but
no real learning.

| S— sharpening wm=_=_centering wessss both

_____i

Target Entropy
=Y SR o NS

KL divergence
o T T

nnnnnnnnn

—_—

0o le‘pochls. 100 0 epochs 100 i NYU




Visualizing Attention

* The Is an extra token
added tosummarize the whole

Image into a vector.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




Visualizing Attention

* The [CLS] token is an extra token
added to summarize the whole
Image into a vector.

* Visualize the attention map of
different attention heads using
different colors.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




Visualizing Attention

* The [CLS] token is an extra token
added to summarize the whole
Image into a vector.

* Visualize the attention map of
different attention heads using
different colors.

* Showing understanding of
different objects and parts.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.



Visualizing Attention

* We can also visualize the attention by querying from a location.

* Weak separation of objects.




2o = Zi—) Claser' Lo aghon. @zﬂ) @ \’_—\

/ | Why Does SSL Work? o
T; Ti CIFAR-10, all SimCLR augs 9 Remove crops
* The unsupervised loss.is a %] "
surrogate. If an image belongs =%
to a similarity class, it also L e
belongs to the same semantic  8x{ - wowe 201
ClaSS, 6.0 58 56 5.4 52~ 504 502 500 498  4.96
. . . . - Remove crops & flips - Add hash pixels to images
* The choice of similarity class s 0. o
matters. ® oo, " Pl
: g ‘
‘% 40 X X : XX - y"ﬁﬁ’ 40+
g 20/ 201 s
504 502 500 498 49 60 58 56 54 52 5?0‘
Contrastive loss Contrastive loss
Aurora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning. (?l NYU

Saunshi et al. Understanding Contrastive Learning Requires Incorporating Inductive Biases. 2022.



SSL with Motion

 Can we use adjacent frames as self-supervision?
* Objects move densely throughout the image.

Frame x; 1

L= W “ﬁt - ﬁt+At||2

} i b
; . _—

Feature space

Frame x¢4a¢




SSL with Motion

* Perform SSL in multiple scales (small objects vs. big regions).

Lpool
I v v |

— —

Encoder — Decoder e — Encoder

I_> Ldense

pool pool

i o

Frame x; Flow T Frame x,, 5

Wang et al. PooDLe: Pooled and Dense Self-Supervised Learning from Naturalistic Videos. ICLR 2025.




metric loss
attraction repulsion
Plie gy

SSL with Time -t t-1

self-supervised imitation

TCN embedding -
L I I

deep network

* Use time as an additional source

of supervision. ,
3%

Class A l f# I\'
05| ! 35

segment length ‘

()

Class B Temporally Correct order

Original video \

° % Temporally Incorrect order
Misra et al. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. ECCV 2016.
Sermanet et al. Time-Contrastive Networks: Self-Supervised Learning from Video. ICRA 2018. (?’ NYU

Orhan et al. Self-Supervised Learning through the Eyes of a Child. NeurlPS 2020.
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SSL with Time H

* We can segment videos into meaningful events: ”J

* Leverage the spatiotemporal continuity structure.

(

|

|

| *ﬁ

|

1

| _‘u »

B

: satiiill

I Crawling

|

|

; Temporal

I Segmentation H

|
L L

Yang & Ren. Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from (?l

Egocentric Videos. arXiv 2025.



SSL for Visual Control

PointMass Env 20K Steps 100K Steps 200K Steps
3: ’3’ ﬂ!

& ?“"“
;‘.-4;,‘ -..
B, O
Wiy} .‘“!

. | ﬁ' "‘f =

. | . | .

Representation Projection Prediction

1000K Steps

R— —

L e -ﬁ"- - s
.'1 h‘k - it
l';;" * - - "i :'.- :j
L s | |

Probabilities

Softmax
—) Ut > Pe —J/Online

Prototypes

£ aug(z
t g( t) Exploration n
Policy/Value —H;A—| T |[e—|c1| - lepm XEnt Loss
Loss
Intrinsic Sllnkhorn
Reward Clustering
f£ g¢ over batch
— | Y1 | 241 ®( ) gt+1 Target

Lt+1 aug(xii1) // - Stop Gradient Codes

Yarats. Reinforcement Learning with Prototypical Representations. ICML 2021.
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7ot qy SSL for Visual Control

Neint
Mﬁ 010127 Fmﬁe;

0bservat1ons

i . | DynaMo &

..............................

Otih St+h

(a) Representation learning

Cui et al. DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control. NeurlPS 2024.

Embeddings Environments

(b) Policy on pretrained representations

ANYU




SSL for Visual Control

(a) Self-supervised Visuomotor Policy Pre-training (b) Downstream Tasks

- Consecutive frames input
- Since frames barely change
Ego Motion I' | —— - We need to STOP

((winsic kP ) —

J Visual Input

L[ grtomeri

a.l Stage One Visual Encoder
) : (Fine-tuned)
1 frozen
// E Photometric
— I |’ —> | EgoMotion T |—— :
Reconstruction
Visual Encoder - Single frame input
(Our Focus) - Since a car is ahead
- We need to STOP a.2 Stage Two Policy Learning

Wu et al. Policy Pre-training for Autonomous Driving via Self-supervised Geometric Modeling. ICLR 2023.
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Summary

* Representation learning leverage the information in unlabeled data.




Summary

* Representation learning leverage the information in unlabeled data.

* A foundation for sensorimotor learning.




Summary

* Representation learning leverage the information in unlabeled data.
* A foundation for sensorimotor learning.
* Inductive biases matter.




Summary

* Representation learning leverage the information in unlabeled data.
* A foundation for sensorimotor learning.

* Inductive biases matter.

* Possible learning objectives for egocentric videos.




Summary

* Representation learning leverage the information in unlabeled data.
* A foundation for sensorimotor learning.

* Inductive biases matter.

* Possible learning objectives for egocentric videos.

* Incorporate 3D vision and actions for downstream planning.




Emergent Attention, Object Discovery

* SSL representations show awareness of object classes and instance
identities.




Emergent Attention, Object Discovery

* SSL representations show awareness of object classes and instance
identities.

* Why does attention show awareness of objects?




Emergent Attention, Object Discovery

* SSL representations show awareness of object classes and instance
identities.

* Why does attention show awareness of objects?

* The network is encouraged to associate different parts of the objects
together in order to identify whether two inputs belong to the same
Image or not.




Emergent Attention, Object Discovery

* SSL representations show awareness of object classes and instance
identities.

* Why does attention show awareness of objects?

* The network is encouraged to associate different parts of the objects
together in order to identify whether two inputs belong to the same
Image or not.

* Attending to semantically similar parts facilitates the process.




Emergent Attention, Object Discovery

* SSL representations show awareness of object classes and instance
identities.

* Why does attention show awareness of objects?

* The network is encouraged to associate different parts of the objects
together in order to identify whether two inputs belong to the same
Image or not.

* Attending to semantically similar parts facilitates the process.

* The network is a hierarchical information processing pipeline - Lower
layers integrate more granular and smaller neighborhood.

ANYU




Weak-to-Strong Supervision

* General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.




Weak-to-Strong Supervision

* General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.

* Then use these as pseudo labels and supervise the network to
predict these low-quality masks.




