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Lecture Slides for Note Taking




Multi-Sensor Fusion

* LIDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)
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Multi-Sensor Fusion

* LIDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)

» Camera provides high resolution 2D view and good for long distance
but lacks 3D. Can we achieve the best of both worlds?

* Late fusion: Generate proposals from one branch (e.g. LIDAR) and
refine (e.g. using Camera).

* Is there a way to combine the features from both modality in lower
layers?




Camera-LiDAR Projection

* Unproject LIDAR points to camera
view (i.e. Range View)

-

7]
(1) KNN-Search " ©
S

”"’4 ONO) .
I P4
,’DA’ D*@ﬂ <j <:] I:I (4) Retrieve Image + Geometric
»

O 3 \D D‘ Eeatures
(5) Output Feature to Target Pixel D

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.



Camera-LiDAR Projection

* Unproject LIDAR points to camera
view (i.e. Range View)

* Query the closest camera RGB "\ e eraio camera vew
features for each LiDAR point.

|

OOOO

O

(1) KNN-Search

I

<::] D (4) Retrieve Image + Geometric

O‘ v ﬁ Features

» ”

«

(5) Output Feature to Target Plxel

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.




Camera-LiDAR Projection

* Unproject LIDAR points to camera
view (i.e. Range View)

* Query the closest camera RGB "\ e eraio camera vew
features for each LiDAR point.

|

* For empty space in BEV, we can
interpolate from neighboring ~ wwse ;
points using kNN. D"",

«

0101

O

I

<: D (4) Retrieve lmage + Geometric

O‘ v ﬁ Features

(5) Output Feature to Target Plxel

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.




Camera-LiDAR Projection

* Unproject LIDAR points to camera
view (i.e. Range View)

* Query the closest camera RGB

features for each LiDAR point. ° o/
(@)
* For empty space in BEV, we can °
. . . (@)
interpolate from neighboring =~ wxwsee %A .
points using kNN. b U‘
o’ .
* Continuous Fusjon: h; = S %

5, MLP([fi. 3 = ).
kﬁf/L@/ @\




Supervised Dense Depth

A L'c«%

* Drawback of continuous —

. . A A
fusion: Spa rse LIDAR can Aapping 3D Detection _ 2D Detection “Depth Completion
cause the fusion process to be iSRS ifihue 3L ]
less accurate. Relies on KNN. = ’ -

RGB Camera Image

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.




Supervised Dense Depth

. .
Drawback of continuous e e —
fusion: Sparse LiDAR can Mapping _ _Depth Completion
cause the fusion process to be -l (i 'Y X. :
less accurate. Relies on kNN.

* Why not predict a dense

depth to pair with the camera
Image?

/// - S \ W .
LiDAR Point Cloud RGB Camera Image

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.




Supervised Dense Depth

* Drawback of continuous g e —

e

fUSiOﬂZ Spa rse LIDAR can Mapping 3D Detection 2D Detection _ Depth Completion

1.#%
S\

cause the fusion process to be
less accurate. Relies on kNN.

* Why not predict a dense
depth to pair with the camera
Image?

. Depth complet|on module is LiDAR Point Cloud RGB Camera Image
supervised by sparse LIDAR

and is used for dense fusion.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
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3D Perception

* With the ease of use of automatic differentiation libraries, we can
compose a computation graph in millions of ways.

* We can design layers and operators to accomodate different types of
inputs and outputs. 3D, point cloud, sparse data, etc.

* We can fuse different modalities together too, by leveraging
geometric relationships.




2D to 3D

* Not all embodied agents have the luxury to have a full set of sensors.
 Can we infer the geometric structure with 2D perception?

Milimeter-waye Surround Surround 4 Ultrasonic  16-line Lidar  GPS, IMU
Radars View Cam View Camy Radars A ;
| / /
. Vi
- 4 2
/
— e et
,/ \
! .
Teleﬁhoto Surroun d
Lens / View Cam.
.
.
1
.
4 Ultrasonic ADtU Surround 4 Ultrasonic 4 Ultrasonic

Radars View Camera Radars Radars




Classic Vision on Depth and Disparity

* One source of depth is from the displacement of pixels in a stereo

setup. x (X, 02)
10,Z) ~
5= X - X
¥ = X
Zz
Xg= (X-B) &




Classic Vision on Depth and Disparity

* One source of depth is (0.0.2) Uii’i}.o,ﬂ A= L
from the displacement = )
of pixels in a stereo = 22
setup. §=% -x i

* But we need to estimate [; Fx ] ¢
disparity. Tz

(0.9 o) i
left Com Pight Cam = P’j_c
z
= _Bi'




From 2D to 3D: Depth Network

* A network that can output disparity.
* Using LIDAR or depth camera as groundtruth supervision.

—~————

Left input image

_ " .
_ -

90 m 20 m 1:7 m
Right input image

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.




The Energy-Based Approach

* The energy penalize matching with high cost
(unary), and when neighboring pixels have
disparity differences greater or equal to one
(pairwise).

* Cost network: Train with binary classification

A"

Energy E(D)= Z(céBCA<p,D<p>> D(p))= argmin C(p, d).
) — )
Py x 1{|D(p) — D(q)| = 1} -
[ = oL gPé«ce rex f
- P, x 1{|D(p) — D(q)| > 1} |, b,
Sto O%Aegs 2 ) predictio

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.

Left image patch Right image patch
9 9
5 5

T
: E ==

-‘ concatenate yS

| 400
#
L4 | | 300
v
Ls: | | 300
v
L6: | | 300
v
L7 | | 300

L >
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Self-Supervised Depth

. Appearance matching Ioss Woyped
1— SSIM(I’ Il)

172715 Tl
ap E + (1 - a) ij IZ] ﬂ[’ Appearance matching loss 2 4 N\ 7 \
N Cys Disparity smoothness loss r "'l
Cjr Left-Right disparity consistency loss / I I
1 \ J \ J

gstM . |>(‘><o(

2Hx2Wx D/2

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017. (f’l NYU
Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004. !




