DS-GA.3001 Embodied Learning and Vision

Mengye Ren

NYU

Spring 2025

embodied-learning-vision-course.github.io

Lecture Slides for Note Taking

Energy-Based Learning

- Example: RBMs
- Energy: $E(v,h) = -\sum_{i,j} v_i h_j w_{ij}$. $p(h_j = 1 | v_i) = \sigma(\sum_{ij} v_i w_{ij})$.

 $\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty .$

Hinton. Restricted Boltzmann Machines.

• Inference requires running gradient descent and MCMC samples (Langevin samples).

 Inference requires running gradient descent and MCMC samples (Langevin <mark>\$</mark>amples). Noise $\tilde{\mathbf{x}}^k = \mathbf{x}^{\tilde{k-1}} - \frac{\lambda}{2} \nabla_{\mathbf{x}} E_{\theta}(\tilde{\mathbf{x}}^{k-1}) + \omega^k$ $\omega^k \sim \mathcal{N}(0, \lambda).$ $= \mathbb{E}_{\mathbf{x} \sim p_D} [\nabla_{\theta} E_{\theta}(\mathbf{x}^+)] - \mathbb{E}_{\mathbf{x} \sim q_{\theta}} [\nabla_{\theta} E_{\theta}(\mathbf{x}^-)].$ $abla_{ heta}\mathcal{L}$ negative. data pisdo1 gradient descent on input.

 $(x) \propto e_x$

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurIPS 2019.

• Inference requires running gradient descent and MCMC samples (Langevin samples).

$$\tilde{\mathbf{x}}^{k} = \mathbf{x}^{\tilde{k}-1} - \frac{\lambda}{2} \nabla_{\mathbf{x}} E_{\theta}(\tilde{\mathbf{x}}^{k-1}) + \omega^{k}, \omega^{k} \sim \mathcal{N}(0, \lambda).$$

$$\nabla_{\theta} \mathcal{L} = \mathbb{E}_{\mathbf{x} \sim p_D} [\nabla_{\theta} E_{\theta}(\mathbf{x}^+)] - \mathbb{E}_{\mathbf{x} \sim q_{\theta}} [\nabla_{\theta} E_{\theta}(\mathbf{x}^-)].$$

• Can be applied on hand manipulation trajectory generation.

• Inference requires running gradient descent and MCMC samples (Langevin samples).

$$\tilde{\mathbf{x}}^{k} = \mathbf{x}^{\tilde{k}-1} - \frac{\lambda}{2} \nabla_{\mathbf{x}} E_{\theta}(\tilde{\mathbf{x}}^{k-1}) + \omega^{k}, \omega^{k} \sim \mathcal{N}(0, \lambda).$$

$$\nabla_{\theta} \mathcal{L} = \mathbb{E}_{\mathbf{x} \sim p_D} [\nabla_{\theta} E_{\theta}(\mathbf{x}^+)] - \mathbb{E}_{\mathbf{x} \sim q_{\theta}} [\nabla_{\theta} E_{\theta}(\mathbf{x}^-)].$$

- Can be applied on hand manipulation trajectory generation.
- Good results in generation but still not a generalized representation learning algorithm.

• Match the same image (with severe augmentation)

(a) Original

(g) Cutout

(h) Gaussian noise (i) Gaussian blur

(i) Sobel filtering

- Match the same image (with severe augmentation)
- Joint embedding approach: Apply loss on the embedding level.

(h) Gaussian noise

(g) Cutout

(j) Sobel filtering

(i) Gaussian blur

- Match the same image (with severe augmentation)
- Joint embedding approach: Apply loss on the embedding level.
- Use negative examples (contrastive) or not (non-contrastive).

(b) Crop and resize

(g) Cutout

(i) Gaussian blur

op) (e) Color distort. (jitter)

(h) Gaussian noise

(j) Sobel filtering

(a) Original

- Match the same image (with severe augmentation)
- Joint embedding approach: Apply loss on the embedding level.
- Use negative examples (contrastive) or not (non-contrastive).
- Energy is defined between a pair of images.

(f) Rotate {90°, 180°, 270°]

(h) Gaussian noise

(i) Sobel filtering

Wu et al., 2018

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i(\boldsymbol{z}_j)/\tau))}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}.$$

Chen et al. 2020

Wu et al., 2018

• Instance Classification:

Moving que

• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

117, - Z. 11 - Z. log Zz

Chen et al. 2020

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors

Chen et al. 2020

Wu et al., 2018

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Chen et al 2020

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors

Chen et al. 2020

Wu et al., 2018

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}.$$

Chen et al. 2020

Wu et al., 2018

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors

Chen et al. 2020 Chen & He, 2021

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Wu et al., 2018

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors
- Use of co-variance regularization

Chen et al. 2020

• Knowledge distillation between a student and a teacher network.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$

- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$
- Minimize CE: $\min_{\theta} H(p_t(x), p_s(x)).$

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$
- Minimize CE: $\min_{\theta} H(p_t(x), p_s(x)).$
- Stop gradient on the teacher (no true label).

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$
- Minimize CE: $\min_{\theta} H(p_t(x), p_s(x)).$
- Stop gradient on the teacher (no true label)
- Teacher network has EMA weights copied from student (prevent collapse).

Preventing Collapse

- Cross entropy objective can make both sides collapse to uniform distribution.
 - Apply sharpening, apply a temperature term on both teacher and student.
 - $\operatorname{softmax}(g/\tau)$ The higher the temperature, the more uniform.

Preventing Collapse

- Cross entropy objective can make both sides collapse to uniform distribution.
 - Apply sharpening, apply a temperature term on both teacher and student.
 - $\operatorname{softmax}(g/\tau)$ The higher the temperature, the more uniform.
- It can also collapse into always activating a single unit.
 - Mean statistics: $c_t = mc_{t-1} + (1-m)\frac{1}{B}\sum_{i=1}^{B} g_{\theta_t}(x_i)$
 - Center teacher prediction: $p_t(x) = \frac{\exp((g_{\theta_t}(x)_i c_t)/\tau_t)}{\sum_k \exp((g_{\theta_t}(x)_k c_t)/\tau_t)}$.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021

1.0

Centering and Sharpening

- Only centering: Always uniform distribution, high entropy, easy to guess.
- Only sharpening: Collapsed into one unit, easy to guess, low loss, but no real learning.

• The [CLS] token is an extra token added to summarize the whole image into a vector.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

- The [CLS] token is an extra token added to summarize the whole image into a vector.
- Visualize the attention map of different attention heads using different colors.

- The [CLS] token is an extra token added to summarize the whole image into a vector.
- Visualize the attention map of different attention heads using different colors.
- Showing understanding of different objects and parts.

- We can also visualize the attention by querying from a location.
- Weak separation of objects.

Z, = Z, ---> Classification. Why Does SSL Work?

- The unsupervised loss is a surrogate. If an image belongs to a similarity class, it also belongs to the same semantic class.
- The choice of similarity class matters.

SSL with Motion

- Can we use adjacent frames as self-supervision?
- Objects move densely throughout the image.

su

SSL with Motion

• Perform SSL in multiple scales (small objects vs. big regions).

Misra et al. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. ECCV 2016. Sermanet et al. Time-Contrastive Networks: Self-Supervised Learning from Video. ICRA 2018. Orhan et al. Self-Supervised Learning through the Eyes of a Child. NeurIPS 2020.

SSL with Time

- We can segment videos into meaningful events.
- Leverage the spatiotemporal continuity structure.

Yang & Ren. Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from Egocentric Videos. arXiv 2025.

SSL for Visual Control

Not anguent SSL for Visual Control just video frames.

SSL for Visual Control

YU

Wu et al. Policy Pre-training for Autonomous Driving via Self-supervised Geometric Modeling. ICLR 2023.

• Run visual learning algorithms on baby headcam videos.