Weak-to-Strong Supervision

* General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.

* Then use these masks as pseudo labels and supervise the network to
predict these low-quality masks.

* Question: how do we come up with masks? What loss is used to
supervise the network?




Graph Cut

* Segmentation is essentially a
clustering problem.

cut (A.B) = Z w(p.q)

ped.geB




Graph Cut

* Segmentation is essentially a
clustering problem.

* We can transform the clustering
problem with the graph cut problem.

cut (A.B) = Z w(p.q)

ped.geB




Graph Cut

* Segmentation is essentially a
clustering problem.

* We can transform the clustering
problem with the graph cut problem.

* Pixel = node.

cut (A.B) = Z w(p.q)

ped.geB




Graph Cut

* Segmentation is essentially a
clustering problem.

* We can transform the clustering
problem with the graph cut problem.

* Pixel = node.

* Affinity between the two pixels =
edge value (flow).




Graph Cut

* Segmentation is essentially a
clustering problem.

* We can transform the clustering
problem with the graph cut problem.

* Pixel = node.

* Affinity between the two pixels =
edge value (flow).

* Objective: Cut the graph into
disconnected components with a
minimum sum of edge values.




Normalized Graph Cut (NCut)

* How to prevent cutting

small isolated nodes? e %o . & 12
¢ 0 %, ® ‘ Min-cut 2
. ‘ .........
00 'O ®
®
@ @
o &

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
better cut —,
|




Normalized Graph Cut (NCut)

* How to prevent cutting

small isolated nodes? e 9¢ n
. ¢ P / @ ® " Min-—cut?
* Normalize by the total o © ® o N
edge connections of a 00 O Py
group to all the nodes. ® o o °
o . w
_ cut(A,B) cut(A,B) ® & & I
NCUt(A,B) —‘|‘ assoc(B,V) ‘ ‘ .' ‘ ‘ ‘ - M]n cut ]

better cut — |

@
Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000. 1 NYU




NCut Details (Optional)

* A form of spectral cIusterlng

* Degree matrix D N X N with d; on the diagonal.
* Weight matrix W N X N symmetric w;.

* Selectionvectorx; = 1ifi € A otherW|se 1.

_ . d;
* Solve the minimization: min,, £ (TD‘;V)y y=(142x)— Z"“”?O (1 —x).

* Generalized eigenvalue system:(D — W)y = ADy.

elet z=DY2y D 3(D—-W)D 2z=\z.

@
Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000. 1 NYU




NCut

* Sort the eigenvectors from the
smallest to the largest.

(b) (c)

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.




* Sort the eigenvectors from the
smallest to the largest.

* This was a classic image
segmentation technique
operating directly on image
Intensity.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.




NCut

* Sort the eigenvectors from the
smallest to the largest.

* This was a classic image
segmentation technique
operating directly on image
Intensity.

(b) (c)

* Now, instead of segmenting
pixels, we can directly segment ® 0
semantically meaningful
representations from self-
supervision.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.




MaskCut

* Use a pretrained DINO VIiT network.

0 [ I N

=

¥ 5 R N o A
E !ij AL S 1 (IR Prie pasEs
m et 19 =il

patch-wise masked
patchified input affinity matrix mask 1 affinity matrix

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.
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masked
affinity matrix

ool |

ot i

pseudo masks
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MaskCut

* Use a pretrained DINO VIiT network.
¢« 3] . KiK'
* Use the “key” features from the last attention layer: W;; = KL T

S
[}
X
S
o
S
)
X
S
)
‘>
S
)
X
S
o

B B
r . r . r .
i i i Iy 5} B
% NCut * ™~ % NCut [+ % _ -
H e d o e g -
{:S o2 o [ . o ] e
M " Ve P ” S m ”
fi o “
T TR A Y :ml PIrie EeeEi 4y :ﬁl BIrLe EeeEi
patch-wise ' masked ' masked
patchified input affinity matrix mask 1 affinity matrix mask 2 affinity matrix pseudo masks
Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022. (?l NYU

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



MaskCut

* Use a pretrained DINO VIiT network.

* Use the “key” features from the last attention layer: W;;
¢ -3

from previous stages.

S
[}
X
S
o
S
)
X
S
)
‘>
S
)
X
S
o

.

= 2 I e =N
< 280 T e 1 N

J A

Erusiasny

masked
affinity matrix

Prusiassy

patch-wise
affinity matrix

patchified input mask 1

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

-

KK,

.

Erusissny

masked
affinity matrix

= v e GV

y N

mask 2

pseudo masks
—

LIRS
* |terative NCut on the pairwise matrix by masking out the regions

ANYU




Ilterative Self-Training

* Now add a MaskRCNN structure on top of the pretrained network.

= —
# of masks|— A '8
o]
c -
S
o Z ‘e"'
z —
dqi7 | i
g N %
X 4 -
B 277m T '
I o ) 2 I
pes ; A -

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



Ilterative Self-Training

* Now add a MaskRCNN structure on top of the pretrained network.

* Select the predictions with the highest confidence score and use
them as labels.

# of masks\

da’
3
| 277TM

i e f /aﬂ
" A y ﬁ
‘ RolAlign|

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.




Ilterative Self-Training

* Now add a MaskRCNN structure on top of the pretrained network.

* Select the predictions with the highest confidence score and use
them as labels.

* Neural networks can learn from the noisy labels and output smoother

predictions. —
o .

o g’
e °
4 4
1y F 277TM
4 RolAlign|

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.




More Visualization

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.
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Point clustering
pseudo-labels

Randomly drop
lidar beams

Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.

Pseudo Labels in 3D

Filter out temporally
inconsistent tracks

Fal4r
Randomly drop
spherical rows/cols
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Train CNN in
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Zero-shot generalization
to long-range

Self-training in
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Iterative Refinement of Pseudo Labels

Point clustering

Initial Training Self-Training Iteration 1 Self-Training Iteration 2
pseudo-labels
— ——
N ~ o
j\h) }\ ’ & M\ ; INRELET) s
A =T
4T E
1 1
\
Many false positives and Discovers new vehicle labels Discovers more vehicle labels Discovers cyclist label and

missed detections

improves loU

b

Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.



Slot Attention Networks

)
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. k, v ATTENTION: enw
* Can we learn clustering as an end-to- T
FOR INPUT KEYS 4 1

end operation?

FEATURE MAPS
+ POSITION EMB.

(a) Slot Attention module.

()
Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020. 1 NYU




Slot Attention Networks

. k, v ATTENTION:
* Can we learn clustering as an end-to- S OTS COMPETE l 1
end operation? ronmRITERS. 3

o
PR

* Slot attention is inspired by the
success of the attention mechanism.

FEATURE MAPS
+ POSITION EMB.

~
]
-
~
]
N
~
Il
w

(a) Slot Attention module.

(7
Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020. 1 NYU




Slot Attention Networks

k, v ATTENTION:

* Can we learn clustering as an end-to- P yey—— l
end operation? FOR INPUT KEYS

-]

* Slot attention is inspired by the
success of the attention mechanism.

* Each “slot” attends to a region of the
image and stores an object centric
representation. drailito i

+ POSITION EMB.

(a) Slot Attention module.