Self-Supervised Depth

. Appearance matching loss

I‘l" Il
1— SSIM(I’ IL) .
1771,
ap E A + (1 - a) ij _Ifj . ﬂl’ Appearance matching loss = ( N\ / \
N Cys Disparity smoothness loss r "‘l
Cjr Left-Right disparity consistency loss I I
{ \ J \ y

* Disparity smoothness loss

C’és=%2|8zd§j|e |8=1 18,d|e llov I35 |
i.j

2Hx2Wx D/2

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017
Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004
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Self-Supervised Depth

* Appearance matching loss l
Ir I
1- SSIM(I’ 1) -
ap Z LA +(1—a) ij _Iﬁ_] . Ql Appearance matching loss 2 o N\ / )
N C'ys Disparity smoothness loss r 7l
. Left-Right disparity consistency loss I I
{ \ J \ y

* Disparity smoothness loss
Cl,= —Z|a Slelo: Llellov Tl [d’ ][ d ]
* Left-right disparity
consistencv Ioss ()
lr zy-i-d‘ .
Godard et al. Unsuperwsed Monocu/ar Depth Estimation with Left-Right Consistency. CVPR 2017. (%// NY U

Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004.



Motion, Optical Flow ®

-

* Optical Flow: Estimate the motion of pixels across two consecutive

video frames.
(40
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Motion, Optical Flow

* Optical Flow: Estimate the motion of pixels across two consecutive
video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) =I(x + Ax,y + Ay, t + At).
I(x+ Ax,y + Ay, t + At) = I(z,y,t) % T+ %Ay+%At.




Motion, Optical Flow

* Optical Flow: Estimate the motion of pixels across two consecutive
video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) = I(x + Az,y + Ay, t + At).
(x4 Az,y + Ay, t + At) = I(z,y,t) + LAz + gIAy+ SLAL.

Aaz+gIAy+gIAt—0

ANYU




Motion, Optical Flow

* Optical Flow: Estimate the motion of pixels across two consecutive
video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) = I(x + Az,y + Ay, t + At).
I(aj+A$,y—|—Ay,t+At) = I(z,y,t) + LAz + gIAy+ SLAL.

ol ol
:% Ax+8Ay+8At—0
oI

Iy—ay
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Motion, Optical Flow

* Optical Flow: Estimate the motion of pixels across two consecutive
video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) = I(x + Az,y + Ay, t + At).
I(aj+A$,y—|—Ay,t+At) = I(z,y,t) + LAz + gIAy+ SLAL.

ol ol
Iw:% Aaz+8Ay+8At—0
o1

=73, Lou+ Iy + I = 0.
¥ dlreges, ) Altreceion A NYU




Classical Approach

* Under-constrained system I,u+ I+ I = 0.




Classical Approach 2 wmt

—_—

* Under-constrained system @u + Lo+, =0.
~~—
* Use a local patch and assume smooth motion
L\,




Classical Approach

* Under-constrained system Iou+ Iyv+1; =0.
* Use a local patch and assume smooth motion
* Rigid, contains many assumptions

I:(p1) I,(p1)

L(px:) I(pwe) I,(pw2)




Correlation Volume Approach

* Simple Approach: "™ i
Concatenate the N
two images
together.

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.




Correlation Volume Approach

FlowNetSimple

* Simple Approach:
Concatenate the =
two images ”
together. ke

* Correlation: FlowNetCort

and convolve one
feature on top of

anOther. | c(x1,%2) = Z (f1(x1 + 0), f2(x2 + 0))

o€[—k,k]x [—k,k]

(W) (122,142

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.

Extract some [ g ‘ KOMSize
levels of features, [ 1 o | [0 xR x D7)




Iterative Refining through Feature Pyramid

Feature Feature M S S = e » Upsampled flow
pyramid 1 pyramid 2 _p ﬁ

Warping layer -

:

SN AN L"": : —»|  Cost volume layer
7 ’ . : —_— l._.

—»| Optical flow estimator e
Refined flow {

-

«——i  Context network

Sun et al. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume.




Unsupervised Flow

* Photometric Consistency (Appearance)

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Unsupervised Flow

v
* Photometric Consistency (Appearance)
* Occlusion Estimation o
* Forward-backward consistency
No dder

== Image2
Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Unsupervised Flow

* Photometric Consistency (Appearance)

* Occlusion Estimation
* Forward-backward consistency

* Smoothness

Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Unsupervised Flow

* Photometric Consistency (Appearance)

* Occlusion Estimation
* Forward-backward consistency

* Smoothness

* Self-supervision: Ensure consistent flow at
different augmentation (e.g. crops)

== Image2
Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Unsupervised Flow

* Photometric Consistency (Appearance)

* Occlusion Estimation
* Forward-backward consistency

* Smoothness

* Self-supervision: Ensure consistent flow at
different augmentation (e.g. crops)

* Can 3D information help us reason about L -
. mage
motion? Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Depth, Flow, and Pose Movement

—r —t
’—\‘~

* The static objects follow rigid flow: determined by camera motion

and depth. rig _ 1 =
P tl—>8(pt) £Ttr—>sDt(pt)§;)pt
r‘rZ/ol

Input Frames DepthNet Depth Map Rigid Flow Final Flow
y y <—

-1 1
: 1
1 |
M’&——- : : |
1
5
— i > (forward) == X (forward) L o S
| . §

|

: J y Consistency

\/ i : . ResFlowNet Check

. .

