DS-GA.3001 Embodied Learning and Vision

Mengye Ren

NYU

Spring 2025

embodied-learning-vision-course.github.io

Lecture Slides for Note Taking

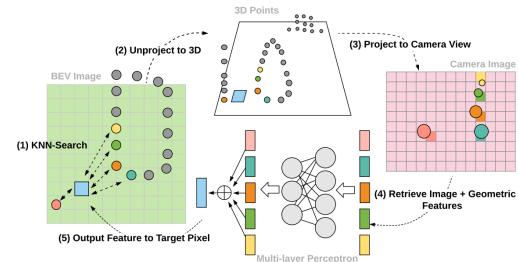
• LiDAR is precise in depth perception, but the point cloud format is sparse and non-uniform (dense around the ego-car and sparse in long distance.)

- LiDAR is precise in depth perception, but the point cloud format is sparse and non-uniform (dense around the ego-car and sparse in long distance.)
- Camera provides high resolution 2D view and good for long distance but lacks 3D. Can we achieve the best of both worlds?

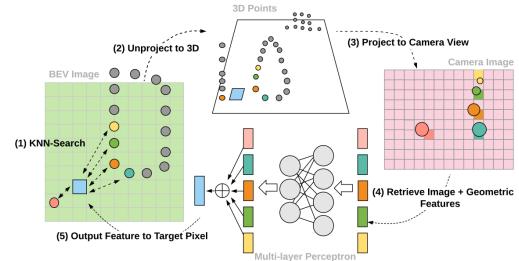
- LiDAR is precise in depth perception, but the point cloud format is sparse and non-uniform (dense around the ego-car and sparse in long distance.)
- Camera provides high resolution 2D view and good for long distance but lacks 3D. Can we achieve the best of both worlds?
- Late fusion: Generate proposals from one branch (e.g. LiDAR) and refine (e.g. using Camera).

- LiDAR is precise in depth perception, but the point cloud format is sparse and non-uniform (dense around the ego-car and sparse in long distance.)
- Camera provides high resolution 2D view and good for long distance but lacks 3D. Can we achieve the best of both worlds?
- Late fusion: Generate proposals from one branch (e.g. LiDAR) and refine (e.g. using Camera).
- Is there a way to combine the features from both modality in lower layers?

• Unproject LiDAR points to camera view (i.e. Range View)

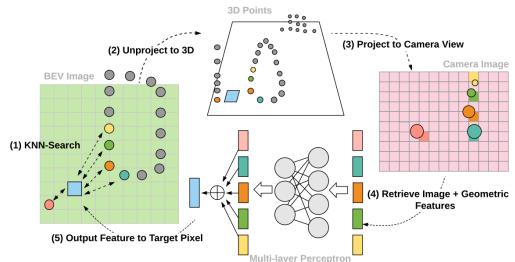


- Unproject LiDAR points to camera view (i.e. Range View)
- Query the closest camera RGB features for each LiDAR point.

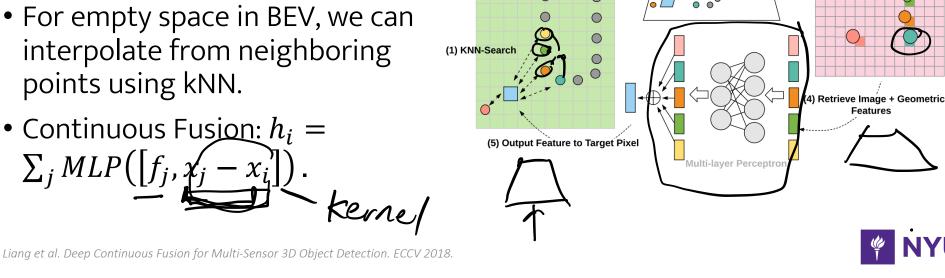


Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.

- Unproject LiDAR points to camera view (i.e. Range View)
- Query the closest camera RGB features for each LiDAR point.
- For empty space in BEV, we can interpolate from neighboring points using kNN.



- Unproject LiDAR points to camera view (i.e. Range View)
- Query the closest camera RGB features for each LiDAR point.
- For empty space in BEV, we can interpolate from neighboring points using kNN.
- Continuous Fusion: $h_i =$ $\sum_{i} MLP($ Kerne



(2) Unproject to 3D

BEV Image

3D Points

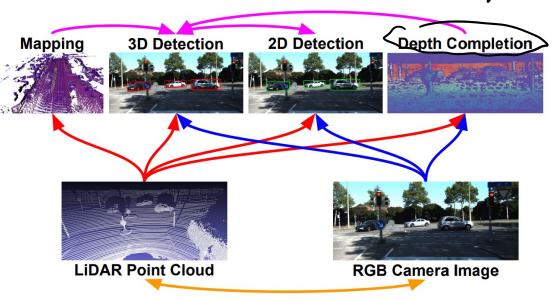
(3) Project to Camera View

Camera Image

Supervised Dense Depth

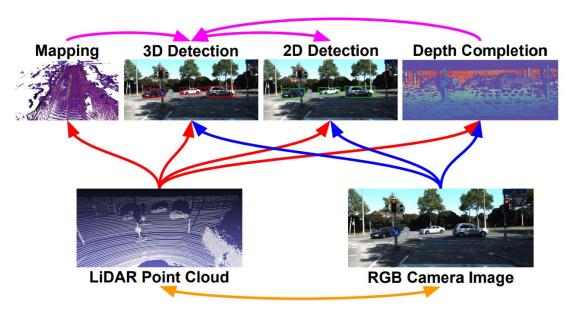
anxiliary.

• Drawback of continuous fusion: Sparse LiDAR can cause the fusion process to be less accurate. Relies on kNN.



Supervised Dense Depth

- Drawback of continuous fusion: Sparse LiDAR can cause the fusion process to be less accurate. Relies on kNN.
- Why not predict a dense depth to pair with the camera image?



Supervised Dense Depth

- Drawback of continuous fusion: Sparse LiDAR can cause the fusion process to be less accurate. Relies on kNN.
- Why not predict a dense depth to pair with the camera image?
- Depth completion module is supervised by sparse LiDAR and is used for dense fusion.



3D Perception

• With the ease of use of automatic differentiation libraries, we can compose a computation graph in millions of ways.

3D Perception

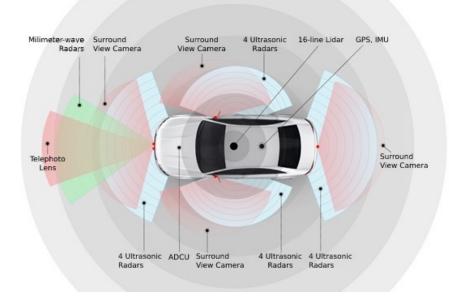
- With the ease of use of automatic differentiation libraries, we can compose a computation graph in millions of ways.
- We can design layers and operators to accomodate different types of inputs and outputs. 3D, point cloud, sparse data, etc.

3D Perception

- With the ease of use of automatic differentiation libraries, we can compose a computation graph in millions of ways.
- We can design layers and operators to accomodate different types of inputs and outputs. 3D, point cloud, sparse data, etc.
- We can fuse different modalities together too, by leveraging geometric relationships.

2D to 3D

- Not all embodied agents have the luxury to have a full set of sensors.
- Can we infer the geometric structure with 2D perception?

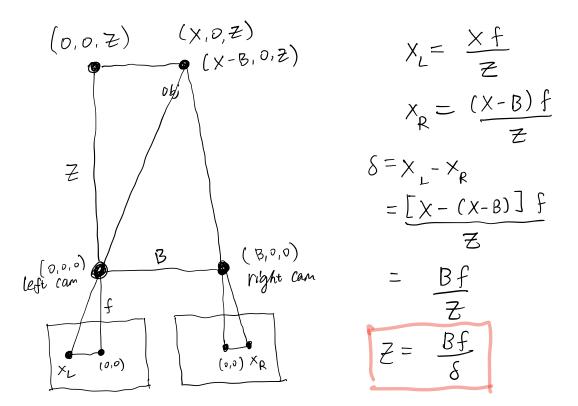


Classic Vision on Depth and Disparity

• One source of depth is from the displacement of pixels in a stereo setup. x (X, v, z)setup. (X-B10,Z) $S = X_L - X_R$ $X_L = \frac{\chi f}{\pi}$ Z X^K = B baseline ام . ص x (o,o)

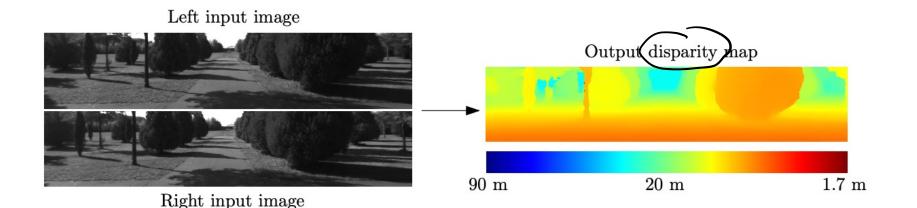
Classic Vision on Depth and Disparity

- One source of depth is from the displacement of pixels in a stereo setup.
- But we need to estimate disparity.