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.




Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

SLOT ATTENTION /-

SLOT
DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.




Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

* Input: x € RV*P (after encoder), SIonmalize: -

Mme_q = LN(mt—g )-

SLOT ATTENTION /-

SLOT
DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.



Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

* Input: x € RN*D (after encoder), Slots e RM*P Normalize:

My_q = LN(m;_y). L k(s ,‘

 Attention over slots: Gt = S~ \/—"“(5’3 g (M) T
_7 (2

SLOT ATTENTION /-

SLOT
DECODER

CNN

A NYU

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.



Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

e Input: x € RV*P (after encoder), Slots: m € R**P Normalize:

m,_, = LN(m,_4).

 Attention over slots: Gt = T —— -
T > ﬁk(l’i)‘CI(mj)

. Updates@ =) 1a%v(xz)

SLOT ATTENTION /-

SLOT
DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.



Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

e Input: x € RV*P (after encoder), Slots: m € R**P Normalize:
My = LN(m;_q). L go(ws)-q(ing) T
e Attention over slots: @+ i ; = \/51 i = :
DO = S k() a(mg) T
° Updates: Utj = Zz CLtZ’jU(ZCZ').,Drw M,)lfiaf-e,g

e Write into slots: m; = GRU ( i) + MLP(my_1).

SLOT ATTENTION /-

L] SLOT

DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.



Slot Attention Networks

Image Rei . Mask Slot 1 S

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.
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Complex-Valued Autoencoders (CAEs)

* The complex number can E—
represent magnitude and

phase: z =m - e € C.

A

Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.



Complex-Valued Autoencoders (CAEs)

* The complex number can E— _>E
represent magnitude and \/

phase: z = m - e ¢ C. 1 foe | 3
* Each pixel starts with an g — — n

initial phase O.
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Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.



Complex-Valued Autoencoders (CAEs)

* The complex number can E— _>E
represent magnitude and \/

phase: z =m - e € C. RIS =
* Each pixel starts with an — — n
initial phase O.
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Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.



Complex-Valued Autoencoders (CAEs)

* The complex number can E— _>E
represent magnitude and \/

phase: z =m - e¥ € C. | e =
* Each pixel starts with an — — n
initial phase O.
Z = fdec(fenc( )) < Cth. A, A Im4 o
hX’U) ._A, A, &
O fou(2) € R Al Ty Ty o
o A, A — O
. O

@
Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. 1 NYU




CAE: More Details

* Apply weights separately to real and imaginary:
Y = fw(z) =\ [w(Re(z)) + fw(Im(z)) - i € Cq,,
— )

gjl'\—‘

Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. (@/ NYU
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014. !




CAE: More Details

* Apply weights separately to real and imaginary-
Y = fw(z) = fw(Re(z +@Im 1 € Cq,
* Bias on magnitude and phase:

My, = "‘N + b, € R dout Pap = arg(zp) —|—éo c Rout

Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. (?/l NYU
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.




CAE: More Details

* Apply weights separately to real and imaginary:
Y = fw(z) = fw(Re(z)) + fw(Im(z)) -i € Cq,,
* Bias on magnitude and phase:
My = || + by € R¥bout o, = arg(ah) + bcp € Rdout

X = ful[a]) + by € R ey

o |wi-z1 + wazs| |wy-z1| — j|

_ . . dout + Wi |z1] +walze] T 4 Wi [Z1] + waze
m, =0.5-my +05-x €R :!Lwl_z”Twl/;_D
L—

* Gating:

Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. (?/l NYU
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.




CAE: More Details

* Apply weights separately to real and imaginary:
Y = fw(z) = fw(Re(z)) + fw(Im(z)) -i € Cq,,
* Bias on magnitude and phase:
My = [ + by, € Révt @y, = arg(y)) + b, € Rbout

T S
X = full2]) + by € BT g T Loty

¢ Gatlng' p o |wimitwon| _ [wiezm| - wsle)
my = 0.5-my + 0.5 x € R B

e Activation: z’ = ReLU(BatchNorm(m,)) - e+ & Cdout

J

Ve
?7 \ /0 4 as
Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. € (?/l NYU

Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.




Complex-Valued Autoencoders

'ﬁ.

Input Reconstruction Reconstruction Phase Values  Prediction Prediction Prediction

AutoEncoder —— Complex AutoEncoder DBM SlotAttention

@
Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. NYU
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Summary: Object Discovery

* Combine deep features with clustering algorithms.
* Pseudo-labels to train detector networks.

* Creative end-to-end learning-based solutions exist, but there are still
plenty room for improvement.
* Possible to train from scratch!

* What do we make use of the discovered objects? Is it better to keep
the awareness in the latent space? '

—

—




Module 4:
World Models and End-to-End Planning




World Models: Predicting Future
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World Models: Predicting Future

* There is a debate whether predicting future is necessary.

* Data efficiency
* Predicting future can “simulate” roll out without querying for outcomes.

* Leveraging the massive amount of data in past experiences (not just the final
reward).

* Long-horizon planning: Predicting high-level future steps is needed.

* Can representations learned from SSL help us build better
prediction?




Model-Predictive Control (MPC)

* A classic example of world models.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.



Model-Predictive Control (MPC)

* A classic example of world models.
* Analytical forms, complete knowledge of the dynamical system.

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.



Model-Predictive Control (MPC)

* A classic example of world models.
* Analytical forms, complete knowledge of the dynamical system.

General Form: Sadnd Contro |
dx / {
—[= Fxjt)
y = h(x,u,1)
X(to) — (X0

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.

W
1

NYU



Model-Predictive Control (MPC)

* A classic example of world models.
* Analytical forms, complete knowledge of the dynamical system.

General Form: Linear Form:
d d
d—);:f(x,u,t) d—fzéx%—Bu
y = h(x,u,t) y = Cx + Du

X(to) — X0 X(to) — X0

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.



Model-Predictive Control (MPC)

* A classic example of world models.
* Analytical forms, complete knowledge of the dynamical system.

General Form: Linear Form: Optimize Value/Cost Function:

dx = f(x,u,t) dz — Ax + Bu mHQJE@’ u)j
dt dt
= h(x,u,t) y = Cx + Du

X(to) — X0 X(to) — X0

Rawlings et al. Model Predictive Control: Theory, Computation, and Design.



Model-Predictive Control (MPC)

* A classic example of world models.
* Analytical forms, complete knowledge of the dynamical system.

General Form: Linear Form: Optimize Value/Cost Function:
dx dx miny, J(x(0),u)
== = f(x,u,t — = Ax + Bu |
dt f(X’ 7 ) dt X+ Quadratic Form (LOR):
y = h(x,u,t) y = Cx + Du J:fOOXTQX—I—U_TRu dt.

x(tg) = Xg x(tg) = Xg ’ W

reacy f””""é.?

@
Rawlings et al. Model Predictive Control: Theory, Computation, and Design. 1 NYU




Model-Predictive Control (MPC)

* A classic example of world models.
* Analytical forms, complete knowledge of the dynamical system.