• Representation learning leverage the information in unlabeled data.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.
- Inductive biases matter.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.
- Inductive biases matter.
- Possible learning objectives for egocentric videos.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.
- Inductive biases matter.
- Possible learning objectives for egocentric videos.
- Incorporate 3D vision and actions for downstream planning.

• SSL representations show awareness of object classes and instance identities.

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?
- The network is encouraged to associate different parts of the objects together in order to identify whether two inputs belong to the same image or not.

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?
- The network is encouraged to associate different parts of the objects together in order to identify whether two inputs belong to the same image or not.
- Attending to semantically similar parts facilitates the process.

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?
- The network is encouraged to associate different parts of the objects together in order to identify whether two inputs belong to the same image or not.
- Attending to semantically similar parts facilitates the process.
- The network is a hierarchical information processing pipeline Lower layers integrate more granular and smaller neighborhood.

Weak-to-Strong Supervision

• General idea: Use self-supervised learning to learn good features, which allow us to generate low-quality masks.

Weak-to-Strong Supervision

- General idea: Use self-supervised learning to learn good features, which allow us to generate low-quality masks.
- Then use these masks as pseudo labels and supervise the network to predict these low-quality masks.

Weak-to-Strong Supervision

- General idea: Use self-supervised learning to learn good features, which allow us to generate low-quality masks.
- Then use these masks as pseudo labels and supervise the network to predict these low-quality masks.
- Question: how do we come up with masks? What loss is used to supervise the network?

• Segmentation is essentially a clustering problem.

- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.

$$cut(A,B) = \sum_{p \in A, q \in B} w(p,q)$$

- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.
- Pixel = node.

$$ut(A,B) = \sum_{p \in A, q \in B} w(p,q)$$

- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.
- Pixel = node.
- Affinity between the two pixels = edge value (flow).

 $p \in A, q \in B$

- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.
- Pixel = node.
- Affinity between the two pixels = edge value (flow).
- Objective: Cut the graph into disconnected components with a minimum sum of edge values.

Normalized Graph Cut (NCut)

• How to prevent cutting small isolated nodes?

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

Normalized Graph Cut (NCut)

- How to prevent cutting small isolated nodes?
- Normalize by the total edge connections of a group to all the nodes.

Ncut(A, B)

cut(A,B)assoc(A,V)

NCut Details (Optional)

- A form of spectral clustering.
- Degree matrix $D N \times N$ with d_i on the diagonal.
- Weight matrix $W N \times N$ symmetric w_{ij} .
- Selection vector $x_i = 1$ if $i \in A$ otherwise -1.
- Solve the minimization: $\min_y \frac{y^\top (D-W)y}{y^\top Dy}$ $y = (1+x) \frac{\sum_{i|x_i>0} d_i}{\sum_{i|x_i<0} d_i}(1-x).$
- Generalized eigenvalue system: $(D W)y = \lambda Dy$.

• Let $z = D^{1/2}y$ $D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}}z = \lambda z.$

NCut

• Sort the eigenvectors from the smallest to the largest.

(e)

(f)

(c)

NCut

- Sort the eigenvectors from the smallest to the largest.
- This was a classic image segmentation technique operating directly on image intensity.

NCut

- Sort the eigenvectors from the smallest to the largest.
- This was a classic image segmentation technique operating directly on image intensity.
- Now, instead of segmenting pixels, we can directly segment semantically meaningful representations from selfsupervision.

MaskCut

• Use a pretrained DINO ViT network.

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022. Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023. **Y**NYU

MaskCut

- Use a pretrained DINO ViT network.
- Use the "key" features from the last attention layer: $W_{ij} = \frac{K_i K_j}{\|K_i\|_2 \|K_i\|_2}$

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022. Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

MaskCut

- Use a pretrained DINO ViT network.
- Use the "key" features from the last attention layer: $W_{ij} = \frac{K_i K_j}{\|K_i\|_2 \|K_j\|_2}$
- Iterative NCut on the pairwise matrix by masking out the regions from previous stages.

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022. Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Iterative Self-Training

- Now add a MaskRCNN structure on top of the pretrained network.
- Select the predictions with the highest confidence score and use them as labels.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Iterative Self-Training

- Now add a MaskRCNN structure on top of the pretrained network.
- Select the predictions with the highest confidence score and use them as labels.
- Neural networks can learn from the noisy labels and output smoother predictions.

More Visualization

WNYU

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Pseudo Labels in 3D

Iterative Refinement of Pseudo Labels

• Can we learn clustering as an end-toend operation?

(a) Slot Attention module.

- Can we learn clustering as an end-toend operation?
- Slot attention is inspired by the success of the attention mechanism.

(a) Slot Attention module.

- Can we learn clustering as an end-toend operation?
- Slot attention is inspired by the success of the attention mechanism.
- Each "slot" attends to a region of the image and stores an object centric representation.

(a) Slot Attention module.

• Goal: Reconstruct the image with a concise slot-based representation.

- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize: $\widetilde{m}_{t-1} = LN(m_{t-1})$.

- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize:
- $\widetilde{m}_{t-1} = LN(m_{t-1}).$ Attention over slots: $a_{t,i,j} = \frac{\frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}{\sum_j \frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}.$

- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize: $\widetilde{m}_{t-1} = LN(m_{t-1})$.
- Attention over slots: $a_{t,i,j} = \frac{\frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^\top}{\sum_j \frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^\top}.$

• Updates
$$u_{tj} = \sum_{i} a_{tij} v(x_i)$$
.

- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize: $\widetilde{m}_{t-1} = LN(m_{t-1})$. $\frac{1}{2}k(x_i) \cdot q(\widetilde{m}_i)^{\top}$
- Attention over slots: $a_{t,i,j} = \frac{\frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}{\sum_j \frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}.$
- Updates: $u_{tj} = \sum_{i} a_{tij} v(x_i)$. prev updates
- Write into slots: $m_t = GRU(m_{t-1}, u_t) + MLP(\tilde{m}_{t-1}).$

• The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.

- The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.
- Each pixel starts with an initial phase 0.

- The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.
- Each pixel starts with an initial phase 0.

$$\hat{\mathbf{z}} = f_{\text{dec}}(f_{\text{enc}}(\mathbf{x})) \in \mathbb{C}^{h \times w}$$

- The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.
- Each pixel starts with an initial phase 0.

$$\hat{\mathbf{z}} = f_{\text{dec}}(f_{\text{enc}}(\mathbf{x})) \in \mathbb{C}^{h \times w}$$

$$\widehat{\mathbf{x}} = f_{\text{out}}(\widehat{\mathbf{z}}) \in \mathbb{R}^{h \times w}.$$

• Apply weights separately to real and imaginary:

$$\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = \underbrace{f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i}_{d_{\operatorname{out}}} \in \mathbb{C}_{d_{\operatorname{out}}}$$

• Apply weights separately to real and imaginary:

$$\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i \quad \in \mathbb{C}_{d_{\operatorname{out}}}$$

• Bias on magnitude and phase:

$$\boldsymbol{m}_{\boldsymbol{\psi}} = |\boldsymbol{\psi}| + \boldsymbol{b}_{\boldsymbol{m}} \in \mathbb{R}^{d_{\mathrm{out}}} \ \boldsymbol{\varphi}_{\boldsymbol{\psi}} = \arg(\psi) + \boldsymbol{b}_{\boldsymbol{\varphi}} \in \mathbb{R}^{d_{\mathrm{out}}}$$

• Apply weights separately to real and imaginary:

$$\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i \quad \in \mathbb{C}_{d_{\operatorname{out}}}$$

• Bias on magnitude and phase:

$$\begin{split} \mathbf{m}_{\psi} &= |\psi| + \mathbf{b}_{m} \in \mathbb{R}^{d_{\text{out}}} \varphi_{\psi} = \arg(\psi) + \mathbf{b}_{\varphi} \in \mathbb{R}^{d_{\text{out}}} \\ \bullet \text{ Gating:} \quad \chi &= f_{\mathbf{w}}(|\mathbf{z}|) + \mathbf{b}_{m} \in \mathbb{R}^{d_{\text{out}}} \\ \mathbf{m}_{\mathbf{z}} &= 0.5 \cdot \mathbf{m}_{\psi} + 0.5 \cdot \chi \in \mathbb{R}^{d_{\text{out}}} \\ \end{split}$$