- - —

PoseNet Camera Motion (backward) (backward)
] 1 |
v v
Rigid Structure Reconstructor Non-rigid Motion Localizer

. e | A NYU
Yin & Shi. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose. CVPR 2018. 1




Training Losses

* Appearance Loss (Warping): »
[Zw _ a1—SSIA42(It,IS ’) + (1 — oz)HIt — jging'
B = full T
E&:Oél SSIMQ(It,Is ) _|_(1—()4)H[t—lgu”‘|1.
§§”V\ | PJ)(L/




Training Losses

* Appearance Loss (Warping): »
L. = al—SSIJ\g(ItaI;"Zg) -+ (1 — Oé)”It - jgzg||1

_ rfull ~
Lrw = =SS MULL ) 4 (1 — o)1, — I,
 Smoothness Loss:

L =3, IYD@)] - (exp(~[TI(p(t)]))"-

_J




Training Losses

* Appearance Loss (Warping): »
L. = al—SSIJ\g(ItaI;"Zg) -+ (1 — Oé)”lt - jgzg||1

_ rfull ~
Ly = @38 MULLT) o (1 — q)||1, — [T,

 Smoothness Loss:

L=3,, VD) - (exp(~[VI((H))"

* Forward-Backward Consistency:

L= (6] IAfs, Dl
S(pe) = Hiﬂpwbme_Jiﬂpww}

.

A NYU



Summary

* Leverage cross correlation structure for spatial similarity matching.

Monocular Depth Prediction Optical Flow Estimation
-
= D & » < F «—
l C—
i Loss
v
E o > -
f ! Loss
7T N
B — > \v4 L <+
=.J -
Camera Motion Estimation Motion Segmentation
Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and (?l NYU

Motion Segmentation. CVPR 2019



Summary

* Leverage cross correlation structure for spatial similarity matching.

* Can be used towards: depth, flow, and pose prediction.

Monocular Depth Prediction Optical Flow Estimation

l -t
i Loss
v
) E " > -
= Iy
T i Loss
e ﬁ v
S A ™
G | \/\’" o «— M <« *5
—-d = - ) —& » -
[y
Camera Motion Estimation Motion Segmentation

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and
Motion Segmentation. CVPR 2019

A NYU




Summary

* Leverage cross correlation structure for spatial similarity matching.

* Can be used towards: depth, flow, and pose prediction.
* Can form triangulation for self-supervision.

Monocular Depth Prediction Optical Flow Estimation

= TR R R

l . } Loss
4_ E j -
! |
N

A
i Loss
.4, .8
- \Y O «— M < &
-“ = - N i‘ e
——
Camera Motion Estimation Motion Segmentation

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and
Motion Segmentation. CVPR 2019
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Classical Mapping

* Estimating 3D structure and location from 2D observations.

* Given a set of corresponding points in two or more
images, compute the camera parameters and the 3D point
coordinates

s

/

Ci 1
Iaemt;ra ? Camera 2 Camera 3
el R2, t2 L] R3, t3 Slide credit:

L4 Noah Snavely

ANYU

55555 il Garg & Jain



Classical Mapping

* Estimating 3D structure and location from 2D observations.
* Simultaneous Localization and Mapping.

* Given a set of corresponding points in two or more
images, compute the camera parameters and the 3D point
coordinates

Camera 1 0)

Camera 3

Camera 2 0)
Ryt Rty ? R

il Garg & Jain



Classical Mapping

* Estimating 3D structure and location from 2D observations.
* Simultaneous Localization and Mapping.
* Common Techniques: Extended Kalman Filter, GraphSLAM

* Given a set of corresponding points in two or more
images, compute the camera parameters and the 3D point
coordinates

Camera 1 0)

Camera 3

Camera 2 0)
Ryt Rty ? R

il Garg & Jain



Common Drawbacks

* Probabilistic inference can take long to compute, and mapping takes
a large memory storage.
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Common Drawbacks

* Probabilistic inference can take long to compute, and mapping takes
a large memory storage.

* Great for 3D reconstruction but downstream tasks may not need a
full precision explicit map.

* May not fully understand dynamic objects (averaging across multiple
scans).

* |s there a more end-to-end version?




Mapping in the Brain: Grid and Place Cells
[

insertion point N

insertion point insertion point

visual landmark

150cm

Morris water maze

(D oa (c'-z-&’(—\'a-\. (OCNHM

May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place Cells, Grid Cells, and Memory.

Matthias Wandel, 2018




Neural Mapping

* Can we learn a mapping representation? P&Sf /\,,%7
* Metric space, top-down warping (known egomotion). '

Confidence and belief about world Confidence and belief about world from
from previous time step. mious time step, warped using egomotion.

W

— ™| Differentiable [ >
Warping
; ' A
Ct—1
Updated confidence and
v belief about world.
¥ [ e |
Encoder Network Decoder Network with T E
(ResNet 50) residual connections Z / u- P q{-cd

\ 4

\4

Fully Connected Combine - i
Layers with
RelUs.

- Cwrent 51g. o I

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. [JCV 2017.




loc‘«l&

o Hierarchical Planning

q(

How do we use the learned map (alloce

Goal at Scale 1 Goal at Scale 0

N\ [} N\
Fused world, goal Fused world, goal
O O O o and coarser scal and coarser scal
value map value map
Fully
— Connected
Q') Fuser - - Fuser - - Layers
R with
Upsampled :\/Aa;g: Q-Value Updated Upsampled \hlnaaI:: Q-Value Updated RelUs
Value Maps Maps Value Maps Value Maps Maps Value Maps 1
from Scale 2 ! Iterafions from Scale 1 [ Iterations
Value lteration Module Value lteration Module
/ o ) < ~/
Output from Scale 1 Output from Scale 0
er at Scal mapper at Scale 0

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. [JCV 2017.




Simultaneous Localization and Registration

CNN —> Gr_oun_d oo Resam_pler s
projection (rotation)

);/;\;(
O
o~
\
(=)
o~

Pt

h
NINNN
Y
c
o
s —
&

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.




Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a
rotation resampler.

/
Okl
L—

Henriques & Vedaldi. MapNet: An Allocen

= |R(0,2m

@T)]iﬂc-

tric Spatial Memory for Mapping Environ

Ground
projection

I

Resampler
(rotation)

2

ments. CVPR 2018.

()<

b=t
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Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler. ,
O;ijl = [R(0,27l/7)]ijk- " 7 b%

> — < /—>
projection \/ (rotation)

* 0/ convolve with the base feature.