General Form: Linear Form: Optimize Value/Cost Function:
dx dx miny, J(x(0),u)
E - f(X’ % t) E o AX T Bu Quadratic Form (LOR):
y = h(x,u,t) y = Cx+ Du J:fOOO xTOx +u' Ru dt.
X(to) — X0 X(to) — X0

* Example: Cars: x: position velocity angle angular velocity; u: jerk and
angular accel,; -

@
Rawlings et al. Model Predictive Control: Theory, Computation, and Design. 1 NYU




Trajectory Prediction as Object Detection

* We also need to predict external
dynamic objects.

1 Ground truth detection
@ﬁ Predicted waypoint
©  Ground truth waypoint
©  Predicted waypoint
* Ground truth intention score
Predicted intention score

I A NYU
Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018. ]
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* We also need to predict external
dynamic objects. O;,\

O L1 acros

* How to capture multiple modes?

Ground truth detection
Predicted waypoint

Ground truth waypoint
Predicted waypoint

~ Ground truth intention score
Predicted intention score
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Trajectory Prediction ject-Detection

* We also need to predict external
dynamic objects.

* How to capture multiple modes?

* Discrete intention prediction
problem:

* keep lane, turn left/right, left/right
change lane, stopping, parked, etc.

1 Ground truth detection
Predicted waypoint

©  Ground truth waypoint

©  Predicted waypoint

I * Ground truth intention score

Predicted intention score

I A NYU
Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018. ]




Trajectory Prediction as Object Detection

* We also need to predict external

dynamic objects. . UO\ 4
* How to capture multiple modes? &
O
* Discrete intention prediction g & °
problem: o
Ceo

* keep lane, turn left/right, left/right
change lane, stopping, parked, etc.

* Output multiple trajectories

1 Ground truth detection
Predicted waypoint

©  Ground truth waypoint

©  Predicted waypoint
Ground truth intention score
Predicted intention score

I A NYU
Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018. ]




Trajectory Prediction as Object Detection

* We also need to predict external

dynamic objects. . UO\ 4
* How to capture multiple modes? &
O
* Discrete intention prediction g & °
problem: o

* keep lane, turn left/right, left/right
change lane, stopping, parked, etc.

* Output multiple trajectories

1 Ground truth detection
Predicted waypoint

©  Ground truth waypoint

©  Predicted waypoint
Ground truth intention score
Predicted intention score

* Requires high-level action labels.

I A NYU
Casas et al. IntentNet: Learning to Predict Intention from Raw Sensor Data. CoRL 2018. ]




Latent Sequence World Model for RL

—_

 Autoencoder to ensure the latent
representations are meaningful.

t ™ Ckb@’ htaa‘_j_t)

Ty qu({ft |_@7§t)

Hafner et al. Mastering Diverse Domains through World Models. 2023.



Latent Sequence World Model for RL

 Autoencoder to ensure the latent
representations are meaningful.

&t~ qu(zt ’ htaxt)
Ty Nqu(C%t | htazt)

* Learn a sequence model to predict
the latent conditioned on previous
action.

@:ht—la Zt—1, a’t—l)
2t~ pqﬁ(ﬁt ’@

Hafner et al. Mastering Diverse Domains through World Models. 2023.




Incorporating Rewards

* Predicting reward
I Nqu(ft | By 2¢)

y
=
A g
y
>

@
Hafner et al. Mastering Diverse Domains through World Models. 2023. 1 NYU




Incorporating Rewards

v, a, @

* Predicting reward ,j_/ o
I Nqu(ft | b, 2¢) "

e Reconstruction, reward, continue z, %

ﬁpred(¢) = —logp¢($t | Ztaht) - 10gp¢<7"t | Ztyht) - 10gp¢(ct thht)
e Gnstrupmn  MeL~erdl Con fHnusy,

Hafner et al. Mastering Diverse Domains through World Models. 2023.




Incorporating Rewards

* Predicting reward
Tt Nqu(ft ’ htazt>
e Reconstruction, reward, continue z

1

ﬁpred<¢) = —logp¢($t | Ztaht) - 10gp¢<7"t | Ztyht) - 10gp¢(ct | Ztaht)

* Dynamics: Predicting future z

Lagn(¢) = max(l,KL%(zt | hes20) || po (/)]
S?LDP "77"010,' ent

Hafner et al. Mastering Diverse Domains through World Models. 2023.



Incorporating Rewards

* Predicting reward
Tt Nqu(ft ’ htazt)
e Reconstruction, reward, continue

£pred<¢) = —logpq5($t | Ztaht) - 10gp¢(7"t | Ztyht) - 10gp¢(ct | 2ty hy

* Dynamics: Predicting future z
Layn(¢) = max(1, KL[sg(gs (21 | hi, 1) | po(2elhe))]

* Align representation g
£rep - maX(laKL[q¢(Zt|ht7$t) “ Sg(p¢(zt|ht))])

@
Hafner et al. Mastering Diverse Domains through World Models. 2023. 1 NYU




Incorporating Rewards

* How to use WM in planning?
Predicting value by simulate a batch
of trajectories.

Hafner et al. Mastering Diverse Domains through World Models. 2023.



Incorporating Rewards

* How to use WM in planning?
Predicting value by simulate a batch
of trajectories.

e Actor-Critic RL:
G Nat | s¢) _fU\w(Rt | @

Hafner et al. Mastering Diverse Domains through World Models. 2023.



Incorporating Rewards

* How to use WM in planning?
Predicting value by simulate a batch
of trajectories.

* Actor-Critic RL:
ar ~ mo(ay | s¢) vy (R | 8t)

* Learning a critic:

Categorical distribution

T o
Lo=—> 14 logp¢(R% | s¢) st ={he,2e} ™
um of discounted future rewards Iy erve C/‘;-’ﬁ'c_
S fd ted fut d P
D R} =1y + el — Nog + AR),]  R) =g

@
Hafner et al. Mastering Diverse Domains through World Models. 2023. 1 NYU




Actor Learning

e Learn a policy network a¢ ~ mg(as | s¢)

Levine. Policy Gradients. Deep RL course. 2017.



Actor Learning

e Learn a policy network a; ~ mg(ay !@
* REINFORCE algorithm [Williams 1992]

e 5 Normalization . Entropy Regularizer
£(0) = = X1 s8(({ va())/ max(1, S)Ylog molar 50 n[molar | 1)

— e e

~—

C""f‘r‘c.

Levine. Policy Gradients. Deep RL course. 2017.
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Actor Learning

* Learn a policy network a; ~ mg(a; | s¢)
* REINFORCE algorithm [Williams 1992]

e \ Normalization Entropy Regularizer
L(0) = = 21— 88((Rf — vg(se))/ max(1,S))logmg(as | s¢) +nH|me(ar | s¢)]
* Notes on policy gradient:

mo(T)Vologmg(T) = WQ(T)V;;T—(QT()T) = Vomg(T).

7T9(7') — 7T9<817 at,...,S8T, CLT) — p(Sl) Hle W@(at|8t)p(3t+1‘8t, Cl,t).

Levine. Policy Gradients. Deep RL course. 2017.



Actor Learning

* Learn a policy network a; ~ mg(a; | s¢)
* REINFORCE algorithm [Williams 1992]
e \ Normalization Entropy Regularizer
£(0) = — Sy se((R) — vy (s0))/ max(1, 5) log o (ar | s0) +nHlma(ar | 50)

* Notes on policy gradient:
910g7'('9(7') = ngT!% V97_T9(7').