From 2D to 3D: Depth Network

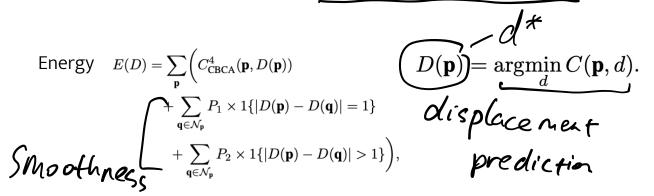
- A network that can output disparity.
- Using LiDAR or depth camera as groundtruth supervision.

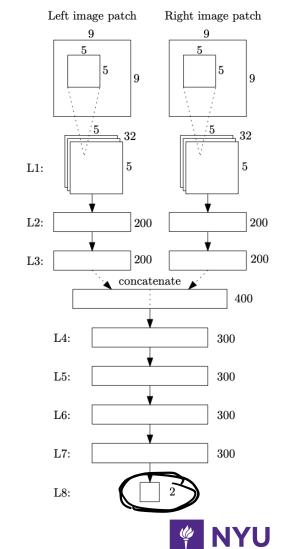


🧳 NYU

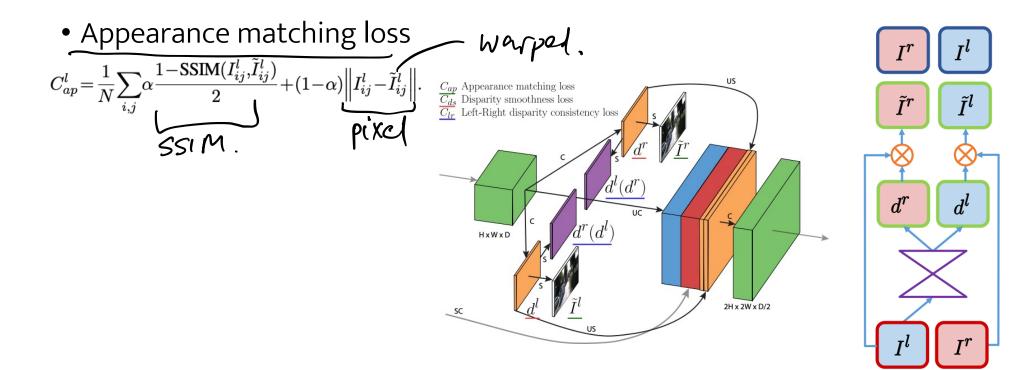
The Energy-Based Approach

- The energy penalize matching with <u>high cost</u> (unary), and when neighboring pixels have disparity differences greater or equal to one (pairwise).
- Cost network: Train with binary classification



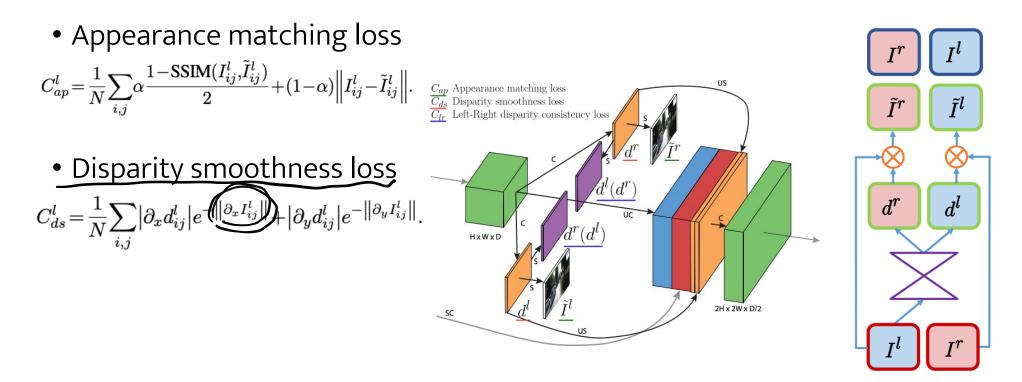


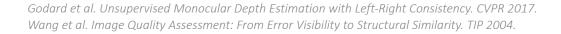
Self-Supervised Depth



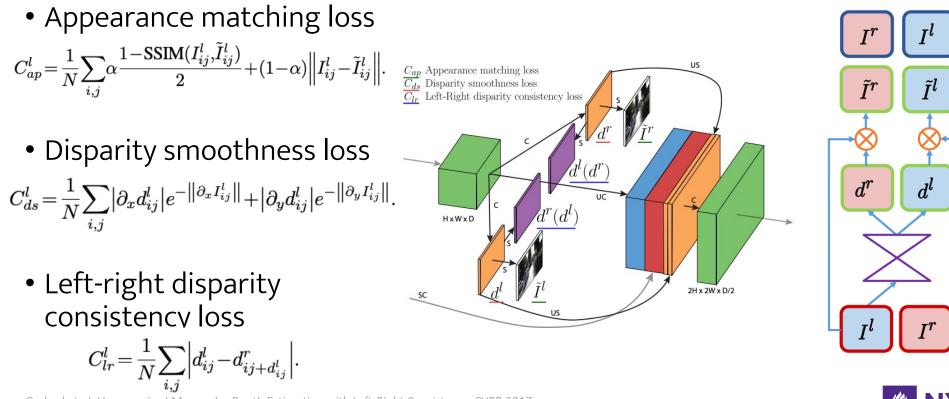
Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017. Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004.

Self-Supervised Depth

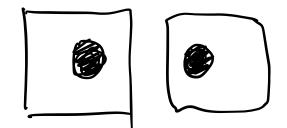




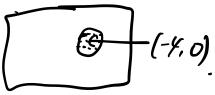
Self-Supervised Depth



Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017. Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004.



• Optical Flow: Estimate the motion of pixels across two consecutive video frames.



- Optical Flow: Estimate the motion of pixels across two consecutive video frames.
- Classic method uses brightness constancy assumption.

- Optical Flow: Estimate the motion of pixels across two consecutive video frames.
- Classic method uses brightness constancy assumption.

$$\underline{I}(x, y, t) = \underline{I}(x + \underline{\Delta}x, y + \underline{\Delta}y, \underline{t + \Delta}t).$$

- Optical Flow: Estimate the motion of pixels across two consecutive video frames.
- Classic method uses brightness constancy assumption.

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t).$$
$$I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + \underbrace{\left(\frac{\partial I}{\partial x}\right)}_{\Delta x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t.$$

- Optical Flow: Estimate the motion of pixels across two consecutive video frames.
- Classic method uses brightness constancy assumption.

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t).$$

$$I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t.$$

$$\frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t = 0.$$

- Optical Flow: Estimate the motion of pixels across two consecutive video frames.
- Classic method uses brightness constancy assumption.

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t).$$

$$I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t.$$

$$(I_x) = \frac{\partial I}{\partial x} \qquad \qquad \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t = 0.$$

$$I_y = \frac{\partial I}{\partial y}$$

- Optical Flow: Estimate the motion of pixels across two consecutive video frames.
- Classic method uses brightness constancy assumption.

Classical Approach

• Under-constrained system

$$I_x u + I_y v + I_t = 0.$$

Classical Approach
$$2 mk$$

ed system $I_y u + I_y v + I_t = 0.$

- Under-constrained system
- Use a local patch and assume smooth motion

 $\begin{aligned} \mathbf{A}\mathbf{u} &= \mathbf{b} \\ \begin{pmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{N^2}) & I_y(\mathbf{p}_{N^2}) \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{v} \end{pmatrix} &= -\begin{pmatrix} I_t(\mathbf{p}_1) \\ \vdots \\ I_t(\mathbf{p}_{N^2}) \end{pmatrix} \\ & \text{We hown} \end{aligned}$

Classical Approach

• Under-constrained system

$$I_x u + I_y v + I_t = 0.$$

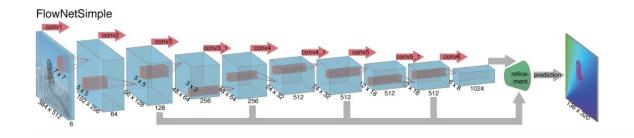
- Use a local patch and assume smooth motion
- Rigid, contains many assumptions

$$\mathbf{A}\mathbf{u} = \mathbf{b}$$

$$\begin{pmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{N^2}) & I_y(\mathbf{p}_{N^2}) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} I_t(\mathbf{p}_1) \\ \vdots \\ I_t(\mathbf{p}_{N^2}) \end{pmatrix}$$

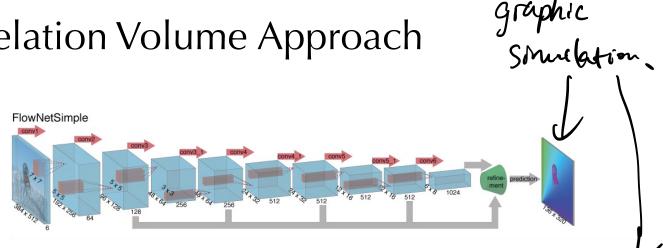
Correlation Volume Approach

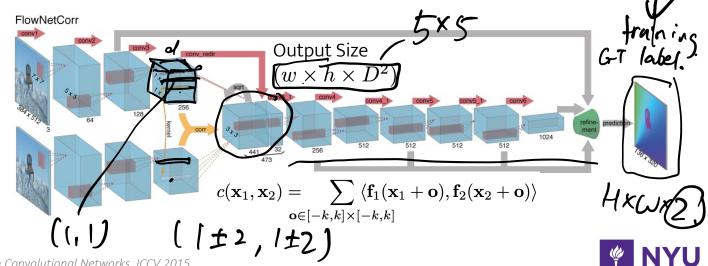
• Simple Approach: Concatenate the two images together.