@: Softmax(m—1 * 04). (%ég ég

| | o . ANYU
Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018. 1




Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler. .
O;ijl = [R(0,27l/7)]ijk- " 7 g b%

—> — < />
projection y (rotation)

* 0/ convolve with the base feature.

pr = Softmax(my_1 * 0}). C%ég iﬂ

* Transform observations into allocentric
6= 3w PuviyT (0], v, w).
—

| | o . ANYU
Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018. 1




Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler. y
O;jkl — [R(07 QWZ/T)]zjk Ground /[ Resampler| p%

—> — < />
projection y (rotation)

* 0/ convolve with the base feature.

pr = Softmax(my_1 * 0}). (%ég lﬂ

* Transform observations into allocentric
Ot = D 00w Duvwl (0], v, w).

* Update belief: X

mi jt4+1 — LSTM(, 67;7]',15).

| | o i ANYU
Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018. 1




Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler. y
O’Illjkl . [R(O, QWZ/T)]ZJk; Ground // Resampler %

7| projection | y_) (rotation) | /'J/

* 0/ convolve with the base feature.

pr = Softmax(my_1 * 0}). b é , % lﬂ

* Transform observations into allocentric
Ot = D 1w Duvwl (0], v, Ww).

* Update belief: Loss:

mi jt+1 — LSTM(i,j,t)- ﬁ(p) = —log Zt PH W R4t-

| | o o 2 NYU
Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018. 1
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Joint Localization, Perception and Prediction

Intensity map

embedding net f g . :
e - *

= - . Cross correlation Ego-car pose &

Map intensity m = e ' 4 /

a-blend Samplelrotations l y
Voxelize — 5 @ = Ol e
@5cm/vox Wl = S .
} t e

Matching
score map

Upsample & NG Sl i i
LIDAR side net g 4 | 4 o Localization
/ LiDAR LiDAR backbone h
sweep X ) Multimodal forecasting
>V Detector .
¥ 5‘@/\; Crop and predictor §
Voxelize % PL
@20cm/vox| eoarse™> h e -

—r GNN
Rasterized M&P °

map backbone Perception-prediction

Semantic map (rasterized)

Philips et al. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction CVPR 2021.




Continuous 3D Perception and Mapping

State Update
State Readout

p

State 1 [T TTT]

¢ State Update :
State Readout

State 2 [T T T

c State Update
State Readout

#n age 3 State 3
: Pointmaps
Input images Online Dense 3D Reconstruction & Cameras

Wang et al. Continuous 3D Perception Model with Persistent State. arXiv 2025.

Scene reconstruction
at each time

LT T

State
Readout

Structure Inference via State Readout




Topological Map

* High-level graph representation

* Each node contains more
summarized information

* Enables global planning

Pt

Graph ( Gy )

Graph
Graph Update raph (G)

(ou) K

Goal Image (/)

Johnson. Topological Mapping and Navigation in Real-World Environments. 2018.
Chaplot et al. Neural Topological SLAM for Visual Navigation. CVPR 2020.

Ghost Node addition \

Addition

Graph Update (f;,)

Large-scale
Space

Small-scale
Space

T Topological Map

Global
Topological

A Local Place
Local Path

Local
Topological

A v

Pose

Local
Me;ric T

Laser
S IMU
Commanded velocity

Sensors

Johnson, 2018
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Summary

* Covers 3D, motion, depth, and mapping.
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Summary

* Covers 3D, motion, depth, and mapping.

* Still needs high-level features (recognizing the object and semantics):
Spatial pyramid.

 Can be made unsupervised

* Design end-to-end modules that contain rich features.

* Design joint learning frameworks.

* Using geometric transformation to ground representations.
* Useful for planning (a few weeks from now).
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Representation Learning

* Efficient encoding of the world that can help us recognize semantic
concepts (high-level cognition).

* Efficient learning of visual data without extra supervision.
* Recognition of motion also requires global matching.
* Historically, largely driven by supervised classification.

Before Training After Training




Unsupervised Learning

* Encoder / bottom-up / cognition & decoder / top-down / generation
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Unsupervised Learning

* Encoder / bottom-up / cognition & decoder / top-down / generation
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Denoising Autoencoder (DAE)

* Making representations robust
to partial corruption

Figure 1. An example x is corrupted to X. The autoen-
coder then maps it to y and attempts to reconstruct x.




Denoising Autoencoder (DAE)
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* Making representations robust
to partial corruption XOXOO)«=2 (00000 (OOOOO]
e Low-dimensional manifold near i ’ z
which the data concentrate: Figure 1. An example x is corrupted to X. The autoen-

coder then maps it to y and attempts to reconstruct x.

P(x|%) = By () (0).




Denoising Autoencoder (DAE)
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* Regular autoencoders do not learn
good filters.

NYU

W

in a Deep Network with a Local

ntations

ing Useful Represe

ising Autoenco

nt et al. Stacked Deno

ising Criterio

Vince

n. JMLR 2010.

Deno



Connection to Diffusion Models

* Both has denoising as learning objective.
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Connection to Diffusion Models  ; rnoe= 2,

T

* Both has denoising as learning objective. X&n oy ¥

* Diffusion models - Fully generative; DAE - Locally generative, aim
was to learn good representations.

* Not straightforward to extract good representations.

* DAE: Simple architecture, aims to denoise in one go, not a good
generative model.

* Stacked DAE: Stacked layerwise noise-denoise mechanism. Used to
“pretrain” deep networks.
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Masked Autoencoder (MAE)

* Modernized version of
denoising autoencoder.



Masked Autoencoder (MAE)
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Masked Autoencoder (MAE)

* Modernized version of a/_\
denoising autoencoder. = ——
. AN
* Mask noise: No = encoder|  —> > FANNE
artifacts -
* ViT: No overlapping < .
region, no empty space, ]
no boundary.
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General EBMs

* Inference requires running gradient descent and MCMC
samples.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.




General EBMs

* Inference requires running gradient descent and MCMC

samples.
- - A
<k — gk—1 _

5VXEB(sa’“) + Wk, WF ~ N(0, )

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.