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

• Apply weights separately to real and imaginary:

$$\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i \quad \in \mathbb{C}_{d_{\operatorname{out}}}$$

• Bias on magnitude and phase:

$$\begin{split} m_{\psi} &= |\psi| + b_{m} \in \mathbb{R}^{d_{\text{out}}} \varphi_{\psi} = \arg(\psi) + b_{\varphi} \in \mathbb{R}^{d_{\text{out}}} \\ \bullet \text{ Gating:} \qquad \chi &= f_{\mathbf{w}}(|\mathbf{z}|) + b_{m} \in \mathbb{R}^{d_{\text{out}}} \\ m_{\mathbf{z}} &= 0.5 \cdot m_{\psi} + 0.5 \cdot \chi \in \mathbb{R}^{d_{\text{out}}} \\ \bullet \text{ Activation: } \mathbf{z}' &= \text{ReLU}(\text{BatchNorm}(m_{\mathbf{z}})) \cdot e^{i\varphi_{\psi}} \in \mathbb{C}^{d_{\text{out}}} \end{split}$$

• Activation: $\mathbf{z}' = \operatorname{ReLU}(\operatorname{BatchNorm}(\boldsymbol{m}_{\mathbf{z}})) \cdot e^{i\varphi_{\psi}}$

🌾 NYU

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

Complex-Valued Autoencoders

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

• Combine deep features with clustering algorithms.

- Combine deep features with clustering algorithms.
- Pseudo-labels to train detector networks.

- Combine deep features with clustering algorithms.
- Pseudo-labels to train detector networks.
- Creative end-to-end learning-based solutions exist, but there are still plenty room for improvement.
 - Possible to train from scratch!

- Combine deep features with clustering algorithms.
- Pseudo-labels to train detector networks.
- Creative end-to-end learning-based solutions exist, but there are still plenty room for improvement.
 - Possible to train from scratch!
- What do we make use of the discovered objects? Is it better to keep the awareness in the latent space?

Module 4: World Models and End-to-End Planning

• There is a debate whether predicting future is necessary.

- There is a debate whether predicting future is necessary.
- Data efficiency
 - Predicting future can "simulate" roll out without querying for outcomes.
 - Leveraging the massive amount of data in past experiences (not just the final reward).

- There is a debate whether predicting future is necessary.
- Data efficiency
 - Predicting future can "simulate" roll out without querying for outcomes.
 - Leveraging the massive amount of data in past experiences (not just the final reward).
- Long-horizon planning: Predicting high-level future steps is needed.

- There is a debate whether predicting future is necessary.
- Data efficiency
 - Predicting future can "simulate" roll out without querying for outcomes.
 - Leveraging the massive amount of data in past experiences (not just the final reward).
- Long-horizon planning: Predicting high-level future steps is needed.
- Can representations learned from SSL help us build better prediction?

• A classic example of world models.

- A classic example of world models.
- Analytical forms, complete knowledge of the dynamical system.

- A classic example of world models.
- Analytical forms, complete knowledge of the dynamical system.

- A classic example of world models.
- Analytical forms, complete knowledge of the dynamical system.

General Form:

Linear Form:

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}, \mathbf{u}, t) \qquad \boxed{\frac{dx}{dt}} = \underline{A\mathbf{x} + B\mathbf{u}}$$
$$\mathbf{y} = h(\mathbf{x}, \mathbf{u}, t) \qquad \mathbf{y} = C\mathbf{x} + D\mathbf{u}$$
$$\mathbf{x}(t_0) = \mathbf{x}_0 \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

- A classic example of world models.
- Analytical forms, complete knowledge of the dynamical system.

General Form:

Linear Form:

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}, \mathbf{u}, t) \qquad \frac{dx}{dt} = A\mathbf{x} + B\mathbf{u}$$
$$\mathbf{y} = h(\mathbf{x}, \mathbf{u}, t) \qquad \mathbf{y} = C\mathbf{x} + D\mathbf{u}$$
$$\mathbf{x}(t_0) = \mathbf{x}_0 \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

Optimize Value/Cost Function:

$$\min_{\mathbf{u}} J(\mathbf{x}(0), \mathbf{u})$$

- A classic example of world models.
- Analytical forms, complete knowledge of the dynamical system.

General Form:

Linear Form:

Optimize Value/Cost Function:

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}, \mathbf{u}, t) \qquad \frac{dx}{dt} = A\mathbf{x} + B\mathbf{u} \qquad \min_{\mathbf{u}} J(\mathbf{x}(0), \mathbf{u})$$

Quadratic Form (LQR):
$$\mathbf{y} = h(\mathbf{x}, \mathbf{u}, t) \qquad \mathbf{y} = C\mathbf{x} + D\mathbf{u} \qquad J = \int_0^\infty \mathbf{x}^\top Q\mathbf{x} + \mathbf{u}^\top R\mathbf{u} d\mathbf{x}$$

$$\mathbf{x}(t_0) = \mathbf{x}_0 \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

 $\mathbf{u}^{\top} R \mathbf{u} dt.$

- A classic example of world models.
- Analytical forms, complete knowledge of the dynamical system.

General Form:

Linear Form:

Optimize Value/Cost Function:

$$\begin{aligned} \frac{d\mathbf{x}}{dt} &= f(\mathbf{x}, \mathbf{u}, t) & \frac{dx}{dt} = A\mathbf{x} + B\mathbf{u} & \min_{\mathbf{u}} J(\mathbf{x}(0), \mathbf{u}) \\ \mathbf{y} &= h(\mathbf{x}, \mathbf{u}, t) & \mathbf{y} = C\mathbf{x} + D\mathbf{u} & J = \int_0^\infty \mathbf{x}^\top Q\mathbf{x} + \mathbf{u}^\top R\mathbf{u} \ dt. \\ \mathbf{x}(t_0) &= \mathbf{x}_0 & \mathbf{x}(t_0) = \mathbf{x}_0 \end{aligned}$$

• Example: Cars: x: position velocity angle angular velocity; u: jerk and angular accel.;

Trajectory Prediction as Object Detection

• We also need to predict external dynamic objects.

- We also need to predict external dynamic objects.
- How to capture multiple modes?

- We also need to predict external dynamic objects.
- How to capture multiple modes?
- Discrete intention prediction problem:
 - keep lane, turn left/right, left/right change lane, stopping, parked, etc.

- We also need to predict external dynamic objects.
- How to capture multiple modes?
- Discrete intention prediction problem:
 - keep lane, turn left/right, left/right change lane, stopping, parked, etc.
- Output multiple trajectories

- We also need to predict external dynamic objects.
- How to capture multiple modes?
- Discrete intention prediction problem:
 - keep lane, turn left/right, left/right change lane, stopping, parked, etc.
- Output multiple trajectories
- Requires high-level action labels.

Latent Sequence World Model for RL

- Autoencoder to ensure the latent representations are meaningful. $z_t \sim q_{\phi}(z_t) | h_t, x_t)$
 - $\hat{x}_t \sim p_\phi(\hat{x}_t \mid \underline{h}_t, \overline{z}_t)$

Latent Sequence World Model for RL

- Autoencoder to ensure the latent representations are meaningful. $z_t \sim q_{\phi}(z_t \mid h_t, x_t)$ $\hat{x}_t \sim p_{\phi}(\hat{x}_t \mid h_t, z_t)$
- Learn a sequence model to predict the latent conditioned on previous action.