—
o T) — 7T9(817 ai, ..., 8T, aT) = p(Sl) Ht:1 7"'O(Cbt|3t)p(5t—|—1‘Sty at)-
——

log 74(r) = log p(s1) + 1, log w@) T log p(sesa]se, ar).

Levine. Policy Gradients. Deep RL course. 2017.




Actor Learning

* Learn a policy network a; ~ mg(a; | s¢)
* REINFORCE algorithm [Williams 1992]

Normalization Entropy Regularizer

L(0) = = 31—y s8((R} — ve(st))/ max(1,5)) log mg(ay | s¢) + nH[mg(ay | 5¢)]
* Notes on policy gradient:

7o () Vg log o () = m9(7) el = Vo (7).

mo(T) = mo(S1,0a1,...,8T,a1) = p(s1) H;‘le 7o (a¢|st)p(Sir1|se, ar).

log ma(7) = log p(s1) + >y_y log wo(au|st) + log p(siya|st, ar).

L(0) =By r(T)] = [ mor(r)dr.

Levine. Policy Gradients. Deep RL course. 2017.



Actor Learning

* Learn a policy network a; ~ mg(a; | s¢)
* REINFORCE algorithm [Williams 1992]

Normalization Entropy Regularizer

L(0) = =y s8(R} — vy(s¢))/ max(L, S)) log mo(ar | s¢) +nH[ro(ar | 5¢)

* Notes on policy gradient: o J
Jo Sof ey, ovo_

Vome (T
glogmy(T) = 7'('9(’7')%7_()) = Vomg(T). 0
7T9(7') — 7-‘-9(817 at,...,ST, CLT) - ]9(51) H,-tT:1 We(a/t|3t)p(3t+1‘8t, at).

log mo(T) = logp(sl) + 3,y log 7Te(atlst) +log p(st+1]5¢, az).
LO)=E rprr( fﬂ'g?“

VL) = fVﬂ'gT’ dT = [ mo(T Vlog mor(T)dT = Brrore log mor (7).
— ¢
ee 2017. (Tl NYU
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* For low dimensional or discrete problems, we can directly take the
argmax of the value function.
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When Do We Need A Learned Actor?

* For low dimensional or discrete problems, we can directly take the
argmax of the value function.

* For problems with a good model, we can roll out and sample many
future trajectories. Evaluation can be done in real time with GPU.

* For general control problems, learning a separate actor can be a
general solution without invoking domain knowledge.
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Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations. ECCV 2020.



Semantic Occupancy Volume Prediction

~

-
{1 ) t,c
/4 D volume: H, W, T, C(class) o,’; o
[« Doesn't grow with the increasing F-@b

number of actors. |
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Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations. ECCV 2020.



Semantic Occupancy Volume Prediction

e

o . t,c r
4-D volume: H, W, T, C (class) o, (€ 1) Q
B
L

* Doesn’t grow with the increasing
number of actors.

* Recurrent occupancy updates for
further into the future.

lt,c — lt—l,c 4 ué(focc, lO:t—l,c)

/

ory prev ocg . Netwerk.
Next

Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations. ECCV 2020. 1




Multi-Agents Joint Prediction

* Joint predict future trajectories by
attending to other actors.

Input Representation Multi-Sensor Object Detection Recurrent Prediction with Attention
_______________________________ e et T e
: ' | BEV Detections ;! Recurrent Module .
: Road mask / 2 - . Ly ~N :

A X BEV Stream S | & Actor States | | :
| Lane graph = y Network ! ! i ! @ t+1 - e |
| : : Lo A - vz‘l _ !
| BEV Voxel of : 4 = = $ ! | Interactive Actor =0 =1 =2
: MUE"DSXVSGP : ContinUOUS -------------- ; 7 E : \ Features @ t+1 [nteractjon Attenﬁon :
: : Fusion ——— ¢ — 11 N - A . N I : | = !
! i = : : J Interaction 1 !
: | i T mm mm S ® T g | L\ Transformer | e T\ '
: L i y\ -/ [N T
: C;amera : Image Stream o 'y ! » — —
| mage : Nefwatk Ml | g Actor Features & | [--wistig @~ |
' i ! ! : > States @ t=0 B y; ( B
: : - : 1 - . . . nn “t | : | : |

_____________________________________________________________________________________________________________________________

Li et al. End-to-end Contextual Perception and Prediction with Interaction Transformer. IROS 2020.



* Joint predict future trajectories by
attending to other actors.

Input Representation

Multi-Sensor Object |/

__________________________________________________________________
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Li et al. End-to-end Contextual Perception and Prediction with Interaction Transformer. IROS 2020.




| atent Prediction + MPC

a) Training DINO-WM b) Test-time Inference

* Using MPC on the latent space of
pretrained visual encoders. . %\

Zg
* Learn a predictor of latent states @ ...\ M M
conditioned on actions. & m m

0, — 044 0 Og

Ozf,k, Q.F % %.
. u

5 9 =

%—»a—»m—»m—»m — o+ — & —>[[IIII1T]
Z41 2142 Zr

- | 4 NYU
Zhou et al. DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning. 2024. ]




World Model in Video Prediction

2@ -

“I am approaching a
crossing yielding
to pedestrians”

“It is safe to move
so I am now
accelerating”

* Text+action conditioned generation. Diffusion decoder.

image
encoder 9 2

action
encoder

1
> =
'

text 2
encoder 9 -
=

Hu et al. GAIA-1: A Generative World Model for Autonomous Driving. arXiv 2023.
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World Model in 3D volume prediction

* Autoregressively predict future 3D point clouds.
Observation Enced (T BEBRRR) Beead Reconstruction
ncoder IIIII‘ ecoder 6 \% |

‘i"({;’ i i‘ 7 5
N F !,\\ e g = — —p — o= = \‘&
> s 77 jg\ - 3 )/ Vg
CR \,\-“\‘,{{gi,xt ) BEV Tokens \ ?\ 1//,,.
:;J } !’;?ﬁ’gfﬁ' ( L' . Render ; }‘ f'\;/’;ﬂi
4 oL P P Tokenizer 9 o T
Time € Mask Token Diffusion steps Autoregressively

predict future frames

Predict |  Spatio-Temporal |_Frocci S ...
""" % ) % ) % ‘ frame t+1 { Transformer ffome t+2

Pcs’r observation tokens and cc’nons World MOdel Action at t+1

| A A . _ ‘A NYU
Zhang et al. Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion. ICLR 2024. 1
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Summary: World Models

* Explicit object representation
* Traditional, light weight, instance-specific, hard to learn jointly

* Differentiable occupancy, motion field
* Relatively heavy, spatially grounded, end-to-end learnable

* Global latent, RNNs, graph landmarks
* General-purpose, unstructured

* Raw video/3D prediction
* Expensive, good for simulation
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Imitation Learning

* The explicit policy model, supervised learning (behavior cloning)

CAL:fQ(ZU) EzmmzHaz—&H% L= _logdj

* Energy-based (cost-based) approach

7" = argmin_ F(x, 7)
___exp(E(z,7))
P(T12) = T
* Dataset Aggregation (DAgger)
* Learned policy may deviate from experts

* Need to collect more groundtruths

Initialize D « ().