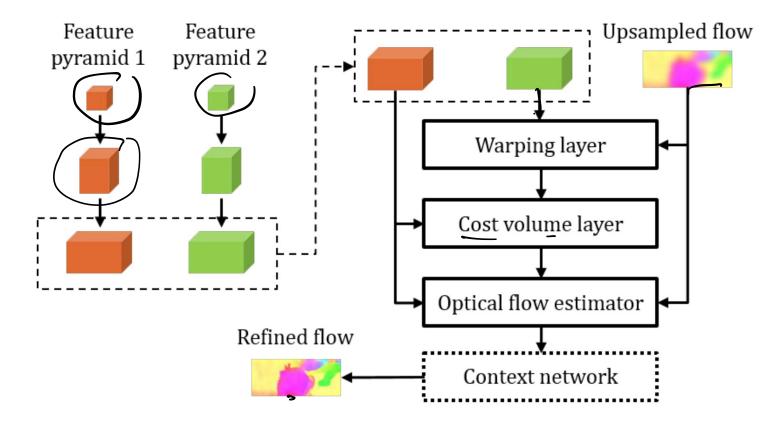
Correlation Volume Approach

- Simple Approach: Concatenate the two images together.
- Correlation: Extract some levels of features, and convolve one feature on top of another.

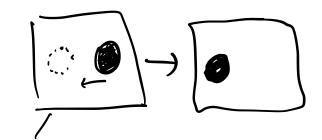




Iterative Refining through Feature Pyramid



• Photometric Consistency (Appearance)



\checkmark

- Photometric Consistency (Appearance)
- Occlusion Estimation
 - Forward-backward consistency

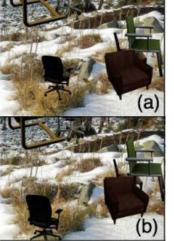


Image2 Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

- Photometric Consistency (Appearance)
- Occlusion Estimation
 - Forward-backward consistency
- Smoothness

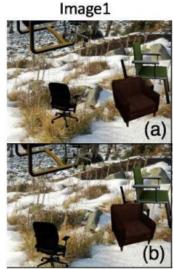


Image2 Wang et al., 2018

- Photometric Consistency (Appearance)
- Occlusion Estimation
 - Forward-backward consistency
- Smoothness
- Self-supervision: Ensure consistent flow at different augmentation (e.g. crops)

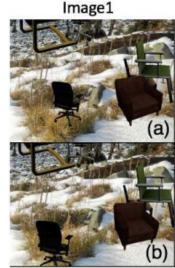


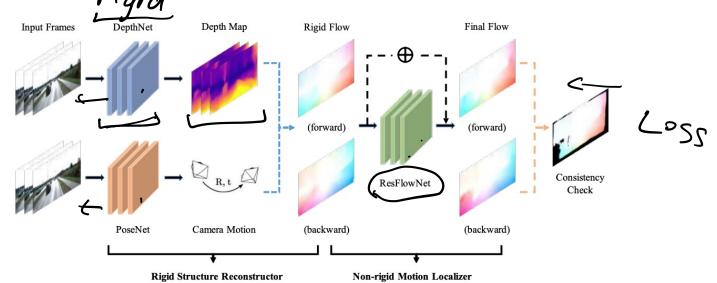
Image2 Wang et al., 2018

- Photometric Consistency (Appearance)
- Occlusion Estimation
 - Forward-backward consistency
- Smoothness
- Self-supervision: Ensure consistent flow at different augmentation (e.g. crops)
- Can 3D information help us reason about motion?

Image2 Wang et al., 2018

Depth, Flow, and Pose Movement

• The static objects follow rigid flow: determined by camera motion and depth. $f_{t\mapsto s}^{rig}(p_t) = KT_{t\mapsto s}D_t(p_t)K^{-1}p_t$



Training Losses

• Appearance Loss (Warping):

$$\begin{split} \mathcal{L}_{\mathcal{I}^{w}} &= \alpha \frac{1 - SSIM(I_{t}, \tilde{I}_{s}^{rig})}{2} + (1 - \alpha) \|I_{t} - \tilde{I}_{s}^{rig}\|_{1}.\\ \mathcal{L}_{fw} &= \alpha \frac{1 - SSIM(I_{t}, \tilde{I}_{s}^{full})}{2} + (1 - \alpha) \|I_{t} - \tilde{I}_{s}^{full}\|_{1}.\\ \text{SsiM} & \text{pref} \end{split}$$

Training Losses

• Appearance Loss (Warping):

$$\mathcal{L}_{rw} = \alpha \frac{1 - SSIM(I_t, \tilde{I}_s^{rig})}{2} + (1 - \alpha) \|I_t - \tilde{I}_s^{rig}\|_1.$$
$$\mathcal{L}_{fw} = \alpha \frac{1 - SSIM(I_t, \tilde{I}_s^{full})}{2} + (1 - \alpha) \|I_t - \tilde{I}_s^{full}\|_1.$$

• Smoothness Loss:

$$\mathcal{L} = \sum_{p_t} |\nabla D(p_t)| \cdot (\exp(-|\nabla I(p(t)|))^T.$$

Training Losses

• Appearance Loss (Warping):

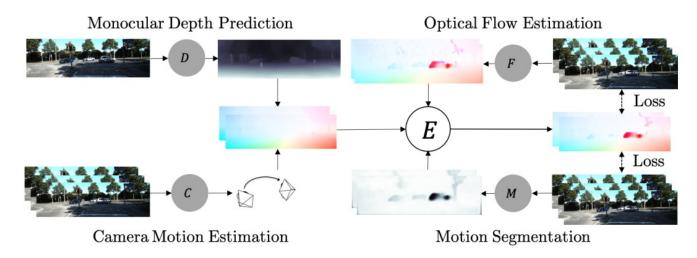
$$\mathcal{L}_{rw} = \alpha \frac{1 - SSIM(I_t, \tilde{I}_s^{rig})}{2} + (1 - \alpha) \|I_t - \tilde{I}_s^{rig}\|_1.$$
$$\mathcal{L}_{fw} = \alpha \frac{1 - SSIM(I_t, \tilde{I}_s^{full})}{2} + (1 - \alpha) \|I_t - \tilde{I}_s^{full}\|_1.$$

• Smoothness Loss:

$$\mathcal{L} = \sum_{p_t} |\nabla D(p_t)| \cdot (\exp(-|\nabla I(p(t)|))^T.$$

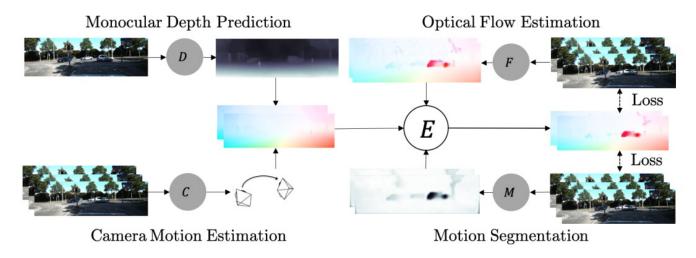
• Forward-Backward Consistency: $\mathcal{L} = \sum_{p_t} \left[\delta(p_t) \right] \cdot \left[\Delta f_{t \mapsto s}^{full}(p_t) \|_1 \cdot \delta(p_t) = \|f_{t \mapsto s}^{full}(p_t)\|_2 \max\{\alpha, \beta \|f_{t \mapsto s}^{full}(p_t)\|_2\}.$

• Leverage cross correlation structure for spatial similarity matching.



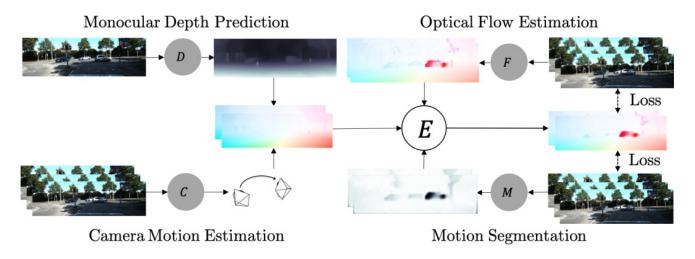
Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and Motion Segmentation. CVPR 2019

- Leverage cross correlation structure for spatial similarity matching.
- Can be used towards: depth, flow, and pose prediction.



Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and Motion Segmentation. CVPR 2019

- Leverage cross correlation structure for spatial similarity matching.
- Can be used towards: depth, flow, and pose prediction.
- Can form triangulation for self-supervision.