• Predicting reward

 $\hat{r}_t \sim p_\phi(\hat{r}_t \mid h_t, z_t)$

- Predicting reward $\hat{r}_t \sim p_{\phi}(\hat{r}_t \mid h_t, z_t)$
- Reconstruction, reward, continue

 $\mathcal{L}_{\text{pred}}(\phi) = -\log p_{\phi}(x_t \mid z_t, h_t) - \log p_{\phi}(r_t \mid z_t, h_t) - \log p_{\phi}(c_t \mid z_t, h_t)$

• Dynamics: Predicting future z $\mathcal{L}_{dyn}(\phi) = \max(1, \text{KL}[sg]q_{\phi}(z_t \mid h_t, x_t) \parallel \underline{p_{\phi}(z_t \mid h_t)})]$ Stop -gradient

• Predicting reward

 $\hat{r}_t \sim p_\phi(\hat{r}_t \mid h_t, z_t)$

• Reconstruction, reward, continue

 $\mathcal{L}_{\text{pred}}(\phi) = -\log p_{\phi}(x_t \mid z_t, h_t) - \log p_{\phi}(r_t \mid z_t, h_t) - \log p_{\phi}(c_t \mid z_t, h_t)$

- Dynamics: Predicting future z $\mathcal{L}_{dyn}(\phi) = \max(1, \operatorname{KL}[\operatorname{sg}(q_{\phi}(z_t \mid h_t, x_t) \parallel p_{\phi}(z_t \mid h_t))]$
 - Align representation $\mathcal{L}_{rep} = \max(1, \text{KL}[q_{\phi}(z_t|h_t, x_t) \parallel \text{sg}(p_{\phi}(z_t|h_t))])$

• How to use WM in planning? Predicting value by simulate a batch of trajectories.

- How to use WM in planning? Predicting value by simulate a batch of trajectories.
- Actor-Critic RL: $a_t \sim \pi_{\theta}(a_t \mid s_t)$ $v_{\psi}(R_t \mid s_t)$

- How to use WM in planning?
 Predicting value by simulate a batch of trajectories.
- Actor-Critic RL: $a_t \sim \pi_{\theta}(a_t \mid s_t) \qquad v_{\psi}(R_t \mid s_t)$
- Learning a critic:
 - Categorical distribution

$$\mathcal{L}_{\phi} = -\sum_{t=1}^{T} \log p_{\phi}(R_{t}^{\lambda} \mid s_{t}) \quad s_{t} = \{h_{t}, z_{t}\}$$
Sum of discounted future rewards for pervise controls
$$R_{t}^{\lambda} = r_{t} + \gamma c_{t}[(1-\lambda)v_{t} + \lambda R_{t+1}^{\lambda}] \quad R_{T}^{\lambda} = v_{T}$$

• Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$

- Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$
- REINFORCE algorithm [Williams 1992]

- Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$
- REINFORCE algorithm [Williams 1992]

Normalization Entropy Regularizer $\mathcal{L}(\theta) = -\sum_{t=1}^{T} \operatorname{sg}((R_t^{\lambda} - v_{\phi}(s_t)) / \max(1, S)) \log \pi_{\theta}(a_t \mid s_t) + \eta H[\pi_{\theta}(a_t \mid s_t)]$

- Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$
- REINFORCE algorithm [Williams 1992]

Normalization Entropy Regularizer $\mathcal{L}(\theta) = -\sum_{t=1}^{T} \operatorname{sg}((R_t^{\lambda} - v_{\phi}(s_t)) / \max(1, S)) \log \pi_{\theta}(a_t \mid s_t) + \eta H[\pi_{\theta}(a_t \mid s_t)]$

$$\pi_{\theta}(\tau)\nabla_{\theta}\log\pi_{\theta}(\tau) = \pi_{\theta}(\tau)\frac{\nabla_{\theta}\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta}\pi_{\theta}(\tau).$$

- Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$
- REINFORCE algorithm [Williams 1992]

Normalization Entropy Regularizer $\mathcal{L}(\theta) = -\sum_{t=1}^{T} \operatorname{sg}((R_t^{\lambda} - v_{\phi}(s_t)) / \max(1, S)) \log \pi_{\theta}(a_t \mid s_t) + \eta H[\pi_{\theta}(a_t \mid s_t)]$

$$\pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) = \pi_{\theta}(\tau) \frac{\nabla_{\theta} \pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta} \pi_{\theta}(\tau).$$

$$\pi_{\theta}(\tau) = \pi_{\theta}(s_1, a_1, \dots, s_T, a_T) = p(s_1) \prod_{t=1}^T \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t).$$

- Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$
- REINFORCE algorithm [Williams 1992]

 $\mathcal{L}(\theta) = -\sum_{t=1}^{T} \operatorname{sg}((R_t^{\lambda} - v_{\phi}(s_t)) / \max(1, S)) \log \pi_{\theta}(a_t \mid s_t) + \eta H[\pi_{\theta}(a_t \mid s_t)]$

$$\pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) = \underline{\pi}_{\theta}(\tau) \frac{\nabla_{\theta} \pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta} \pi_{\theta}(\tau).$$

$$\pi_{\theta}(\tau) = \pi_{\theta}(s_{1}, a_{1}, \dots, s_{T}, a_{T}) = p(s_{1}) \prod_{t=1}^{T} \pi_{\theta}(a_{t}|s_{t}) p(s_{t+1}|s_{t}, a_{t}).$$

$$\log \pi_{\theta}(\tau) = \log p(s_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \log p(s_{t+1}|s_{t}, a_{t}).$$

- Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$
- REINFORCE algorithm [Williams 1992]

Normalization $\mathcal{L}(\theta) = -\sum_{t=1}^{T} \operatorname{sg}((R_t^{\lambda} - v_{\phi}(s_t)) / \max(1, S)) \log \pi_{\theta}(a_t \mid s_t) + \eta H[\pi_{\theta}(a_t \mid s_t)]$ Entropy Regularizer

$$\pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) = \pi_{\theta}(\tau) \frac{\nabla_{\theta} \pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta} \pi_{\theta}(\tau).$$

$$\pi_{\theta}(\tau) = \pi_{\theta}(s_{1}, a_{1}, \dots, s_{T}, a_{T}) = p(s_{1}) \prod_{t=1}^{T} \pi_{\theta}(a_{t}|s_{t}) p(s_{t+1}|s_{t}, a_{t}).$$

$$\log \pi_{\theta}(\tau) = \log p(s_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \log p(s_{t+1}|s_{t}, a_{t}).$$

$$\mathcal{L}(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] = \int \pi_{\theta} r(\tau) d\tau.$$

- Learn a policy network $a_t \sim \pi_{\theta}(a_t \mid s_t)$
- REINFORCE algorithm [Williams 1992]

 $\mathcal{L}(\theta) = -\sum_{t=1}^{T} \operatorname{sg}((R_t^{\lambda} - v_{\phi}(s_t)) / \max(1, S)) \log \pi_{\theta}(a_t \mid s_t) + \eta H[\pi_{\theta}(a_t \mid s_t)]$

• Notes on policy gradient:

$$\pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) = \pi_{\theta}(\tau) \frac{\nabla_{\theta} \pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta} \pi_{\theta}(\tau).$$

$$\pi_{\theta}(\tau) = \pi_{\theta}(s_{1}, a_{1}, \dots, s_{T}, a_{T}) = p(s_{1}) \prod_{t=1}^{T} \pi_{\theta}(a_{t}|s_{t}) p(s_{t+1}|s_{t}, a_{t}).$$

$$\log \pi_{\theta}(\tau) = \log p(s_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \log p(s_{t+1}|s_{t}, a_{t}).$$

$$\mathcal{L}(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] = \int \pi_{\theta} r(\tau) d\tau.$$

$$\nabla \mathcal{L}(\theta) = \int \nabla \pi_{\theta} r(\tau) d\tau = \int \pi_{\theta}(\tau) \nabla \log \pi_{\theta} r(\tau) d\tau = \mathbb{E}_{\tau \sim \pi} \log \pi_{\theta} r(\tau).$$

Levine. Policy Gradients. Deep RL course, 2017.

When Do We Need A Learned Actor?