Initialize 7, to any policy in II.

fori: =1to N do
Let m; = B;n* + (]. — ﬂz)'fl’z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D|JD;.
Train classifier ;41 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

ANYU




Direct Policy Learning from Diffusion

* Error prediction network is

conditioned on observation features.
APl = (AR — yeg(Oy, AR ) + N(0, 021)).

L= MSE(e*, e9(Oys, Ay + €5, k)).

Input: Image Observation Sequence

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023
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Cost/Value Volume Reasoning

* Interpretability (both costs and planner inputs)

Rasterization Semantic Occupancy
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* Interpretability (both costs and planner inputs)
* Use spatial geometry to form cost from explicit objects
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Cost/Value Volume Reasoning

* Interpretability (both costs and planner inputs)
* Use spatial geometry to form cost from explicit objects

* Predict spatial cost volume
* Rasterize the scene for spatial inputs
* Predict soft occupancy volumes (present and future)

Rasterization Semantic Occupancy

| K
[ W

A




Learning Through Interpretable Predictions
— -

* Semantic occupancy, motion field,
Dnvable area Intersections

mapping, etc. as intermediate predictions. .- —

Reachable Distance Transform Reachable Angle

Inputs Scene Representations Motion Planning Fi
; i Mopping  Online map Retrieval-based . .
Voxelized LiDAR Backbone
s Trajectory sampler Occupancy Temporal Motion Field
' g
\ J n = Costing _ B B
% / = e \ t=0 t=1 t=2
: L M Perception & ) i — >
: priction Dynamic stote =
High-level Goal , , Routing = i~ Flow — —~ Flow —
[ 1 (&)
" " ax - ~ O
fEep STRATGHT \’// W 8
C
Q
0
Casas et al. MP3: A Unified Model to Map, Perceive, Predict and Plan. CVPR 2021. S




Learning Through Interpretable Predictions

* Semantic occupancy, motion field,
mapping, etc. as intermediate predictions

* Differentiable, supports end-to-end
interpretable learning from perception to

Inputs Scene Representations Motion Planning
Voxelized LiDAR Backbone Mapping Snlasmep Retrieval-based
Network ‘F Trajectory sampler
2 n ™ Costing

High-level Goal

it STRATGHT \//

Casas et al. MP3: A Unified Model to Map, Perceive, Predict and Plan. CVPR 2021.

-.’ -

Intersections
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Reachable Distance Transform

Drivable area

= ~Li

Occupancy

Motion

I o

Occupancy
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- Flow —

Reachable Angle
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Temporal Motion Field
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Max-Margin Planning with Explicit Cost Volume

* If we have an explicit cost volume, the cost of a trajectory can be
directly queried.

Zeng et al. End-to-end Interpretable Neural Motion Planner. CVPR 20189.



Max-Margin Planning with Explicit Cost Volume

* If we have an explicit cost volume, the cost of a trajectory can be
directly queried.

* We can use the max-margin objective to make the groundtruth
trajectory have lower costs.

T
rgmin 37 max 3 Cola ] - Clal, ) +
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Max-Margin Planning with Explicit Cost Volume

* If we have an explicit cost volume, the cost of a trajectory can be
directly queried.

* We can use the max-margin objective to make the groundtruth
trajectory have lower costs.

* Find the lowest cost trajectory among a batch of samples.
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Max-Margin Planning with Explicit Cost Volume

* If we have an explicit cost volume, the cost of a trajectory can be
directly queried.

* We can use the max-margin objective to make the groundtruth
trajectory have lower costs.

* Find the lowest cost trajectory among a batch of samples.

* Low-dimensional/known dynamics problems: External samplers

T
I t Erat ot ¢
argénm Z mZaXZCQ[:Ct,yt] C@[%ay@]-i— ;
{(@59D)  i=1..N t=1
@ NYU




Max-Margin Planning with Explicit Cost Volume

* If we have an explicit cost volume, the cost of a trajectory can be
directly queried.

* We can use the max-margin objective to make the groundtruth
trajectory have lower costs.

* Find the lowest cost trajectory among a batch of samples.
* Low-dimensional/known dynamics problems: External samplers
* In general, needs to perform optimization (e.g. DP)

T
I t Erat ot ¢
argénm Z mZaXZCQ[:Ct,yt] C@[%ay@]-i— ;
{(@59D)  i=1..N t=1
@ NYU




EBM Planning

* Energy-based framework also needs negative samples.

Florence et al. Implicit Behavioral Cloning. CoRL 2021.
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EBM Planning

* Energy-based framework also needs negative samples.
e “Pick” the groundtruth sample among others.

* If there isn’t an external sampler, we can either use autoregressive
energy of sampling one dimension at a time, or gradient-based
Langevin MCMC.

Langevin MCMC: Sff = ka L A (%VyEQ(Xi,yf_l) + wk) ,wk ~ N(0,0’)

1

e Fo(xiyi)

Loss: L = Zz —log(pe(y; | %, {S’i}j) po(yi | X, {¥i}; = RN ICTE NS S P IR TR

ANYU




Value Iteration Networks

* A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.

(]
Tamar et al. Value Iteration Networks. NeurlPS 2016. 1 NYU
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Value Iteration Networks

* A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.

 Classic VI altorithm:
V*(s) = max, V™ (s)

VT(s) =E" 3 2o v'r(se, ar)
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Value Iteration Networks

* A network design for predicting cost volumes that are grounded from
the classic value iteration algorithm.

 Classic VI altorithm:
V*(s) = max, V™ (s)

VT(s) =E" Y o v'r(se, ar)
Qn(s,a) = R(s,a) +v )., P(s']s,a)V,(s')
Vihi1(s) = max, Qn(s,a)

7 (s) = argmax, Q. (s, a)




Value Iteration Networks

* Reward and previous value are fed into a CNN to generate Q of A
channels. Transition matrix is convolutional kernel. Then Max-Pooling.

Qn(s,a) = R(s,a) + 72, P(s'|s,a)V,(s')

Vihi1(s) = max, Qn(s,a)

Value Iteration Network

VI Module
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fP?

R Plan on g
P:

_ : ki
“Imop ar[ Vo _‘

Observation g

Attention

©-

~—~
VA

~—
v

Ll : e Voo

.................

7rre(a|¢(s)ﬁ U(S))

New Value

VI Module
' Prev. Value ! L
¥ Reward Q
i ﬁ % ...............
E F ..... [ e R
Lo €

K recurrence

Tamar et al. Value Iteration Networks. NeurlPS 2016.




Value Iteration Networks

* Select the current state and choose an action from softmax.

a ~ softmax,(Q(s,a))

Value Iteration Network VI Module
fl o Module " Prev. Value | L
I — >V ¥ Reward Q =
Ir . p: |MDP M Y ' b N L N Q Vv
H L PR e
Observation g S S 11 e — I 0
¢(3) >| Attention A e '
.................... — . |
w(‘S)__’I Reactive Policy Lommeoen R ——
Tre(a|@(s), 9 (s)) K recurrence

Tamar et al. Value Iteration Networks. NeurlPS 2016.