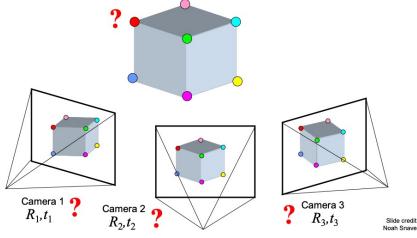


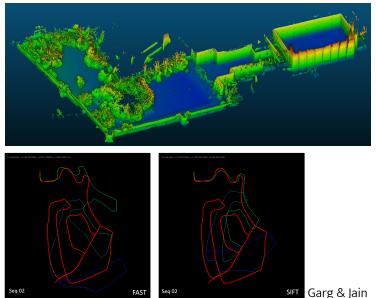
Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and Motion Segmentation. CVPR 2019

Classical Mapping

• Estimating 3D structure and location from 2D observations.

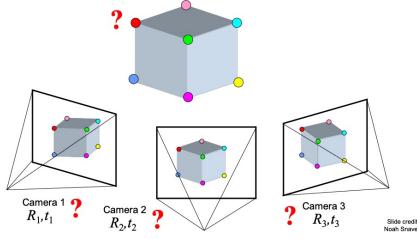
 Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates

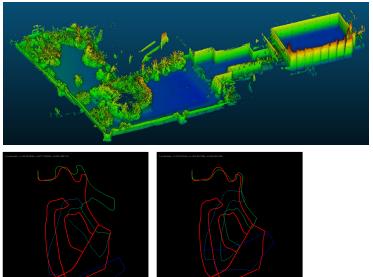




Classical Mapping

- Estimating 3D structure and location from 2D observations.
- Simultaneous Localization and Mapping.
- Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates

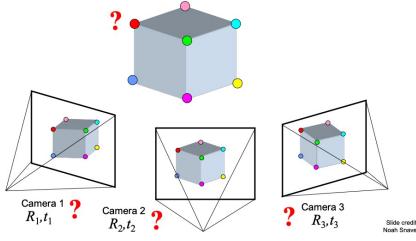


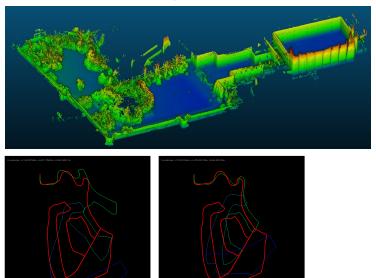


SIFT Garg & Jain

Classical Mapping

- Estimating 3D structure and location from 2D observations.
- Simultaneous Localization and Mapping.
- Common Techniques: Extended Kalman Filter, GraphSLAM
- Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates





SIFT Garg & Jain

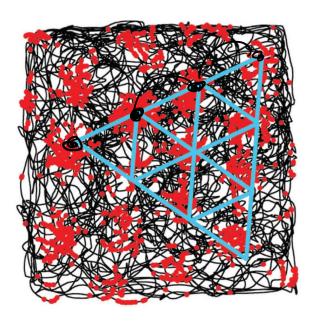
• Probabilistic inference can take long to compute, and mapping takes a large memory storage.

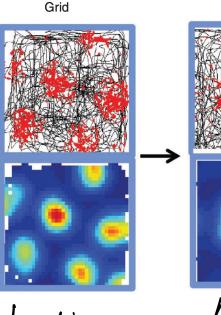
- Probabilistic inference can take long to compute, and mapping takes a large memory storage.
- Great for 3D reconstruction but downstream tasks may not need a full precision explicit map.

- Probabilistic inference can take long to compute, and mapping takes a large memory storage.
- Great for 3D reconstruction but downstream tasks may not need a full precision explicit map.
- May not fully understand dynamic objects (averaging across multiple scans).

- Probabilistic inference can take long to compute, and mapping takes a large memory storage.
- Great for 3D reconstruction but downstream tasks may not need a full precision explicit map.
- May not fully understand dynamic objects (averaging across multiple scans).
- Is there a more end-to-end version?

Mapping in the Brain: Grid and Place Cells

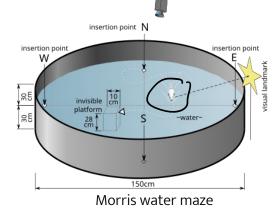




bacetion.

Mapped (Destin

Place

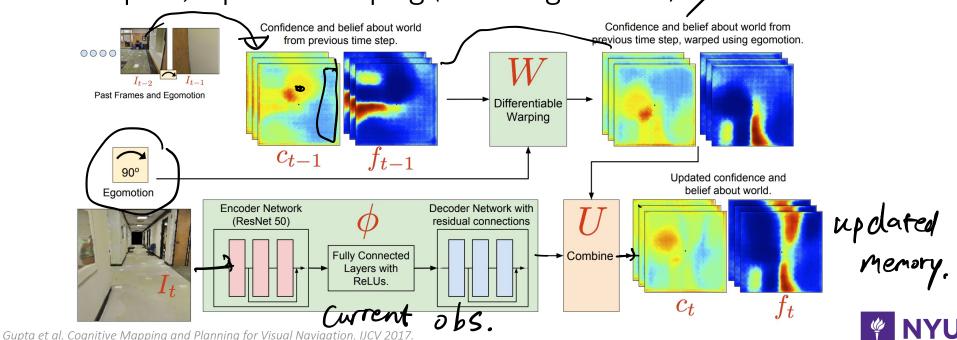


Matthias Wandel, 2018

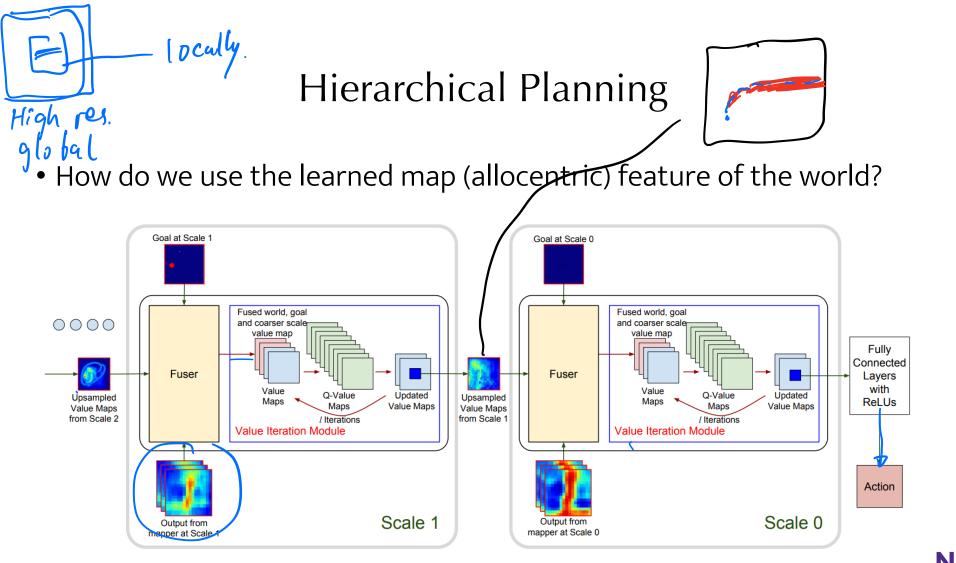
May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place Cells, Grid Cells, and Memory.

Neural Mapping

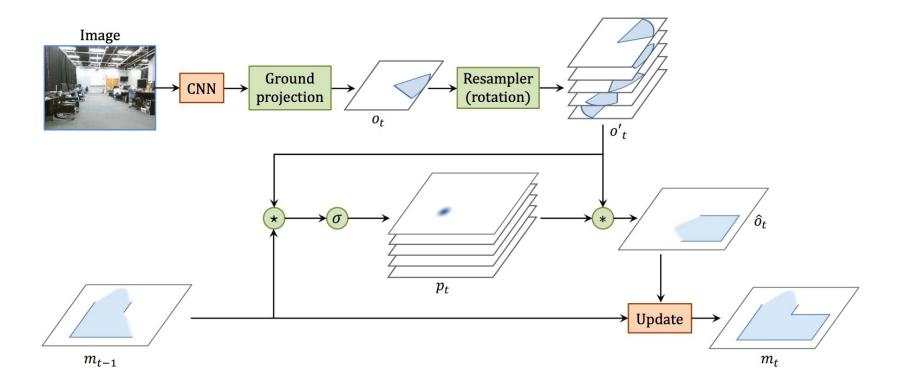
- Can we learn a mapping representation?
- Metric space, top-down warping (known egomotion).



past Menory.

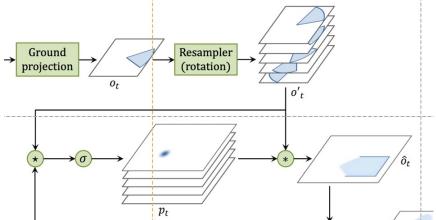


Gupta et al. Cognitive Mapping and Planning for Visual Navigation. IJCV 2017.



• The observations o_t are transformed into a stack o'_t by applying a rotation resampler.

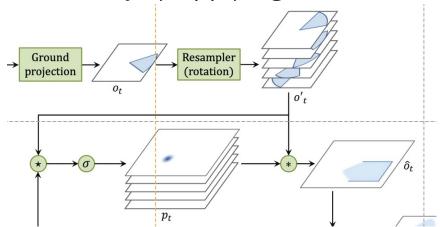
rotation resampler. $o'_{ijkl} = [R(o, 2\pi l)r)]_{ijk}.$



• The observations o_t are transformed into a stack o'_t by applying a rotation resampler.