• For low dimensional or discrete problems, we can directly take the argmax of the value function.

When Do We Need A Learned Actor?

- For low dimensional or discrete problems, we can directly take the argmax of the value function.
- For problems with a good model, we can roll out and sample many funder future trajectories. Evaluation can be done in real time with GPU.

When Do We Need A Learned Actor?

- For low dimensional or discrete problems, we can directly take the argmax of the value function.
- For problems with a good model, we can roll out and sample many future trajectories. Evaluation can be done in real time with GPU.
- For general control problems, learning a separate actor can be a general solution without invoking domain knowledge.

Semantic Occupancy Volume Prediction

- 4-D volume: H, W, T, C (class) $o_{i,j}^{t,c}$ • Doesn't grow with the increasing
- Doesn't grow with the increasing number of actors.

Fused features

Semantic Occupancy

Semantic Occupancy Volume Prediction

- 4-D volume: H, W, T, C (class) $o_{i,j}^{t,c}$
- Doesn't grow with the increasing number of actors.
- Recurrent occupancy updates for further into the future.

$$l^{t,c} = l^{t-1,c} + \mathcal{U}^t_{\theta}(f_{\text{occ}}, l^{0:t-1,c})$$

Multi-Agents Joint Prediction

• Joint predict future trajectories by attending to other actors.

Multi-Agents Joint Prediction

 Joint predict future trajectories by attending to other actors. **Recurrent Module** Actor States @ t+1 Multi-Sensor Object Input Representation t=0t=2 t=1 Road mask Interactive Actor **BEV Stream** Lane graph Features @ t+1 Network Interaction Attention **BEV** Voxel of Multi-sweep Interaction Continuous LIDAR Fusion Transformer . Camera Image Stream Image Actor Features & Network States @ t=0 ł. i ...

Latent Prediction + MPC

- Using MPC on the latent space of pretrained visual encoders.
- Learn a predictor of latent states conditioned on actions.

(a) Training DINO-WM

(b) Test-time Inference

World Model in Video Prediction

• Text+action conditioned generation. Diffusion decoder.

tokens

+

tokens

+

tokens

• X

4X SPEED Generated by GAIA-1

4X SPEED Generated by GAIA-1

4X SPEED Generated by GAIA-1 4X SPEED Generated by GAIA-1

World Model in 3D volume prediction

• Autoregressively predict future 3D point clouds.

Zhang et al. Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion. ICLR 2024.

Summary: World Models

Summary: World Models

- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly

Summary: World Models

- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly
- Differentiable occupancy, motion field
 - Relatively heavy, spatially grounded, end-to-end learnable

Summary: World Models

- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly
- Differentiable occupancy, motion field
 - Relatively heavy, spatially grounded, end-to-end learnable
- Global latent, RNNs, graph landmarks
 - General-purpose, unstructured

Summary: World Models

- Explicit object representation
 - Traditional, light weight, instance-specific, hard to learn jointly
- Differentiable occupancy, motion field
 - Relatively heavy, spatially grounded, end-to-end learnable
- Global latent, RNNs, graph landmarks
 - General-purpose, unstructured
- Raw video/3D prediction
 - Expensive, good for simulation

Imitation Learning

• The explicit policy model, supervised learning (behavior cloning)

$$\hat{a} = f_{\theta}(x)$$
 $\mathcal{L} = \min_{i} ||a_{i} - \hat{a}||_{2}^{2}$ $\mathcal{L} = -\log \hat{a}_{j}$

Imitation Learning

• The explicit policy model, supervised learning (behavior cloning)

$$\hat{a} = f_{\theta}(x)$$
 $\mathcal{L} = \min_{i} ||a_{i} - \hat{a}||_{2}^{2}$ $\mathcal{L} = -\log \hat{a}_{j}$

• Energy-based (cost-based) approach $\tau^{\star} = \operatorname{argmin}_{\tau} E(x, \tau)$ $p(\tau \mid x) = \frac{\exp(E(x, \tau))}{\int_{\tau} \exp(E(x, \tau))}$

Imitation Learning

• The explicit policy model, supervised learning (behavior cloning)

$$\hat{a} = f_{\theta}(x)$$
 $\mathcal{L} = \min_{i} ||a_{i} - \hat{a}||_{2}^{2}$ $\mathcal{L} = -\log \hat{a}_{j}$

- Energy-based (cost-based) approach $\tau^{\star} = \operatorname{argmin}_{\tau} E(x, \tau)$ $p(\tau \mid x) = \frac{\exp(E(x, \tau))}{\int_{\tau} \exp(E(x, \tau))}$
- Dataset Aggregation (DAgger)
 - Learned policy may deviate from experts
 - Need to collect more groundtruths

Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} . end for Return best $\hat{\pi}_i$ on validation.

Algorithm 3.1: DAGGER Algorithm.

Direct Policy Learning from Diffusion

• Error prediction network is conditioned on observation features. $A_t^{k-1} = \alpha(A_t^k - \gamma \epsilon_{\theta}(O_t, A_t^k, k) + \mathcal{N}(0, \sigma^2 I)).$

$$\mathcal{L} = MSE(\epsilon^k, \epsilon_\theta(O_t, A_t + \epsilon^k, k)).$$

Input: Image Observation Sequence

Cost/Value Volume Reasoning

• Interpretability (both costs and planner inputs)

Cost/Value Volume Reasoning

- Interpretability (both costs and planner inputs)
- Use spatial geometry to form cost from explicit objects

Cost/Value Volume Reasoning

- Interpretability (both costs and planner inputs)
- Use spatial geometry to form cost from explicit objects
- Predict spatial cost volume
 - Rasterize the scene for spatial inputs
 - Predict soft occupancy volumes (present and future)

Semantic Occupancy

Learning Through Interpretable Predictions

• Semantic occupancy, motion field, mapping, etc. as intermediate predictions.

Casas et al. MP3: A Unified Model to Map, Perceive, Predict and Plan. CVPR 2021.

Learning Through Interpretable Predictions

- Semantic occupancy, motion field, mapping, etc. as intermediate predictions.
- Differentiable, supports end-to-end interpretable learning from perception to planning.

Casas et al. MP3: A Unified Model to Map, Perceive, Predict and Plan. CVPR 2021.

• If we have an explicit cost volume, the cost of a trajectory can be directly queried.

- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.

- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.
- Find the lowest cost trajectory among a batch of samples.

$$\underset{\theta}{\operatorname{argmin}} \sum_{\{(\hat{x}_{i}^{t}, \hat{y}_{i}^{t})\}_{i=1...N}} \max_{i} \sum_{t=1}^{T} C_{\theta}^{t}[x_{t}, y_{t}] - C_{\theta}^{t}[\hat{x}_{i}^{t}, \hat{y}_{i}^{t}] + d_{i}^{t}$$

- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.
- Find the lowest cost trajectory among a batch of samples.
- Low-dimensional/known dynamics problems: External samplers

$$\underset{\theta}{\operatorname{argmin}} \max_{\{(\hat{x}_{i}^{t}, \hat{y}_{i}^{t})\}_{i=1...N}} \max_{i} \sum_{t=1}^{T} C_{\theta}^{t}[x_{t}, y_{t}] - C_{\theta}^{t}[\hat{x}_{i}^{t}, \hat{y}_{i}^{t}] + d_{i}^{t}$$

- If we have an explicit cost volume, the cost of a trajectory can be directly queried.
- We can use the max-margin objective to make the groundtruth trajectory have lower costs.
- Find the lowest cost trajectory among a batch of samples.
- Low-dimensional/known dynamics problems: External samplers
- In general, needs to perform optimization (e.g. DP)

• Energy-based framework also needs negative samples.

- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.

- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.
- If there isn't an external sampler, we can either use autoregressive energy of sampling one dimension at a time, or gradient-based Langevin MCMC.

- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.
- If there isn't an external sampler, we can either use autoregressive energy of sampling one dimension at a time, or gradient-based Langevin MCMC.