General EBMs

* Inference requires running gradient descent and MCMC
samples.

k—1 A
2
Voly ~ Ex+~pD [V@EQ(X+)] — Ex—wqg [V@E@(X—)] .

xk = x

ViEo(XF 1) + WP, wF ~ N(0,))

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.




General EBMs

* Inference requires running gradient descent and MCMC
samples.

k-1 A

X" §VXE9(>2’<’“1) + Wk, WF ~ N(0, )

X" =X

Vol & Ex+~pD [V@EQ(X+)] — EX_qu [V@E@(X—)] .

* Can be applied on hand manipulation trajectory generation.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.




General EBMs

* Inference requires running gradient descent and MCMC
samples.

k-1 A

X" §VXE9(5¢’<”1) + Wk, WF ~ N(0, )

X" =X

Vol & Ex+~pD [V@EQ(X+)] — Ex—qu [V@EQ(X—)] .

* Can be applied on hand manipulation trajectory generation.

* Good results in generation but still not a generalized
representation learning algorithm.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurlPS 2019.



Self-Supervised Visual Learning

* Match the same image (with severe augmentation)

Maximize agreement

Zi j
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A
(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter) f () f ()
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(f) Rotate {90°, 180°, 270° (g) Cutout aussian noise SS; (j) Sobel filtering




Self-Supervised Visual Learning

* Match the same image (with severe augmentation)
* Joint embedding approach: Apply loss on the embedding level.

Maximize agreement

Zi J
A
9() 9()
h; <— Representation —» h;
A
(a) Original (b)C op and resize  (c) Crop, resiz (andﬂp)(d)Cl r distort. (drop) (e) Color distort. (jitter) fe) 7()
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(f) Rotate {90°, 180°, 270°} (g) Cutout




Self-Supervised Visual Learning

* Match the same image (with severe augmentation)
* Joint embedding approach: Apply loss on the embedding level.
* Use negative examples (contrastive) or not (non-contrastive).

Maximize agreement

h; <— Representation —» h;
A

(f) Rotate {90°, 180°, 270° (g) Cutout




Self-Supervised Visual Learning

* Match the same image (with severe augmentation)

* Joint embedding approach: Apply loss on the embedding level.
* Use negative examples (contrastive) or not (non-contrastive).
* Energy is defined between a pair of images.

Maximize agreement

h; <— Representation —» h;
A

(f) Rotate {90°, 180°, 270° (g) Cutout
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* Instance Classification: o ‘
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128D Unit Sphere

* Contrastive Learning: Cross entropy on pairs

exp(sim(z;, 2;)/7)
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Chen et al. 2020
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Several Embedding Loss Formulations

Wu et al.,, 2018

s

CNN backbone / E 1-th image -
low di no) / ima V3 ¢
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* Instance Classification: : o T
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D Unit Sphere

exp(sim(z;, Zj)/T)
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* Non-contrastive Learning (Positive Only) Chen et al. 2020

* Moving Average [Grill et al., 2020]
* Stop Gradient [Chen & He, 2020]
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Several Embedding Loss Formulations

Wu et al.,, 2018

s

CNN backbone / ﬁ 1-th image -
low di nor / ima V3 ¢
ol .
* Instance Classification: : ] - M (DX )
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2048D e "t imase Vi1
- D Unit Sphere

exp(sim(z;, 2;)/7)
. . . ko1 L) exp(sim(zi, zk)/7)
* Non-contrastive Learning (Positive Only) Chen et al. 2020

* Moving Average [Grill et al., 2020]

* Stop Gradient [Chen & He, 2020]
* Use of projectors and predictors

128

* Contrastive Learning: Cross entropy on pairs

Zi,j = — log




Several Embedding Loss Formulations

Wu et al.,, 2018

CNN backbone » . / E 1-th aA..,lage %2 |
. lassification: — :
Instance Classification: s o | Moy h\

128D Unit Sphere

* Contrastive Learning: Cross entropy on pairs

exp(sim(z;, 2;)/7)
. . N o) Lo exp(sim(2i, 2x)/7)
* Non-contrastive Learning (Positive Only) Chen et al. 2020

* Moving Average [Grill et al., 2020]
* Stop Gradient [Chen & He, 2020]  i= ™7

h; <— Representation —» h;
~

Zi,j = — log

* Use of projectors and predictors @g é

Chen et al. 2020




Several Embedding Loss Formulations

* |nstance Classification:

Wu et al.,, 2018

CNN backbone ﬁ 1-th image Vi
3 %
low di nor: / E 2-th image Vs y
INon-param|
i Softmax | ——> B i-th image M;m(:(ry ‘
; 128D 128D \ E . “ _
8¢ Vn—3
\ o
age

: n
fo(x) 128D Unit Sphere

* Contrastive Learning: Cross entropy on pairs

* Non-contrastive Learning (Positive Only)

* Moving Average [Grill et al., 2020]
* Stop Gradient [Chen & He, 2020]

* Use of projectors and predictors @g

2 z;
o] fo0)

exp(sim(z;, Zj)/T)
N D exp(sim(z;, z¢)/7)

Chen et al. 2020

Zi,j = — log

Maximize agreement similarity

h; <— Representation —» h;
~

encoder encoder
z (51
\M
image T

Chen et al. 2020 Chen & He, 2021
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Several Embedding Loss Formulations

Wu et al.,, 2018

CNN backbone ' ﬁ 1-th image X;
s . ow di nor / E 2.th image Vs {
* Instance Classification: e e || [
i 128D 128D \ s v e l::lil: "‘\

: n
fo(x) 128D Unit Sphere

* Contrastive Learning: Cross entropy on pairs

exp(sim(z;, 2;)/7)

Zi,j = — log

. . N N D exp(sim(z;, z¢)/7)
* Non-contrastive Learning (Positive Only) Chenetal 2020
* Moving Average [Grill et al., 2020] /*ZA 5212"!2?1 crosor
. Maximize agreement N I
* Stop Gradient [Chen & He, 2020] g(_;( " D ___-.. Lot
* Use of projectors and predictors @g é w m AL
. . 1270 dimension
» Use of co-variance regularization 7" e Zbontar et al. 2021
Chen et al. 2020 Chen & He, 2021 Bardes et al. 2021
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DINO