 $o'_{ijkl} = [R(o, 2\pi l/r)]_{ijk}.$

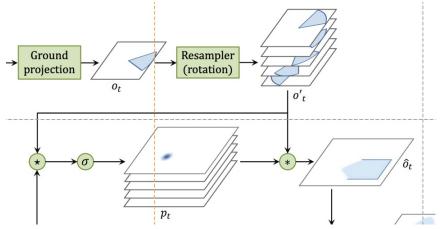
• o'_t convolve with the base feature. $p_t = Softmax(m_{t-1} * o'_t).$



• The observations o_t are transformed into a stack o'_t by applying a rotation resampler.

 $o_{ijkl}' = [R(o, 2\pi l/r)]_{ijk}.$

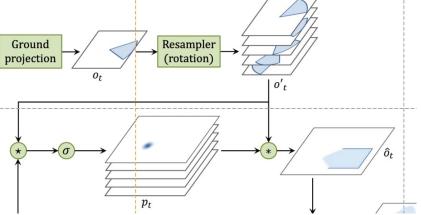
- o'_t convolve with the base feature. $p_t = \text{Softmax}(m_{t-1} * o'_t).$
- Transform observations into allocentric $\hat{o}_t = \sum_{uvw} p_{uvw} T(o|u, v, w).$



• The observations o_t are transformed into a stack o'_t by applying a rotation resampler.

 $o'_{ijkl} = [R(o, 2\pi l/r)]_{ijk}.$

- o'_t convolve with the base feature. $p_t = \text{Softmax}(m_{t-1} * o'_t).$
- Transform observations into allocentric $\hat{\alpha}_{i} = \sum_{n, \dots, T} (\alpha | u, v, w)$
 - $\hat{o}_t = \sum_{uvw} p_{uvw} T(o|u, v, w).$
- Update belief: $m_{i,j,t+1} = \text{LSTM}(m_{i,j,t}, \hat{o}_{i,j}, \hat{o}_{i,j})$

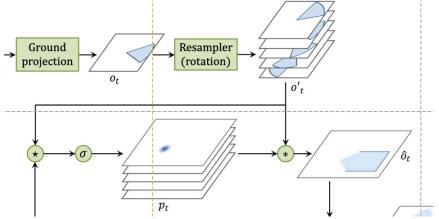


• The observations o_t are transformed into a stack o'_t by applying a rotation resampler.

 $o_{ijkl}' = [R(o, 2\pi l/r)]_{ijk}.$

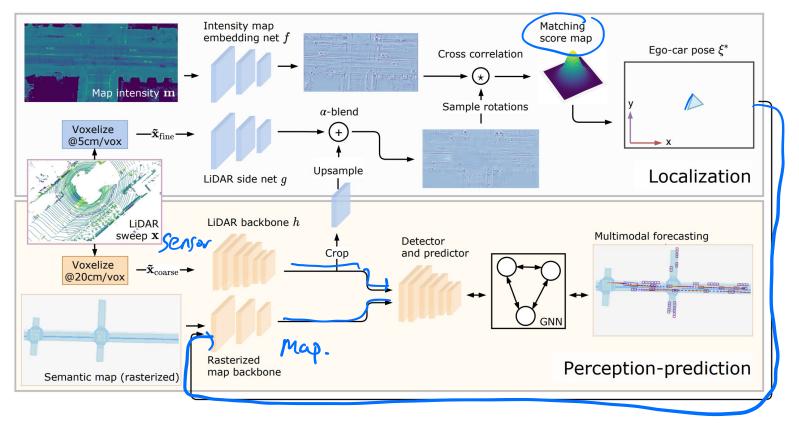
- o'_t convolve with the base feature. $p_t = \text{Softmax}(m_{t-1} * o'_t).$
- Transform observations into allocentric $\hat{o}_t = \sum_{uvw} p_{uvw} T(o|u, v, w).$
- Update belief: $m_{i,j,t+1} = \text{LSTM}(m_{i,j,t}, \delta_{i,j,t}).$





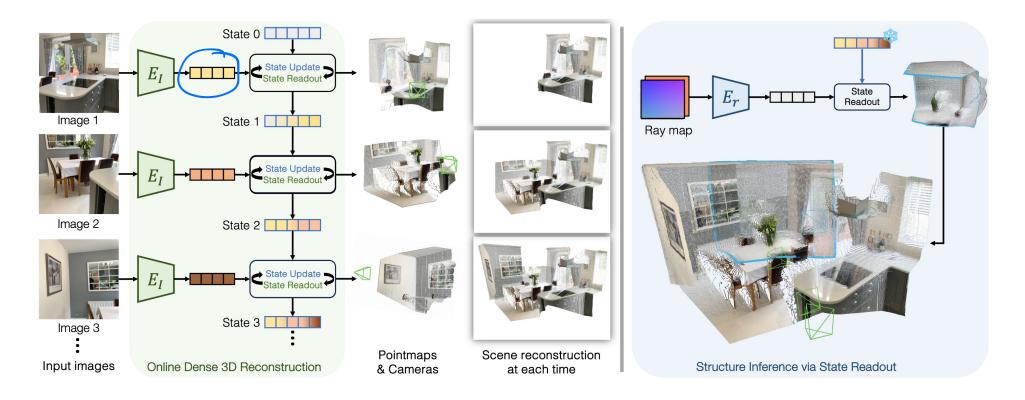
Loss: $\mathcal{L}(p) = -\log \sum_{t} p_{H_t W_t R_t t}.$

Joint Localization, Perception and Prediction



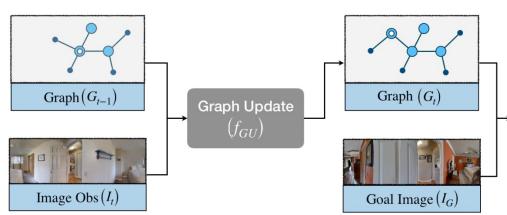
Philips et al. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction CVPR 2021.

Continuous 3D Perception and Mapping

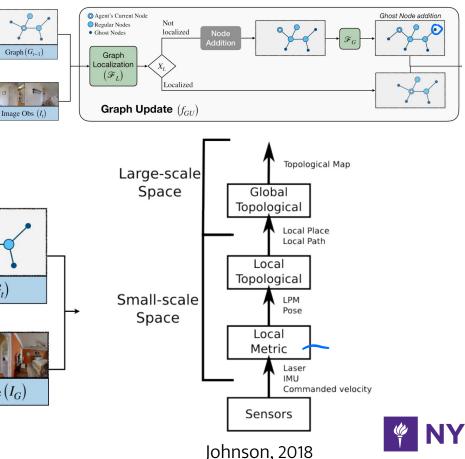


Topological Mapping

- High-level graph representation
- Each node contains more summarized information
- Enables global planning



Johnson. Topological Mapping and Navigation in Real-World Environments. 2018. Chaplot et al. Neural Topological SLAM for Visual Navigation. CVPR 2020.



• Covers 3D, motion, depth, and mapping.

- Covers 3D, motion, depth, and mapping.
- Still needs high-level features (recognizing the object and semantics): Spatial pyramid.

- Covers 3D, motion, depth, and mapping.
- Still needs high-level features (recognizing the object and semantics): Spatial pyramid.
- Can be made unsupervised

- Covers 3D, motion, depth, and mapping.
- Still needs high-level features (recognizing the object and semantics): Spatial pyramid.
- Can be made unsupervised
- Design end-to-end modules that contain rich features.

Summary

- Covers 3D, motion, depth, and mapping.
- Still needs high-level features (recognizing the object and semantics): Spatial pyramid.
- Can be made unsupervised
- Design end-to-end modules that contain rich features.
- Design joint learning frameworks.

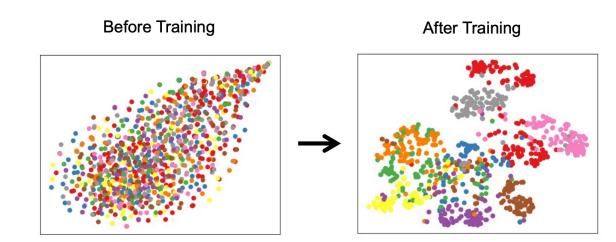
Summary

- Covers 3D, motion, depth, and mapping.
- Still needs high-level features (recognizing the object and semantics): Spatial pyramid.
- Can be made unsupervised
- Design end-to-end modules that contain rich features.
- Design joint learning frameworks.
- Using geometric transformation to ground representations.

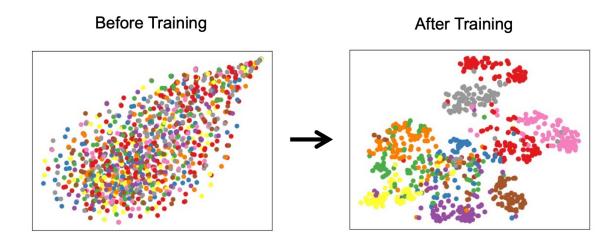
Summary

- Covers 3D, motion, depth, and mapping.
- Still needs high-level features (recognizing the object and semantics): Spatial pyramid.
- Can be made unsupervised
- Design end-to-end modules that contain rich features.
- Design joint learning frameworks.
- Using geometric transformation to ground representations.
- Useful for planning (a few weeks from now).