Value Iteration Networks

* A baseline would be to untie the weights through iterations, more
like a feedforward CNN.
* Achieve more training data efficiency by imposing the structure.

Training data VIN VIN Untied Weights
Pred. | Succ. | Traj. | Pred. | Succ. | Traj.
loss rate diff. loss rate diff.
207 0.06 | 98.2% | 0.106 | 0.09 | 91.9% | 0.094
50% 0.05 | 99.4% | 0.018 | 0.07 | 95.2% | 0.078
100% 0.05 | 99.3% | 0.089 | 0.05 | 95.6% | 0.068

Tamar et al. Value Iteration Networks. NeurlPS 2016.

ANYU




Backprop through Planning

* Treat planning as an end-to-end layer. Can be used for RL/Imitation.

Backprop

(_f

States I:> Policy I:> Actions |:> Loss
I—I—I

|:> Learnable MPC Module |:>

Submodules: Cost and Dynamics
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Backprop through Planning

* Treat planning as an end-to-end layer. Can be used for RL/Imitation.
* Option 1: Unrolling a finite number of steps
* Option 2: Solve till convergence, backprop for a finite step

Backprop

(_f

States I:> Policy I:> Actions |:> Loss
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Backprop through Planning

* Treat planning as an end-to-end layer. Can be used for RL/Imitation.
* Option 1: Unrolling a finite number of steps

* Option 2: Solve till convergence, backprop for a finite step

* Option 3: Converged at fixed point: Implicit differentiation

Backprop

é—f

States I:> Policy I:> Actions |:> Loss
I—I—I

|:> Learnable MPC Module |:>

Submodules: Cost and Dynamics




Implicit Differentiation x,

. . _ - *
e Unconstrained case o Optimizer . T
x* = argmin f(x; 0). f(@e) = f(@i1) < €
xr

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.




Implicit Differentiation

Lt
. . _ - *
* Unconstrained case o Optimizer . T
x* = argmin f(x; 0). f(@e) = f(@i1) < €

o

d "
0= d—HJf’w*(m ,9)

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.




Implicit Differentiation x,

* Unconstrained case Ty — Optimizer .
x* = argmin f(x; 0). f(@) = fl@ia) < e
d
0= d9 Jf x* (CIZ 9)
9, 8:13* 9,
L 0 o 6
0= g Tra@:0) 55 + 55 1e(@7:0)

@
Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018. 1 NYU




Implicit Differentiation x,

 Unconstrained case Lo —>—{ Optimizer »x*
x* = argmin f(x;0). fl) — f@i) < €
d
0= dGJf“’ (CIZ 9)
0 ox* 0
0= e me (a: 9) 90 aHwa (:U 0)
ox* 0
0=Hyo-(x"50) 50 + 55712 (27 0)

ANYU




Implicit Differentiation x,

* Unconstrained case L0 * Optimizer > ™
x™ = argmin f(x; 8). Fl@e) = flwe) < €
0= ddG Sz (2" 0)
0= 853 Jfze (X 9)%9* 5’69wa (x™*;0)
0= Hf o (2*;0) %a; 889 Tt o (273 0)
%";* = Hy o (z*;0)" 889 Tt o (2" 0).

ANYU




Implicit Differentiation

* How to compute Hessian inverse
vector product?

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.




Implicit Differentiation

Conjugate Gradient Method
rg := b — AX()

* HOW tO com pUte HeSSian inve rse if ry is sufficiently small, then return x( as the result
vector product? Py = o
k:=0
« Conjugate gradient, solve Ax = b epeat
o I'k T
e P;\TAPk

Xkt+1 1= X T O Py
Tpp1 = Tp — aprApg
if ry. ;1 is sufficiently small, then exit loop
r-lsﬂrkﬂ
Bri=
I‘k | 3
Pii1 = Thi1 + BkPy
k:=k+1
end repeat

return X5 ; as the result

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.




Implicit Differentiation

* How to compute Hessian inverse
vector product?

« Conjugate gradient, solve Ax = b
* Neumann series (finite truncation)

(I—A)~t =372, 4%

* Same as backprop the last K steps
(Option 2).

* Memory savings.

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018

Conjugate Gradient Method
rO:::b-—IXXO

if ry is sufficiently small, then return x( as the result

Po ‘=T
k:=0
repeat
r{rk
qf 1=
PZ Ap;

Xkt+1 1= X T O Py
Tpp1 = Tp — aprApg
if ry. ;1 is sufficiently small, then exit loop

r£+1rk_1
Br == —
rkrk
Pii1 = Tit1 + BePi
k:=k+1

end repeat
return X5 ; as the result




Differentiable LQR

T
. . . . 1
Now adq linear equality | argmin Z ~r T Oy
constraints on the dynamics o 2
and initialization. , B
T = { e, U 17 subject to x¢11 = Fimt + ft, 1 = Tinit-

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

T
. . . . 1

Now adq linear equality | argmin Z ~r T Oy

constraints on the dynamics o 2

and initialization. ,

T = { e, U 17 subject to x¢11 = Fimt + ft, 1 = Tinit-

. Cha: Lot _ 9t OTir

Chain rule: 90 an:T 90 -

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

T
* Now adq linear equality | argmin Z thTCtTt
constraints on the dynamics o 2
and initialization. ,
T = { e, U 17 subject to x¢11 = Fimt + ft, 1 = Tinit-
* Chain rule: % = af{fT 8gléT. General QP: |
| x* = argmin inQw +c'x

subject to Ax = b.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

T
. . . . 1

Now adq linear equality | argmin Z ~r T Oy

constraints on the dynamics o 2

and initialization. ,

T = { e, U 17 subject to x¢11 = Fimt + ft, 1 = Tinit-
: o or Oy,

* Chainrule: 55 = 5 35 - General QP: |
e KKT: x" = argmin inQw +c'x

subject to Ax = b.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

* Now add linear equality

constraints on the dynamics 1T

and initialization.

T1:T — {xta ut}l:T

T
. I +
argmin g —7,.' C
g ot tTt
t=1
subject to x¢11 = Fimt + ft, 1 = Tinit-

: or or OT].p

e Chainrule: 55 = * : General QP:

00 or{. 00 ) 1 - -
o KKT: " =argmin —x Qxr+c x

AT [x*] —c ,

[3 ollIx|l =15 subject to Ax = b.
x*|
K \* — V. Inclassic LQR solver, the Riccati recursion solves this linear system.