* Knowledge distillation between a student
and a teacher network.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

Global View 1

224x224 Local
View 2
96x96
Local
View 1
96x96 Local
View 3
Global View 2 96x96
224x224
loss:
Sg
softmax softmax
[
centering
|
cma
student ggs — | teacher gg




 Knowledge distillation between a student X
and a teacher network. loss:
exp (9o, ()i /Ts) Q -p2log pi @
[ ] . —
Student: ps(x) S—oxp (06 (DL /70T .
softmax softmax
[
centering
|
student gos . teacher got

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




* Knowledge distillation between a student s X
and a teacher network. loss:
exp(go (£)i/Ts) Q -pzlogpi @
[ J o f—
Student: ps(x) S—oxp (06 (DL /70T .
softmax softmax
. . . . |
* Minimize CE: ming H (p:(x), ps(x)). centering
|
student gg | teacher got

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




 Knowledge distillation between a student X
and a teacher network. loss:
exp(go (£)i/Ts) Q -pzlogpi @
[ ] . —
StUdent. pS (x) Zk eXp (g@s (m)k/Ts) . Sg
softmax softmax
. . . . |
* Minimize CE: ming H (p:(x), ps(x)). centering
|
student g6s ~m, teacher got

* Stop gradient on the teacher (no true label).

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




Global View 1
224x224

DINO

Local
View 2
96x96

Local
View 1

* Knowledge distillation between a student s X
and a teacher network. loss:
exp(go, (€)i/Ts) e -p2log pi @
[ ) . —
Student: ps(x) oo Cor (77T B}
softmax softmax
. . . . |
* Minimize CE: ming H (p:(x), ps(x)). centering
|
student gos R teacher got

* Stop gradient on the teacher (no true label).

* Teacher network has EMA weights copied °
from student (prevent collapse).

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




Preventing Collapse

* Cross entropy objective can make both sides collapse to uniform
distribution.

* Apply sharpening, apply a temperature term on both teacher and student.
e softmax(g/7) The higher the temperature, the more uniform.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




Preventing Collapse

* Cross entropy objective can make both sides collapse to uniform
distribution.

* Apply sharpening, apply a temperature term on both teacher and student.
e softmax(g/7) The higher the temperature, the more uniform.

* It can also collapse into always activating a single unit.

 Mean statistics: ¢; = mey_1 + (1 — m)% Zil g6, (z;)

» Center teacher prediction: pi(z) = Zi};igg(?;(gng:i)é ;t/)n).




Centering and Sharpening

* Only centering: Always uniform distribution, high entropy, easy to
guess.

* Only sharpening: Collapsed into one unit, easy to guess, low loss, but
no real learning.

me= sharpening w= = centering we both

_____d

Target Entropy
=Y SR NS N

KL divergence
o T T

nnnnnnnnn




Visualizing Attention

* The [CLS] token is an extra token
added to summarize the whole
Image into a vector.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.
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* The [CLS] token is an extra token
added to summarize the whole
Image into a vector.

* Visualize the attention map of
different attention heads using
different colors.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.




Visualizing Attention

* The [CLS] token is an extra token
added to summarize the whole
Image into a vector.

* Visualize the attention map of
different attention heads using
different colors.

* Showing understanding of
different objects and parts.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.



Visualizing Attention

* We can also visualize the attention by querying from a location.

* Weak separation of objects.




* The unsupervised loss is a
surrogate. If an image belongs
to a similarity class, it also
belongs to the same semantic

class.

Why Does SSL Work?

Downstream accuracy

N
o

* The choice of similarity class

matters.

Aurora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning.

Downstream accuracy
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Remove crops & flips
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Contrastive loss

Saunshi et al. Understanding Contrastive Learning Requires Incorporating Inductive Biases. 2022.
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SSL with Motion

 Can we use adjacent frames as self-supervision?
* Objects move densely throughout the image.

Frame x; 1

L= W “ﬁt - ﬁt+At||2

} i b
; . _—

Feature space

Frame x¢4a¢




SSL with Motion

* Perform SSL in multiple scales (small objects vs. big regions).

Lpool
I v v |

— —

Encoder — Decoder e — Encoder

I_> Ldense

pool pool

i o

Frame x; Flow T Frame x,, 5

Wang et al. PooDLe: Pooled and Dense Self-Supervised Learning from Naturalistic Videos. ICLR 2025.




metric loss
attraction repulsion
Plie gy

negative?

| TCN embedding
Views I L] I

I— self-supervised imitation

deep network

* Use time as an additional source
of supervision.

Class A

View
2 -

segment length

()

Temporally Correct order

Time .

Temporally Incorrect order

Misra et al. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. ECCV 2016.
Sermanet et al. Time-Contrastive Networks: Self-Supervised Learning from Video. ICRA 2018.
Orhan et al. Self-Supervised Learning through the Eyes of a Child. NeurlPS 2020.



SSL with Time

* We can segment videos into meaningful events.
* Leverage the spatiotemporal continuity structure.

(

I

I

I

I

I TN ;

I X

| satiiiih
I Crawling
I

: Temporal

I Segmentation q

I

X
/

Yang & Ren. Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from
Egocentric Videos. arXiv 2025.




SSL for Visual Control

PointMass Env 20K Steps 100K Steps 200K Steps
3: ’3’ ﬂ!

& ?“"“
;‘.-4;,‘ -..
B, O
Wiy} .‘“!

. | ﬁ' "‘f =

. | . | .

Representation Projection Prediction

1000K Steps
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Yarats. Reinforcement Learning with Prototypical Representations. ICML 2021.
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SSL for Visual Control

Observations

9SUDAUT

m
=i
(9]
(o]
Q.
(¢)
-

0141

Otih St+h

(a) Representation learning

Cui et al. DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control. NeurlPS 2024.