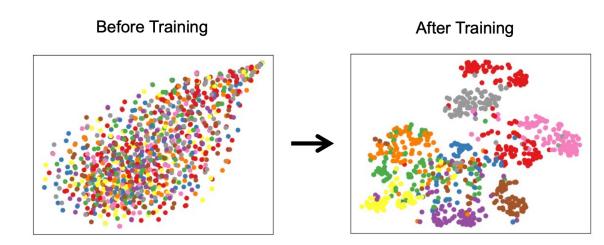
• Efficient encoding of the world that can help us recognize semantic concepts (high-level cognition).



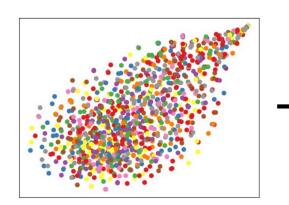
- Efficient encoding of the world that can help us recognize semantic concepts (high-level cognition).
- Efficient learning of visual data without extra supervision.



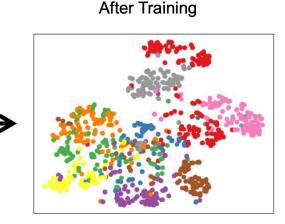
- Efficient encoding of the world that can help us recognize semantic concepts (high-level cognition).
- Efficient learning of visual data without extra supervision.
- Recognition of motion also requires global matching.



- Efficient encoding of the world that can help us recognize semantic concepts (high-level cognition).
- Efficient learning of visual data without extra supervision.
- Recognition of motion also requires global matching.
- Historically, largely driven by supervised classification.

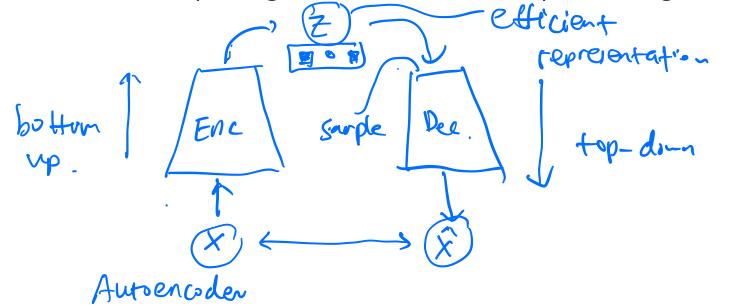


Before Training



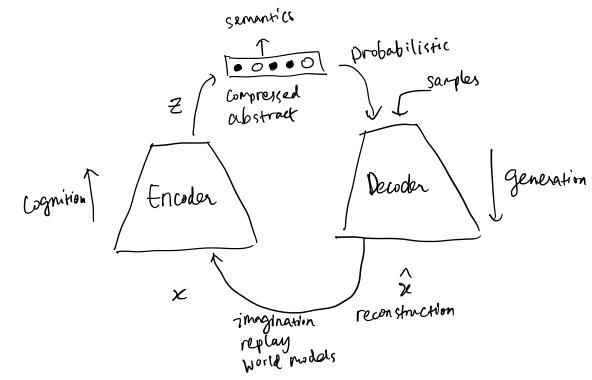
Unsupervised Learning

• Encoder / bottom-up / cognition & decoder / top-down / generation



Unsupervised Learning

• Encoder / bottom-up / cognition & decoder / top-down / generation



Denoising Autoencoder (DAE)

5

• Making representations robust to partial corruption

Figure 1. An example \mathbf{x} is corrupted to $\tilde{\mathbf{x}}$. The autoencoder then maps it to \mathbf{y} and attempts to reconstruct \mathbf{x} .

х

 $L_H(\mathbf{x}, \mathbf{z})$

 \mathbf{Z}

Denoising Autoencoder (DAE)

- Making representations robust to partial corruption
- Low-dimensional manifold near which the data concentrate: $p(x|\tilde{x}) = B_{g_{\theta'}(f_{\theta})}(x).$

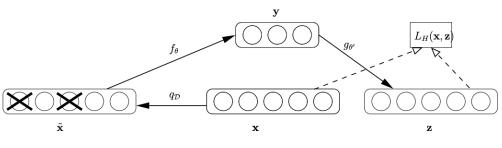
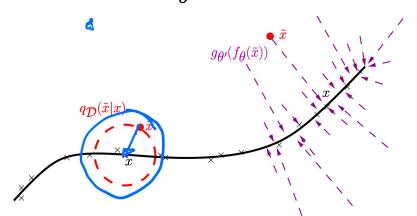
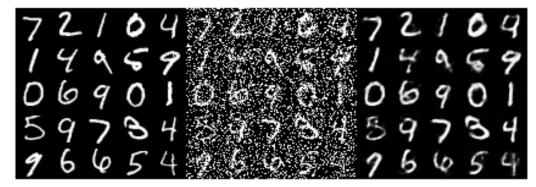


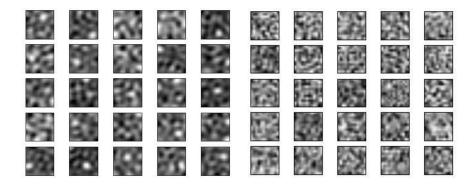
Figure 1. An example \mathbf{x} is corrupted to $\tilde{\mathbf{x}}$. The autoencoder then maps it to \mathbf{y} and attempts to reconstruct \mathbf{x} .

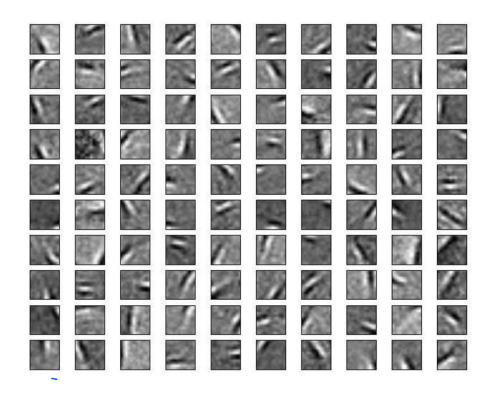




Denoising Autoencoder (DAE)

• Regular autoencoders do not learn good filters.





• Both has denoising as learning objective.

- Both has denoising as learning objective.
- Diffusion models Fully generative; DAE Locally generative, aim was to learn good representations.

- Both has denoising as learning objective.
- Diffusion models Fully generative; DAE Locally generative, aim was to learn good representations.
- Not straightforward to extract good representations.

- Both has denoising as learning objective.
- Diffusion models Fully generative; DAE Locally generative, aim was to learn good representations.
- Not straightforward to extract good representations.
- DAE: Simple architecture, aims to denoise in one go, not a good generative model.

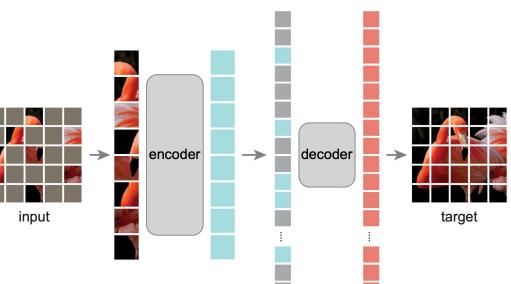
- Both has denoising as learning objective.
- Diffusion models Fully generative; DAE Locally generative, aim was to learn good representations.
- Not straightforward to extract good representations.
- DAE: Simple architecture, aims to denoise in one go, not a good generative model.
- Stacked DAE: Stacked layerwise noise-denoise mechanism. Used to "pretrain" deep networks.

ZI + noise =

Xtnoise

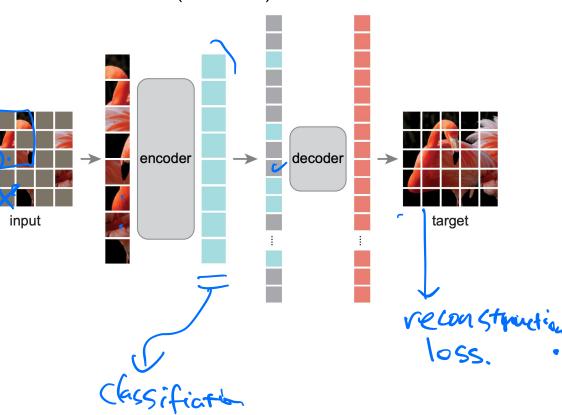
Masked Autoencoder (MAE)

• Modernized version of denoising autoencoder.