@
Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018. 1 NYU




Differentiable LQR

d x|\ _ dv
* Apply differentiation do (K [’\] do

dK |x* da” 7 dv
el a6 | —
w ) K] =

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

()5
* Apply differentiation o \ [N/ de
dK |x* da” dv
w | K] =

dA* dA* dX* A ok
de  db  dQ dA 01 0 L

dz* de* dz* de* dz* * *
]K[ e ;z][f 0 —a —A]

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

io (% [3)) = o
* Apply differentiation o \ [N/ de
dK [w] [dw] dv
T . + K |48 | = —
de | -] de
da* da” da” da* da* da* da* e
1o I ol vt R I < i i o B 2
* * * * — * % * p—
de  db  dQ dA 01 0 - 0z* |“fe "3 0
-
Kd* = | 09
| 0

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

o (% [3)) =
* Apply differentiation o \ [N/ de
dK [w] [dw] dv
o L K| d6 | = —
de | -] de
- x[E E B B|-[7 0 T ] xA[E E]-[#
de  db  dQ dA 01 0 - 0z* |“fe "3 0
T o
Kd* = |0
* Equivalent QP: -
1 ¢!
d* = argmin —d' Qd + ot d,
d 2 ox*

subject to Ad = 0.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable LQR

* Apply differentiation

dK [z*
— K

da* da* da* dae* dae*
de]K[dc db d@ dA][I
dX\* | — dX\* dX\* dX\* d\* | — 0
do de db d@ dA
* Equivalent QP:
* : 1 T ag ! % =
d* = arg;mn §d Qd + e d, 90
o4

subject to Ad = 0.

0A

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.

i (< [%])-

@
do
] e
o do
0 —z* =\* ov
K
I 0 —x*] 0z*

1

§(d;kc R+ dy)

dyx "+ A" ®d,.

da* da*
de db
dA\* d\*
de db
Kd*

ol 7
ox*

of 7

ox*




Differentiable LQR

* The backward pass can also be formulated as a LQR problem.
* SwapctoV £ and f to 0.

Module 1 Differentiable LQR (The LQR algorithm is defined in appendix A)

Input: Initial state Zinit
Parameters: 6 = {C,c, F, f}

Forward Pass:
1: miip = LQR - (Zinit; C, ¢, F, f) > Solve (2)
2: Compute \}.7 with (7)

Backward Pass:
1: d7, . = LQR,(0;C,V.«£,F,0) > Solve (9), ideally reusing the factorizations from the forward pass

T1:T

2: Compute d}, .. with (7)
3: Compute the derivatives of £ with respect to C, ¢, F), f, and Zinit With (8)

L | ‘A NYU
Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018. 1




Differentiable MPC

* What about general MPC?

T
argmin Z Ct (a:t, Ut)

1. T ExaulzT Eu t—=1

subject to x¢11 = f(4, ut), T1 = Tinit-

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018.




Differentiable MPC

* What about general MPC?

argmin E Ct th,ut

z1.7E€X UL EU T
subject to x¢11 = f(4, ut), T1 = Tinit-
* Use Taylor expansion to approxmate
C@ += Co +(7¢) + p} (Tt — i)+ 5(me — ) Hi (e — 7).

@
Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018. 1 NYU




Differentiable MPC

* What about general MPC?

argmin E Ct th,ut

r1.7 €X u1.r €U s
subject to x¢11 = f(4, ut), T1 = Tinit-
* Use Taylor expansion to approxmate
C@ +=Co t(Tt) + 1 (Tt — 1)+ %(Tt — 1) Hi(e — 7).
* Fixed point iteration.
it = argmin_ 3, Ci(r}).

@
Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurlPS 2018. 1 NYU




Differentiable MPC

* What about general MPC?
argmin Z Ct th, Ut
r1.7T€EX,u1.TEU —1
subject to x¢11 = f(4, ut), T1 = Tinit-
* Use Taylor expansion to approxmate
C@ o Co t(Tt) +Pt (Tt - Tt) + %(Tt — TE)THf(Tt — Tti)'
* Fixed point iteration.
7't = argmin_ Zf Ci(1}).

* Backward only depends on final quadratic approximation.
A NYU




Behavioral vs. Trajectory Planning

* Gradient-based optimization provides a locally optimized trajectory.

SPEED
LIMIT
B 80
Headway

Obstacle  Driving Path Lane
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-
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Sampler T(B)
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Select lowest cost f

Trajectory fitting @

—

&

f=w'c
Optimization u*

Trajectory Gb

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.
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Behavioral vs. Trajectory Planning

* Gradient-based optimization provides a locally optimized trajectory.

» Samples may be needed for reasoning global structure. SPEED
B 80
Lane Headway
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Sampler T(B)

Behavioral
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Optimization u*

Trajectory @

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.
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Scenario W

Behavioral vs. Trajectory Planning

* Gradient-based optimization provides a locally optimized trajectory.

» Samples may be needed for reasoning global structure.
* Can learn together using the same learned costs.

Sampler T7(B)

Behavioral

Select lowest cost f

&l

Trajectory fitting @

—

\ 4

f=w'c
Optimization u*

Trajectory é

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.
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Planning with Social Reasoning

* Jointly reason the future trajectories of multiple agents as an energy-

based graphical model. p(s1,...,sn | X) = L exp(—Ep(s1,...,sn) | X)

Multi-modal Multi-actor
@ B @ Prediction Interaction
ﬁ

I

(

\
-
i
i
1

Trajectory [
Sampler

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.




Planning with Social Reasoning

* Jointly reason the future trajectories of multiple agents as an energy-
based graphical model. p(s1,...,sn | X) = L exp(—Ep(s1,...,sn) | X)

* Trajectory Goodness + Collision.
J y ZZEQ(SZ |X)+Zz7g] E(Siysj)

E(si,s;) = if s; collides s;

Multi-modal Multi-actor

a B @ Prediction ' Interaction
{ @
\
L2 o
]
I e ———————— e e et e e e oo o
! > P=005~ \ : Message

Trajectory [
Sampler

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.




Planning with Social Reasoning

* Jointly reason the future trajectories of multiple agents as an energy-
based graphical model. p(s1,...,sn | X) = L exp(—Ep(s1,...,sn) | X)

* Trajectory Goodness + Collision.
J y ZZEQ(SZ |X)+Zz7g] E(Siysj)

* Batch of trajectory samples.
E(si,s;) = if s; collides s;

Multi-modal Multi-actor
- B ¢ Prediction - Interaction
| @
\
5=
2 B
: (-> p 0.05 ~ - : Message

Trajectory [
Sampler

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.
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Planning with Social Reasoning

* Jointly reason the future trajectories of multiple agents as an energy-
based graphical model. p(s1,...,sn | X) = L exp(—Ep(s1,...,sn) | X)

* Trajectory Goodness + Collision.
J y ZZEQ(SZ |X)+Zz7g] E<Siysj)

e , E(s;,s;) =~ if s; collides s;
* Classification of groundtruth trajectory. (8,8 =7 g

* Batch of trajectory samples.

Multi-modal Multi-actor
- B ¢ Prediction - Interaction
{ @
\
5-
2 B
: (-> p 0.05 ~ - : Message

Trajectory [
Sampler

Zeng et al. DSDNet: Deep Structured Self-Driving Network. ECCV 2020.
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* Direct Policy Prediction

 Condition perception features into the model
* Use of diffusion models
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* Can be combined with efficient external samplers
* Cost volume prediction: parametric + non-parametric




Summary: End-to-End Planning

* Direct Policy Prediction

 Condition perception features into the model
* Use of diffusion models

* Cost Learning (IRL) from Experts
* Max-margin, max-entropy/EBM
* Need negative samples
* Can be combined with efficient external samplers
* Cost volume prediction: parametric + non-parametric

* Differentiable Planner

* Backprop through local optimization

* Can be memory efficient, implicit differentiation
‘4 NYU