Langevin MCMC: $\tilde{\mathbf{y}}_{i}^{k} = \tilde{\mathbf{y}}_{i}^{k-1} - \lambda \left(\frac{1}{2} \nabla_{\mathbf{y}} E_{\theta}(\mathbf{x}_{i}, \mathbf{y}_{i}^{k-1}) + \omega^{k} \right), \omega^{k} \sim \mathcal{N}(0, \sigma).$

- Energy-based framework also needs negative samples.
- "Pick" the groundtruth sample among others.
- If there isn't an external sampler, we can either use autoregressive energy of sampling one dimension at a time, or gradient-based Langevin MCMC.

Langevin MCMC:
$$\tilde{\mathbf{y}}_{i}^{k} = \tilde{\mathbf{y}}_{i}^{k-1} - \lambda \left(\frac{1}{2} \nabla_{\mathbf{y}} E_{\theta}(\mathbf{x}_{i}, \mathbf{y}_{i}^{k-1}) + \omega^{k} \right), \omega^{k} \sim \mathcal{N}(0, \sigma).$$

Loss:
$$\mathcal{L} = \sum_{i} -\log(p_{\theta}(\mathbf{y}_{i} \mid \mathbf{x}, {\{\tilde{\mathbf{y}}_{i}\}_{j}}) \quad p_{\theta}(\mathbf{y}_{i} \mid \mathbf{x}, {\{\tilde{\mathbf{y}}_{i}\}_{j}} = \frac{e^{-E_{\theta}(\mathbf{x}_{i}, \mathbf{y}_{i})}}{e^{-E_{\theta}(\mathbf{x}_{i}, \mathbf{y}_{i})} + \sum_{j} e^{-E_{\theta}(\mathbf{x}_{i} + \tilde{\mathbf{y}}_{i,j})}}$$

• A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

 $V^*(s) = \max_{\pi} V^{\pi}(s)$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

 $V^*(s) = \max_{\pi} V^{\pi}(s)$

$$V^{\pi}(s) = \mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^{t} r(s_t, a_t)$$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$
$$V^{\pi}(s) = \mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$
$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$
$$V^{\pi}(s) = \mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$
$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$
$$V_{n+1}(s) = \max_a Q_n(s, a)$$

- A network design for predicting cost volumes that are grounded from the classic value iteration algorithm.
- Classic VI altorithm:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$
$$V^{\pi}(s) = \mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$
$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$
$$V_{n+1}(s) = \max_a Q_n(s, a)$$
$$\pi^*(s) = \operatorname{argmax}_a Q_{\infty}(s, a)$$

• Reward and previous value are fed into a CNN to generate Q of A channels. Transition matrix is convolutional kernel. Then Max-Pooling. $Q_n(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s')$ $V_{n+1}(s) = \max_a Q_n(s,a)$

• Select the current state and choose an action from softmax. $\hat{a} \sim \operatorname{softmax}_{a}(Q(s, a))$

- A baseline would be to untie the weights through iterations, more like a feedforward CNN.
- Achieve more training data efficiency by imposing the structure.

Training data	VIN			VIN Untied Weights		
	Pred.	Succ.	Traj.	Pred.	Succ.	Traj.
	loss	rate	diff.	loss	rate	diff.
20%	0.06	98.2%	0.106	0.09	91.9%	0.094
50%	0.05	99.4%	0.018	0.07	95.2%	0.078
100%	0.05	99.3%	0.089	0.05	95.6%	0.068

• Treat planning as an end-to-end layer. Can be used for RL/Imitation.

- Treat planning as an end-to-end layer. Can be used for RL/Imitation.
- Option 1: Unrolling a finite number of steps

- Treat planning as an end-to-end layer. Can be used for RL/Imitation.
- Option 1: Unrolling a finite number of steps
- Option 2: Solve till convergence, backprop for a finite step

- Treat planning as an end-to-end layer. Can be used for RL/Imitation.
- Option 1: Unrolling a finite number of steps
- Option 2: Solve till convergence, backprop for a finite step
- Option 3: Converged at fixed point: Implicit differentiation

• Unconstrained case

$$\boldsymbol{x}^* = \operatorname*{argmin}_{\boldsymbol{x}} f(\boldsymbol{x}; \boldsymbol{\theta}).$$

• Unconstrained case

$$oldsymbol{x}^* = \operatorname*{argmin}_{oldsymbol{x}} f(oldsymbol{x};oldsymbol{ heta}).$$
 $oldsymbol{0} = rac{\mathrm{d}}{\mathrm{d}oldsymbol{ heta}} J_{f,oldsymbol{x}^*}(oldsymbol{x}^*;oldsymbol{ heta})$

• Unconstrained case

$$\begin{aligned} \boldsymbol{x}^* &= \operatorname*{argmin}_{\boldsymbol{x}} f(\boldsymbol{x};\boldsymbol{\theta}). \\ \boldsymbol{0} &= \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \\ \boldsymbol{0} &= \frac{\partial}{\partial \boldsymbol{x}^*} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\partial}{\partial \boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \end{aligned}$$

• Unconstrained case

$$\mathbf{0} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

$$\mathbf{0} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

$$\mathbf{0} = H_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

• Unconstrained case $x^* = \operatorname{argmin} f(x; \theta).$

$$\mathbf{0} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$
$$\mathbf{0} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$
$$\mathbf{0} = H_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}) \frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})$$
$$\frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}} = H_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta})^{-1} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} J_{f,\boldsymbol{x}^*}(\boldsymbol{x}^*;\boldsymbol{\theta}).$$

Liao et al. Reviving and Improving Recurrent Back-Propagation. ICML 2018.

• How to compute Hessian inverse vector product?

- How to compute Hessian inverse vector product?
- Conjugate gradient, solve $A m{x} = m{b}$

Conjugate Gradient Method $\mathbf{r}_0 := \mathbf{b} - \mathbf{A}\mathbf{x}_0$ if \mathbf{r}_0 is sufficiently small, then return \mathbf{x}_0 as the result $\mathbf{p}_0 := \mathbf{r}_0$ k := 0repeat $lpha_k := rac{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k}{\mathbf{p}_k^\mathsf{T} \mathbf{A} \mathbf{p}_k}$ $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{p}_k$ $\mathbf{r}_{k+1} := \mathbf{r}_k - lpha_k \mathbf{A} \mathbf{p}_k$ if \mathbf{r}_{k+1} is sufficiently small, then exit loop $eta_k := rac{\mathbf{r}_{k+1}^{\mathsf{T}}\mathbf{r}_{k+1}}{\mathbf{r}_k^{\mathsf{T}}\mathbf{r}_k}$ $\mathbf{p}_{k+1} := \mathbf{r}_{k+1} + eta_k \mathbf{p}_k$ k := k + 1end repeat return \mathbf{x}_{k+1} as the result

- How to compute Hessian inverse vector product?
- Conjugate gradient, solve $A oldsymbol{x} = oldsymbol{b}$
- Neumann series (finite truncation)

 $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$

- Same as backprop the last K steps (Option 2).
- Memory savings.

Conjugate Gradient Method $\mathbf{r}_0 := \mathbf{b} - \mathbf{A}\mathbf{x}_0$ if \mathbf{r}_0 is sufficiently small, then return \mathbf{x}_0 as the result $\mathbf{p}_0 := \mathbf{r}_0$ k := 0repeat $lpha_k := rac{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k}{\mathbf{p}_k^\mathsf{T} \mathbf{A} \mathbf{p}_k}$ $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{p}_k$ $\mathbf{r}_{k+1} := \mathbf{r}_k - lpha_k \mathbf{A} \mathbf{p}_k$ if \mathbf{r}_{k+1} is sufficiently small, then exit loop $eta_k := rac{\mathbf{r}_{k+1}^\mathsf{T}\mathbf{r}_{k+1}}{\mathbf{r}_k^\mathsf{T}\mathbf{r}_k}$ $\mathbf{p}_{k+1} := \mathbf{r}_{k+1} + eta_k \mathbf{p}_k$ k := k + 1end repeat return \mathbf{x}_{k+1} as the result

• Now add linear equality constraints on the dynamics and initialization.

$$\tau_{1:T} = \{x_t, u_t\}_{1:T}$$

$$\underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

• Now add linear equality constraints on the dynamics and initialization.

$$\tau_{1:T} = \{x_t, u_t\}_{1:T}$$

• Chain rule:
$$\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \tau_{1:T}^{\star}} \frac{\partial \tau_{1:T}^{\star}}{\partial \theta}$$

 $\operatorname{argmin}_{\tau_{1:T}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^\top C_t \tau_t$ subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

% NYU

• Now add linear equality constraints on the dynamics and initialization.