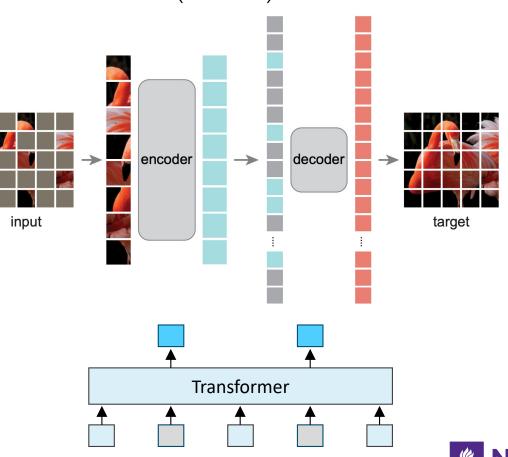
Masked Autoencoder (MAE)

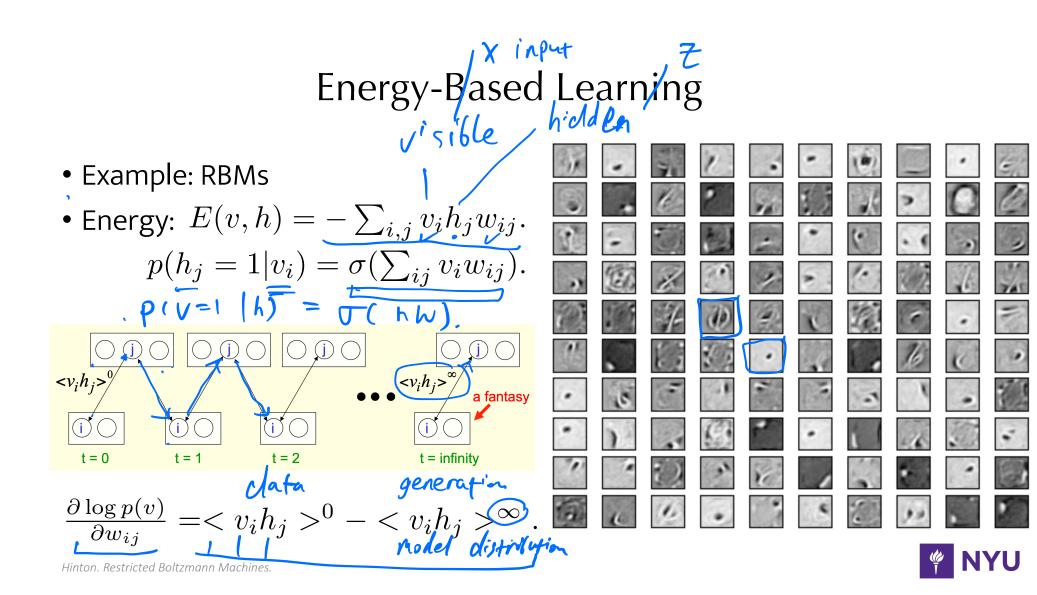
- Modernized version of denoising autoencoder.
- Mask noise: No artifacts
- ViT: No overlapping region, no empty space, no boundary.



Masked Autoencoder (MAE)

- Modernized version of denoising autoencoder.
- Mask noise: No artifacts
- ViT: No overlapping region, no empty space, no boundary.
- Idea also came from masked language models.





$$\tilde{\mathbf{x}}^{k} = \tilde{\mathbf{x}}^{k-1} - \frac{\lambda}{2} \nabla_{\mathbf{x}} E_{\theta}(\tilde{\mathbf{x}}^{k^{\vee}1}) + \omega^{k}, \ \omega^{k} \sim \mathcal{N}(0, \lambda)$$

$$\tilde{\mathbf{x}}^{k} = \tilde{\mathbf{x}}^{k-1} - \frac{\lambda}{2} \nabla_{\mathbf{x}} E_{\theta}(\tilde{\mathbf{x}}^{k^{\vee}1}) + \omega^{k}, \ \omega^{k} \sim \mathcal{N}(0, \lambda)$$

$$\nabla_{\theta} \mathcal{L}_{\mathrm{ML}} \approx \mathbb{E}_{\mathbf{x}^{+} \sim p_{D}} \left[\nabla_{\theta} E_{\theta}(\mathbf{x}^{+}) \right] - \mathbb{E}_{\mathbf{x}^{-} \sim q_{\theta}} \left[\nabla_{\theta} E_{\theta}(\mathbf{x}^{-}) \right].$$

• Inference requires running gradient descent and MCMC samples.

$$\tilde{\mathbf{x}}^{k} = \tilde{\mathbf{x}}^{k-1} - \frac{\lambda}{2} \nabla_{\mathbf{x}} E_{\theta}(\tilde{\mathbf{x}}^{k^{\vee}1}) + \omega^{k}, \ \omega^{k} \sim \mathcal{N}(0, \lambda)$$

$$\nabla_{\theta} \mathcal{L}_{\mathrm{ML}} \approx \mathbb{E}_{\mathbf{x}^{+} \sim p_{D}} \left[\nabla_{\theta} E_{\theta}(\mathbf{x}^{+}) \right] - \mathbb{E}_{\mathbf{x}^{-} \sim q_{\theta}} \left[\nabla_{\theta} E_{\theta}(\mathbf{x}^{-}) \right].$$

• Can be applied on hand manipulation trajectory generation.

$$\tilde{\mathbf{x}}^{k} = \tilde{\mathbf{x}}^{k-1} - \frac{\lambda}{2} \nabla_{\mathbf{x}} E_{\theta}(\tilde{\mathbf{x}}^{k^{\vee}1}) + \omega^{k}, \ \omega^{k} \sim \mathcal{N}(0, \lambda)$$

$$\nabla_{\theta} \mathcal{L}_{\mathrm{ML}} \approx \mathbb{E}_{\mathbf{x}^{+} \sim p_{D}} \left[\nabla_{\theta} E_{\theta}(\mathbf{x}^{+}) \right] - \mathbb{E}_{\mathbf{x}^{-} \sim q_{\theta}} \left[\nabla_{\theta} E_{\theta}(\mathbf{x}^{-}) \right].$$

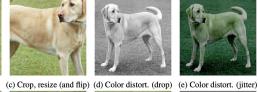
- Can be applied on hand manipulation trajectory generation.
- Good results in generation but still not a generalized representation learning algorithm.

• Match the same image (with severe augmentation)

(a) Original

(b) Crop and resize

(g) Cutout

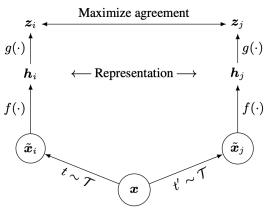


(f) Rotate {90°, 180°, 270°}

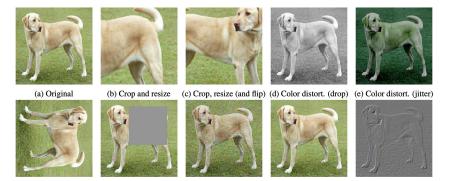
(h) Gaussian noise

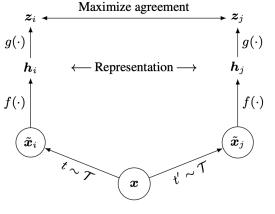
(i) Sobel filtering

(i) Gaussian blur



- Match the same image (with severe augmentation)
- Joint embedding approach: Apply loss on the embedding level.





(f) Rotate {90°, 180°, 270°}

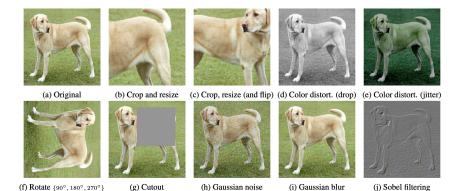
(h) Gaussian noise

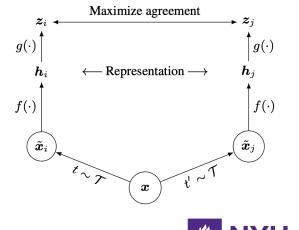
(g) Cutout

(j) Sobel filtering

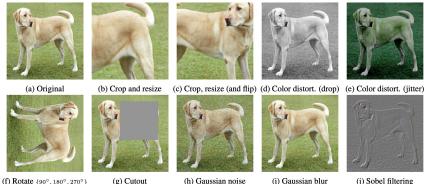
(i) Gaussian blur

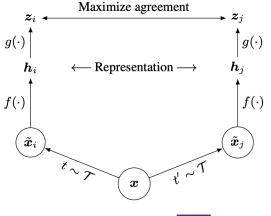
- Match the same image (with severe augmentation)
- Joint embedding approach: Apply loss on the embedding level.
- Use negative examples (contrastive) or not (non-contrastive).





- Match the same image (with severe augmentation)
- Joint embedding approach: Apply loss on the embedding level.
- Use negative examples (contrastive) or not (non-contrastive).
- Energy is defined between a pair of images.