Embeddings
St
St+1
—»
St+h

Environments




SSL for Visual Control

(a) Self-supervised Visuomotor Policy Pre-training (b) Downstream Tasks

- Consecutive frames input

- Since frames barely change
— - We need to STOP
o
-

PoseNet

;
Visual Input
' Photometric '
; B — ; :
: - [ Reconstruction J '
- . %
5 DepthNet 5 E a.1 Stage One Visual Encoder 5
i - : (Fine-tuned) '
/ | frozen
// E Photometric E
o I — I |’ —> | EgoMotion T |[—— 3 :
Reconstruction ;
Visual Encoder - Single frame input
i (Our Focus) - Since a car is ahead '
E - We need to STOP a2 Stage Two Pohcy Leaming E

Wu et al. Policy Pre-training for Autonomous Driving via Self-supervised Geometric Modeling. ICLR 2023.
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* Representation learning leverage the information in unlabeled data.
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Summary

* Representation learning leverage the information in unlabeled data.
* A foundation for sensorimotor learning.

* Inductive biases matter.

* Possible learning objectives for egocentric videos.

* Incorporate 3D vision and actions for downstream planning.




Emergent Attention, Object Discovery

* SSL representations show awareness of object classes and instance
identities.
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together in order to identify whether two inputs belong to the same
Image or not.

* Attending to semantically similar parts facilitates the process.




Emergent Attention, Object Discovery

* SSL representations show awareness of object classes and instance
identities.

* Why does attention show awareness of objects?

* The network is encouraged to associate different parts of the objects
together in order to identify whether two inputs belong to the same
Image or not.

* Attending to semantically similar parts facilitates the process.

* The network is a hierarchical information processing pipeline - Lower
layers integrate more granular and smaller neighborhood.

ANYU




Weak-to-Strong Supervision

* General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.
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Weak-to-Strong Supervision

* General idea: Use self-supervised learning to learn good features,
which allow us to generate low-quality masks.

* Then use these masks as pseudo labels and supervise the network to
predict these low-quality masks.

* Question: how do we come up with masks? What loss is used to
supervise the network?




Graph Cut

* Segmentation is essentially a
clustering problem.

cut (A.B) = Z w(p.q)
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Graph Cut

* Segmentation is essentially a
clustering problem.

* We can transform the clustering
problem with the graph cut problem.

* Pixel = node.

cut (A.B) = Z w(p.q)

ped.geB
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* Segmentation is essentially a
clustering problem.

* We can transform the clustering
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Graph Cut

* Segmentation is essentially a
clustering problem.

* We can transform the clustering
problem with the graph cut problem.

* Pixel = node.

* Affinity between the two pixels =
edge value (flow).

* Objective: Cut the graph into
disconnected components with a
minimum sum of edge values.




Normalized Graph Cut (NCut)

* How to prevent cutting

better cut —
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Normalized Graph Cut (NCut)

* How to prevent cutting

better cut —

|
|
I :

small isolated nodes? e ¢ . a2

. ¢ P @ -®  Min-cut?
* Normalize by the total o © ® | .
edge connections of a 00 O Py
group to all the nodes. ® 9o o
o | )
cut(A,B cut(A,B ® | ;
NCUt(A’ B) - asso(c(A,‘z') + assoE:(B,‘Z') ® O ‘. o " : ® @ " Min-cut |

|
|




NCut Details (Optional)

* A form of spectral clustering.

* Degree matrix D N X N with d; on the diagonal.
* Weight matrix W N X N symmetric w;.

* Selection vector x; = 1ifi € A otherwise —1.

T d
o . . . . . ® y (D_W)y —_— —_—
Solve the minimization: min, “—=7"-* y = (1 + 1) S oo @

* Generalized eigenvalue system:(D — W)y = ADy.
o Let z = DV2y D_%(D — W)D_%z = A\2.




NCut

* Sort the eigenvectors from the
smallest to the largest.

(b) (c)

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.




NCut

* Sort the eigenvectors from the
smallest to the largest.

* This was a classic image
segmentation technique
operating directly on image
Intensity.

(b) (c)

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.




NCut

* Sort the eigenvectors from the
smallest to the largest.

* This was a classic image
segmentation technique
operating directly on image
Intensity.

(b) (c)

* Now, instead of segmenting
pixels, we can directly segment ® 0
semantically meaningful
representations from self-
supervision.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.




MaskCut

* Use a pretrained DINO VIiT network.
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Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.
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MaskCut

* Use a pretrained DINO VIiT network.
¢« 3] . KiK'
* Use the “key” features from the last attention layer: W;; = KL T
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Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022. (?l NYU

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



MaskCut

* Use a pretrained DINO VIiT network.

* Use the “key” features from the last attention layer: W;;

from previous stages.
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X
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Erusiasny

masked
affinity matrix

Prusiassy

patch-wise
affinity matrix

patchified input mask 1

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.
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Ilterative Self-Training

* Now add a MaskRCNN structure on top of the pretrained network.
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# of masks|— A '8
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Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



Ilterative Self-Training

* Now add a MaskRCNN structure on top of the pretrained network.

* Select the predictions with the highest confidence score and use
them as labels.

# of masks\
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3
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i e f /aﬂ
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Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.




Ilterative Self-Training

* Now add a MaskRCNN structure on top of the pretrained network.

* Select the predictions with the highest confidence score and use
them as labels.

* Neural networks can learn from the noisy labels and output smoother

predictions. —
o .

o g’
e °
4 4
1y F 277TM
4 RolAlign|

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.




More Visualization

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.
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Point clustering
pseudo-labels

Randomly drop
lidar beams

Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.

Pseudo Labels in 3D

Filter out temporally
inconsistent tracks

Fal4r
Randomly drop
spherical rows/cols
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Iterative Refinement of Pseudo Labels

Point clustering

pseudo-labels Initial Training Self-Training Iteration 1 Self-Training Iteration 2

/

m
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|
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Many false positives and . - . L Discovers cyclist label and
. . Discovers new vehicle labels Discovers more vehicle labels .
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Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.