 $\tau_{1:T} = \{x_t, u_t\}_{1:T}$

• Chain rule:
$$\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \tau_{1:T}^{\star}} \frac{\partial \tau_{1:T}^{\star}}{\partial \theta}$$
.

$$\underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

General QP:

$$x^* = \operatorname{argmin} \frac{1}{2} x^\top Q x + c^\top x$$

subject to $Ax = b$.

-1

• Now add linear equality constraints on the dynamics and initialization.

 $\tau_{1:T} = \{x_t, u_t\}_{1:T}$

• Chain rule:
$$\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \tau_{1:T}^{\star}} \frac{\partial \tau_{1:T}^{\star}}{\partial \theta}$$
.

• KKT:

$$\underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

General QP:

$$x^* = \operatorname{argmin} \frac{1}{2} x^\top Q x + c^\top x$$

subject to $Ax = b$.

1

• Now add linear equality constraints on the dynamics and initialization.

 $\tau_{1:T} = \{x_t, u_t\}_{1:T}$

• Chain rule:
$$\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \tau_{1:T}^{\star}} \frac{\partial \tau_{1:T}^{\star}}{\partial \theta}$$
.

$$\begin{bmatrix} Q & A^{\top} \\ A & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{\lambda}^* \end{bmatrix} = \begin{bmatrix} -\mathbf{c} \\ \mathbf{b} \end{bmatrix}$$
$$K \begin{bmatrix} \mathbf{x}^* \\ \mathbf{\lambda}^* \end{bmatrix} = v. \quad \text{In}$$

$$\operatorname{argmin}_{\tau_{1:T}} \sum_{t=1}^{T} \frac{1}{2} \tau_t^{\top} C_t \tau_t$$

subject to $x_{t+1} = F_t \tau_t + f_t, x_1 = x_{\text{init}}.$

General QP:

$$\boldsymbol{x}^* = \operatorname{argmin} \frac{1}{2} \boldsymbol{x}^\top Q \boldsymbol{x} + \boldsymbol{c}^\top \boldsymbol{x}$$

subject to $A \boldsymbol{x} = \boldsymbol{b}$.

In classic LQR solver, the Riccati recursion solves this linear system.

• Apply differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \left(K \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} \right) = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}.$$
$$\frac{\mathrm{d}K}{\mathrm{d}\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}.$$

• Apply differentiation $\frac{\mathrm{d}}{\mathrm{d}\theta} \left(K \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} \right) = \frac{\mathrm{d}v}{\mathrm{d}\theta}.$ $\frac{\mathrm{d}K}{\mathrm{d}\theta} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\theta} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\theta} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\theta}$ $K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\theta} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\theta} \end{bmatrix} = K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{A}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{b}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{A}} \\ \end{bmatrix} = \begin{bmatrix} -I & 0 & -x^* & -\lambda^* \\ 0 & I & 0 & -x^* \end{bmatrix}$

• Apply differentiation $\frac{d}{d\theta} \left(K \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} \right) = \frac{dv}{d\theta}.$ $\frac{dK}{d\theta} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{d\boldsymbol{x}^*}{d\theta} \\ \frac{d\boldsymbol{\lambda}^*}{d\theta} \end{bmatrix} = \frac{dv}{d\theta}.$ $K \begin{bmatrix} \frac{d\boldsymbol{x}^*}{d\theta} \\ \frac{d\boldsymbol{\lambda}^*}{d\theta} \end{bmatrix} = K \begin{bmatrix} \frac{d\boldsymbol{x}^*}{dc} & \frac{d\boldsymbol{x}^*}{db} & \frac{d\boldsymbol{x}^*}{dQ} & \frac{d\boldsymbol{x}^*}{dA} \\ \frac{d\boldsymbol{\lambda}^*}{d\theta} & \frac{d\boldsymbol{\lambda}^*}{d\theta} \end{bmatrix} = \begin{bmatrix} -I & 0 & -\boldsymbol{x}^* & -\boldsymbol{\lambda}^* \\ 0 & I & 0 & -\boldsymbol{x}^* \end{bmatrix} \quad K \frac{\partial\ell}{\partial\boldsymbol{z}^*} \begin{bmatrix} \frac{d\boldsymbol{x}^*}{dc} & \frac{d\boldsymbol{x}^*}{db} \\ \frac{d\boldsymbol{\lambda}^*}{dc} & \frac{d\boldsymbol{\lambda}^*}{db} \end{bmatrix} = \begin{bmatrix} -\frac{\partial\ell}{\partial\boldsymbol{x}^*} \\ 0 \end{bmatrix} \quad Kd^* = \begin{bmatrix} -\frac{\partial\ell}{\partial\boldsymbol{x}^*} \\ 0 \end{bmatrix}$

 $\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\left(K \begin{vmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{vmatrix}\right) = \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}\boldsymbol{\theta}}.$ • Apply differentiation $\frac{\mathrm{d}K}{\mathrm{d}\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$ $K\begin{bmatrix}\frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}}\\\frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\theta}}\end{bmatrix} = K\begin{bmatrix}\frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{A}}\\\frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}}\end{bmatrix} = \begin{bmatrix}-I & 0 & -x^* & -\lambda^*\\0 & I & 0 & -x^*\end{bmatrix} \begin{bmatrix}K\frac{\partial\ell}{\partial\boldsymbol{z}^*} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}}\\\frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{z}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{b}}\end{bmatrix} = \begin{bmatrix}-\frac{\partial\ell}{\partial\boldsymbol{x}^*}\\0\end{bmatrix}$ $K\boldsymbol{d}^* = \begin{bmatrix} -\frac{\partial\ell}{\partial\boldsymbol{x}^*} \\ \boldsymbol{0} \end{bmatrix}$ • Equivalent QP: $d^* = \operatorname{argmin} \frac{1}{2} d^\top Q d + \frac{\partial \ell}{\partial d^+} d,$

$$d$$
 2 ∂x
subject to $Ad = 0$.

🧳 NYU

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

 $\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\left(K \begin{vmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{vmatrix}\right) = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}.$ • Apply differentiation $\frac{\mathrm{d}K}{\mathrm{d}\boldsymbol{\theta}} \begin{bmatrix} \boldsymbol{x}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} + K \begin{bmatrix} \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}} \\ \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}} \end{bmatrix} = \frac{\mathrm{d}v}{\mathrm{d}\boldsymbol{\theta}}$ $K\begin{bmatrix}\frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{\theta}}\\\frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}}\end{bmatrix} = K\begin{bmatrix}\frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{c}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{Q}} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{A}}\\\frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}}\end{bmatrix} = \begin{bmatrix}-I & 0 & -x^* & -\lambda^*\\0 & I & 0 & -x^*\end{bmatrix} \begin{bmatrix}K\frac{\partial\ell}{\partial\boldsymbol{z}^*} & \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}\boldsymbol{b}}\\\frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}} & \frac{\mathrm{d}\boldsymbol{\lambda}^*}{\mathrm{d}\boldsymbol{\lambda}}\end{bmatrix} = \begin{bmatrix}-\frac{\partial\ell}{\partial\boldsymbol{x}^*}\\0\end{bmatrix}$ $K\boldsymbol{d}^* = \begin{bmatrix} -\frac{\partial\ell}{\partial\boldsymbol{x}^*} \\ \boldsymbol{0} \end{bmatrix}$ • Equivalent QP: $oldsymbol{d}^* = \operatorname*{argmin}_{oldsymbol{d}} rac{1}{2} oldsymbol{d}^ op Q oldsymbol{d} + rac{\partial \ell}{\partial oldsymbol{x}^*}^{phantom{\dagger}} oldsymbol{d}, \qquad rac{\partial \ell}{\partial Q} = rac{1}{2} (oldsymbol{d}^*_{oldsymbol{x}} \otimes oldsymbol{x}^* + oldsymbol{x}^* \otimes oldsymbol{d}^*_{oldsymbol{x}})$ $rac{\partial \ell}{\partial A} = d^*_{oldsymbol{\lambda}} \otimes oldsymbol{x}^* + oldsymbol{\lambda}^* \otimes d^*_{oldsymbol{x}}.$ subject to Ad = 0.

Amos et al. Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.

- The backward pass can also be formulated as a LQR problem.
- Swap c to $\nabla_{\tau^{\star}} \ell$ and f to 0.

Module 1 Differentiable LQR	(The LQR algorithm is defined in appendix A)
Input: Initial state x_{init} Parameters: $\theta = \{C, c, F, f\}$	
Forward Pass: 1: $\tau_{1:T}^{\star} = LQR_T(x_{init}; C, c, F, f)$ 2: Compute $\lambda_{1:T}^{\star}$ with (7)	⊳ Solve (2)
De alamond De see	

Backward Pass:

- 1: $d_{\tau_{1:T}}^{\star} = LQR_T(0; C, \nabla_{\tau^{\star}} \ell, F, 0) \triangleright$ Solve (9), ideally reusing the factorizations from the forward pass
- 2: Compute $d^{\star}_{\lambda_{1:T}}$ with (7)
- 3: Compute the derivatives of ℓ with respect to C, c, F, f, and x_{init} with (8)

• What about general MPC?

 $\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{T} C_t(x_t, u_t)$ subject to $x_{t+1} = f(x_t, u_t), x_1 = x_{\operatorname{init}}.$

• What about general MPC?

$$\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{T} C_t(x_t, u_t)$$

subject to
$$x_{t+1} = f(x_t, u_t), x_1 = x_{\text{init}}.$$

• Use Taylor expansion to approximate.

$$\tilde{C}^{i}_{\theta,t} = C_{\theta,t}(\tau^{i}_{t}) + p^{i^{\top}}_{t}(\tau_{t} - \tau^{i}_{t}) + \frac{1}{2}(\tau_{t} - \tau^{i}_{t})^{\top}H^{i}_{t}(\tau_{t} - \tau^{i}_{t}).$$

• What about general MPC?

$$\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{T} C_t(x_t, u_t)$$

subject to
$$x_{t+1} = f(x_t, u_t), x_1 = x_{\text{init}}.$$

• Use Taylor expansion to approximate.

$$\tilde{C}^{i}_{\theta,t} = C_{\theta,t}(\tau^{i}_{t}) + {p^{i}_{t}}^{\top}(\tau_{t} - \tau^{i}_{t}) + \frac{1}{2}(\tau_{t} - \tau^{i}_{t})^{\top}H^{i}_{t}(\tau_{t} - \tau^{i}_{t}).$$

• Fixed point iteration.

$$\tau^{i+1} = \operatorname{argmin}_{\tau} \sum_{t}^{T} \tilde{C}_{t}^{i}(\tau_{t}^{i}).$$

• What about general MPC?

$$\underset{x_{1:T} \in \mathcal{X}, u_{1:T} \in \mathcal{U}}{\operatorname{argmin}} \sum_{t=1}^{T} C_t(x_t, u_t)$$

subject to
$$x_{t+1} = f(x_t, u_t), x_1 = x_{\text{init}}.$$

• Use Taylor expansion to approximate.

$$\tilde{C}^{i}_{\theta,t} = C_{\theta,t}(\tau^{i}_{t}) + {p^{i}_{t}}^{\top}(\tau_{t} - \tau^{i}_{t}) + \frac{1}{2}(\tau_{t} - \tau^{i}_{t})^{\top}H^{i}_{t}(\tau_{t} - \tau^{i}_{t}).$$

• Fixed point iteration.

$$\tau^{i+1} = \operatorname{argmin}_{\tau} \sum_{t}^{T} \tilde{C}_{t}^{i}(\tau_{t}^{i}).$$

• Backward only depends on final quadratic approximation.

Behavioral vs. Trajectory Planning

• Gradient-based optimization provides a locally optimized trajectory.

SPEED

Ř

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.

Behavioral vs. Trajectory Planning

- Gradient-based optimization provides a locally optimized trajectory.
- Samples may be needed for reasoning global structure.

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.

Behavioral vs. Trajectory Planning

• Gradient-based optimization provides a locally optimized trajectory.

SPFF

- Samples may be needed for reasoning global structure.
- Can learn together using the same learned costs.

Sadat et al. Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles. IROS 2019.

• Jointly reason the future trajectories of multiple agents as an energybased graphical model. $p(\mathbf{s}_1, \dots, \mathbf{s}_N \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s}_1, \dots, \mathbf{s}_N) \mid \mathbf{X})$

- Jointly reason the future trajectories of multiple agents as an energybased graphical model. $p(\mathbf{s}_1, \dots, \mathbf{s}_N \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s}_1, \dots, \mathbf{s}_N) \mid \mathbf{X})$
- Trajectory Goodness + Collision.

$$\sum_{i} E_{\theta}(s_i \mid X) + \sum_{i \neq j} E(\mathbf{s}_i, \mathbf{s}_j)$$

$$E(\mathbf{s}_i, \mathbf{s}_j) = \gamma$$
 if \mathbf{s}_i collides \mathbf{s}_j

- Jointly reason the future trajectories of multiple agents as an energybased graphical model. $p(\mathbf{s}_1, \dots, \mathbf{s}_N \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s}_1, \dots, \mathbf{s}_N) \mid \mathbf{X})$
- Trajectory Goodness + Collision.
- Batch of trajectory samples.

$$\sum_{i} E_{\theta}(s_{i} \mid X) + \sum_{i \neq j} E(\mathbf{s}_{i}, \mathbf{s}_{j})$$
$$E(\mathbf{s}_{i}, \mathbf{s}_{j}) = \gamma \text{ if } \mathbf{s}_{i} \text{ collides } \mathbf{s}_{j}$$

- Jointly reason the future trajectories of multiple agents as an energybased graphical model. $p(\mathbf{s}_1, \dots, \mathbf{s}_N \mid \mathbf{X}) = \frac{1}{Z} \exp(-E_{\theta}(\mathbf{s}_1, \dots, \mathbf{s}_N) \mid \mathbf{X})$
- Trajectory Goodness + Collision.
- Batch of trajectory samples.
- Classification of groundtruth trajectory.

$$E(\mathbf{s}_i, \mathbf{s}_j) = \gamma$$
 if \mathbf{s}_i collides \mathbf{s}_j

Summary: End-to-End Planning

- Direct Policy Prediction
 - Condition perception features into the model
 - Use of diffusion models

Summary: End-to-End Planning

- Direct Policy Prediction
 - Condition perception features into the model
 - Use of diffusion models
- Cost Learning (IRL) from Experts
 - Max-margin, max-entropy/EBM
 - Need negative samples
 - Can be combined with efficient external samplers
 - Cost volume prediction: parametric + non-parametric

Summary: End-to-End Planning

- Direct Policy Prediction
 - Condition perception features into the model
 - Use of diffusion models
- Cost Learning (IRL) from Experts
 - Max-margin, max-entropy/EBM
 - Need negative samples
 - Can be combined with efficient external samplers
 - Cost volume prediction: parametric + non-parametric
- Differentiable Planner
 - Backprop through local optimization
 - Can be memory efficient, implicit differentiation