Slot Attention Networks

. k, v ATTENTION:
* Can we learn clustering as an end-to- SI6TS COMPETE l
end Qpera’uon? FOR INPUT KEYS p .

.

FEATURE MAPS
+ POSITION EMB.

\3

t

1l
-

(a) Slot Attention module.

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.




Slot Attention Networks

. k, v ATTENTION:
* Can we learn clustering as an end-to- S OTS COMPETE l 1
end operation? ronmRITERS. 3

o
PR

* Slot attention is inspired by the
success of the attention mechanism.

FEATURE MAPS
+ POSITION EMB.

~
]
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~
]
N
~
Il
w

(a) Slot Attention module.

(7
Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020. 1 NYU




Slot Attention Networks

k, v ATTENTION:

* Can we learn clustering as an end-to- P yey—— l
end operation? FOR INPUT KEYS

-]

* Slot attention is inspired by the
success of the attention mechanism.

* Each “slot” attends to a region of the
image and stores an object centric
representation. drailito i

+ POSITION EMB.

(a) Slot Attention module.

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.




Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

SLOT ATTENTION /-

SLOT
DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.




Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

e Input: x € RV*P (after encoder), Slots: m € R**P Normalize:
My = LN(m;_q).

SLOT ATTENTION /-

SLOT
DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.



Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

e Input: x € RV*P (after encoder), Slots: m € R**P Normalize:

m,_, = LN(m,_4).

 Attention over slots: Gt = T —— -
T > ﬁk(wi)‘Q(mj)

SLOT ATTENTION /-

SLOT
DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.



Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

e Input: x € RV*P (after encoder), Slots: m € R**P Normalize:

m,_, = LN(m,_4).

 Attention over slots: Gt = T —— -
T > ﬁk(l’i)‘CI(mj)

* Updates: Uty = Zz CLtZ’j’U(ZCZ').

SLOT ATTENTION /-

SLOT
DECODER

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.



Slot Attention Networks

* Goal: Reconstruct the image with a concise slot-based representation.

e Input: x € RV*P (after encoder), Slots: m € R**P Normalize:

My_q = LN(m;_y).

e Attention over slots: Gt =

* Updates: Uty = Zz CLtZ’j’U(ZCZ').
 Write into slots: m¢y = GRU (my—1,u;) + MLP(my_1).

SLOT ATTENTION

CNN

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.
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—

SLOT
DECODER




Slot Attention Networks

Mask Slot 1

Ol
-

Image Recon.

Locatello et al. Object-Centric Learning with Slot Attention. NeurlPS 2020.
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Complex-Valued Autoencoders (CAEs)

* The complex number can E— _>E
represent magnitude and \/

phase: z =m - e € C.

A

Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.



Complex-Valued Autoencoders (CAEs)

* The complex number can E— _>E
represent magnitude and \/

phase: z = m - e ¢ C. 1 foe | 3
* Each pixel starts with an — — n

initial phase O.
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Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.



Complex-Valued Autoencoders (CAEs)

* The complex number can E— _>E
represent magnitude and \/

phase: z =m - e¥ € C. | e =
* Each pixel starts with an — — n
initial phase O.
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oAl i =

o A, A — O
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Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.



Complex-Valued Autoencoders (CAEs)

* The complex number can E— _>E
represent magnitude and \/

phase: z = m - e ¢ C. 1 foe | 3
* Each pixel starts with an — — n
initial phase O.
2 o fdec(fenC(X)) - Chxw. ._/\’ j\, Im4 o
& — 5 hXxXw A, A, s
X_fout(Z)EIR>< . -A . A A Vo S
o A, A — O
. O

Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.



CAE: More Details

* Apply weights separately to real and imaginary:
VY = fw(z) = fw(Re(2)) + fw(m(z))-i € Clo

Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. (@/ NYU
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014. !




CAE: More Details

* Apply weights separately to real and imaginary:
VY = fw(z) = fw(Re(2)) + fw(m(z))-i € Clo

* Bias on magnitude and phase:

My = || + by, € R% oy, = arg(¢p) + b, € R%

Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMILR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

A NYU




CAE: More Details

* Apply weights separately to real and imaginary:
VY = fw(z) = fw(Re(2)) + fw(m(z))-i € Clo

* Bias on magnitude and phase:
My, = |’Qp| + bm € Rdout Pap = arg('tp) + b‘P € RdOUt

%
X = fw(|z]) + bm € R @(@ ®/@

< |wi-z1 + wazs] |wy - 21| — wa|zz|
mz = 0.5 . m'd) + 0.5 . X 6 RdOUt + Wi - |z1| + walze| T +W11- \z1|+wz|zz|

= |wy-z1| + wy- |z4]

* Gating:

Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. (?/l NYU
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.




CAE: More Details

* Apply weights separately to real and imaginary:
VY = fw(z) = fw(Re(2)) + fw(m(z))-i € Clo

* Bias on magnitude and phase:
My, = |’Qp| + bm € Rdout Pap = arg('tp) + b‘P € RdOUt

%
X = fw(|z]) + bm € R @(@ ®/@

< |wi-z1 + wazs] |wy - 21| — wa|zz|
mz = 0.5 . m'd) + 0.5 . X 6 RdOUt + Wi - |z1| + walze| T +W11- \z1|+wz|zz|

= Wiz + wi- |z

* Gating:

* Activation z’ = ReLU(BatchNorm(m)) o ’¥¥ & C%u

Léwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. (?/l NYU
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.




Complex-Valued Autoencoders

'ﬁ.

Input Reconstruction Reconstruction Phase Values  Prediction Prediction Prediction

AutoEncoder —— Complex AutoEncoder DBM SlotAttention

@
Lowe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. NYU
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* Creative end-to-end learning-based solutions exist, but there are still
plenty room for improvement.
* Possible to train from scratch!




Summary: Object Discovery

* Combine deep features with clustering algorithms.
* Pseudo-labels to train detector networks.

* Creative end-to-end learning-based solutions exist, but there are still
plenty room for improvement.
* Possible to train from scratch!

* What do we make use of the discovered objects? Is it better to keep
the awareness in the latent space?