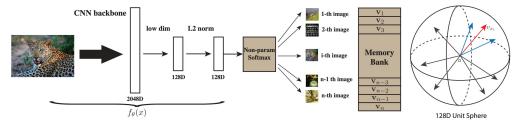


(f) Rotate {90°, 180°, 270°]

(h) Gaussian noise

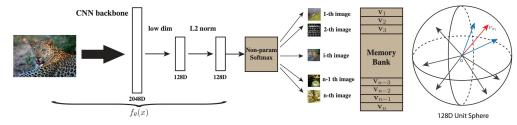
(i) Sobel filtering

Wu et al., 2018



Wu et al., 2018

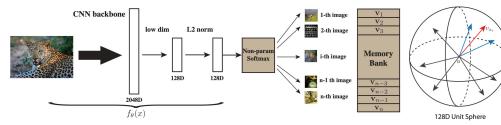
• Instance Classification:



• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$
Chen et al. 2020

Wu et al., 2018

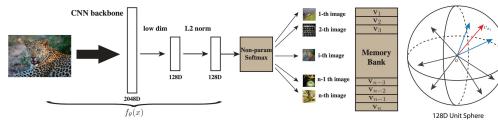


• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$
Chen et al. 2020

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]

Wu et al., 2018



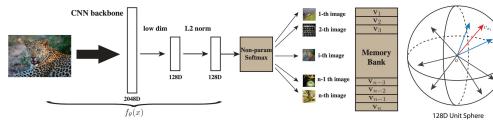
• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Chen et al. 2020

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors

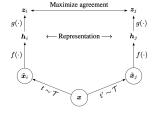
Wu et al., 2018



• Contrastive Learning: Cross entropy on pairs

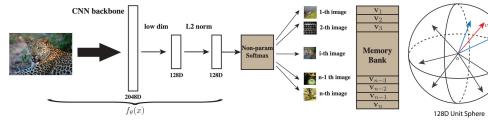
$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$
Chen et al. 2020

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors



Chen et al. 2020

Wu et al., 2018

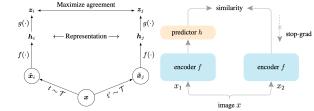


• Contrastive Learning: Cross entropy on pairs

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Chen et al. 2020

- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]
 - Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors



Chen et al. 2020 Chen & He, 2021

Several Embedding Loss Formulations

CNN backbone

1-th image

2-th image

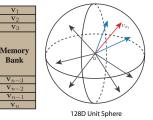
😭 n-1 th image

n-th image

➤ i-th image

L2 norm

low dim

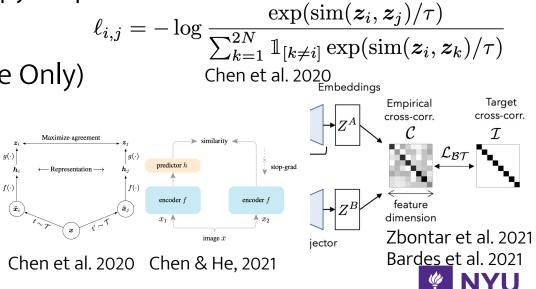


Wu et al., 2018

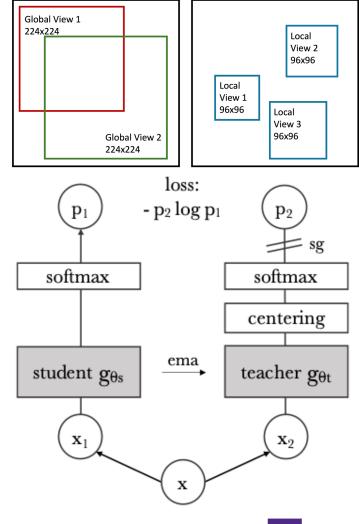
- Contrastive Learning: Cross entropy on pairs
- Non-contrastive Learning (Positive Only)
 - Moving Average [Grill et al., 2020]

Instance Classification:

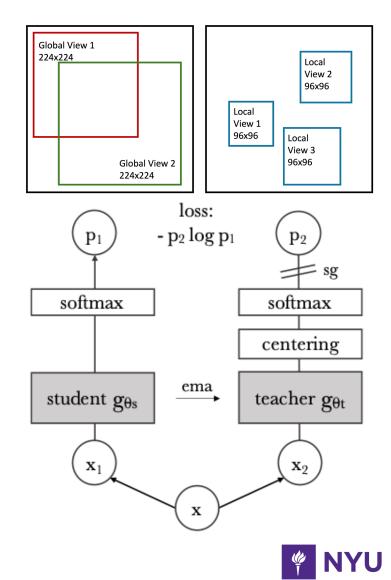
- Stop Gradient [Chen & He, 2020]
- Use of projectors and predictors
- Use of co-variance regularization



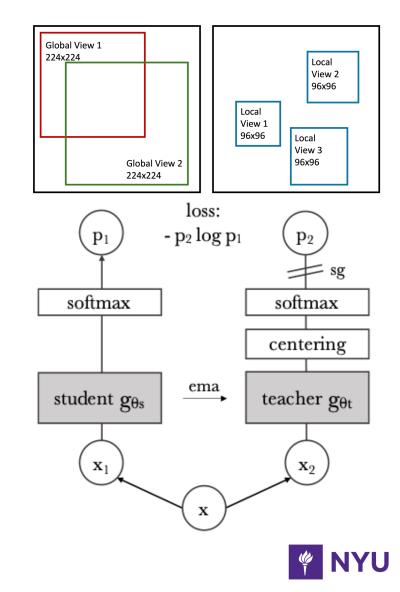
• Knowledge distillation between a student and a teacher network.



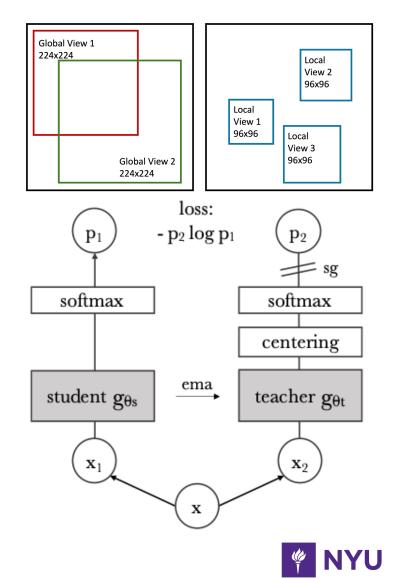
- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$



- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$
- Minimize CE: $\min_{\theta} H(p_t(x), p_s(x)).$

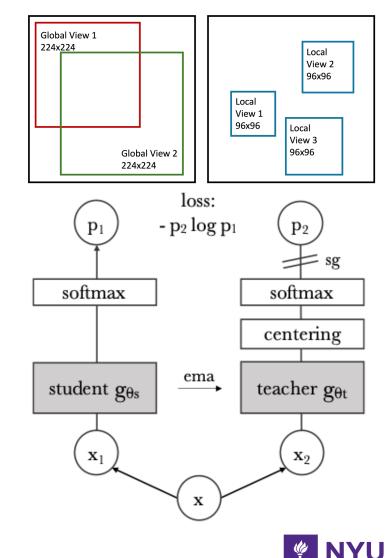


- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$
- Minimize CE: $\min_{\theta} H(p_t(x), p_s(x)).$
- Stop gradient on the teacher (no true label).



Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

- Knowledge distillation between a student and a teacher network.
- Student: $p_s(x) = \frac{\exp(g_{\theta_s}(x)_i/\tau_s)}{\sum_k \exp(g_{\theta_s}(x)_k/\tau_s)}.$
- Minimize CE: $\min_{\theta} H(p_t(x), p_s(x)).$
- Stop gradient on the teacher (no true label).
- Teacher network has EMA weights copied from student (prevent collapse).



Preventing Collapse

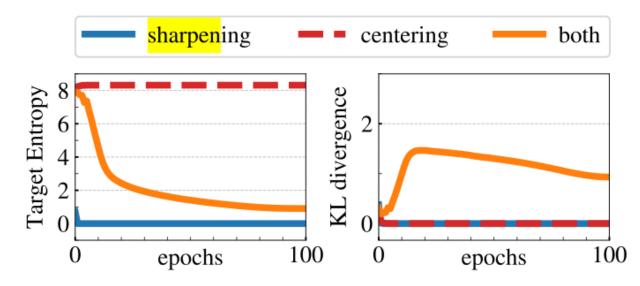
- Cross entropy objective can make both sides collapse to uniform distribution.
 - Apply sharpening, apply a temperature term on both teacher and student.
 - $\operatorname{softmax}(g/\tau)$ The higher the temperature, the more uniform.

Preventing Collapse

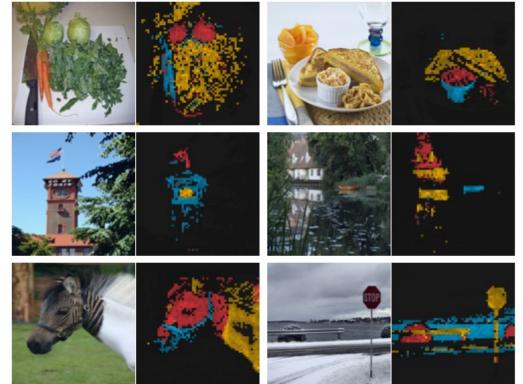
- Cross entropy objective can make both sides collapse to uniform distribution.
 - Apply sharpening, apply a temperature term on both teacher and student.
 - $\operatorname{softmax}(g/\tau)$ The higher the temperature, the more uniform.
- It can also collapse into always activating a single unit.
 - Mean statistics: $c_t = mc_{t-1} + (1-m)\frac{1}{B}\sum_{i=1}^{B} g_{\theta_t}(x_i)$
 - Center teacher prediction: $p_t(x) = \frac{\exp((g_{\theta_t}(x)_i c_t)/\tau_t)}{\sum_k \exp((g_{\theta_t}(x)_k c_t)/\tau_t)}.$

Centering and Sharpening

- Only centering: Always uniform distribution, high entropy, easy to guess.
- Only sharpening: Collapsed into one unit, easy to guess, low loss, but no real learning.



• The [CLS] token is an extra token added to summarize the whole image into a vector.



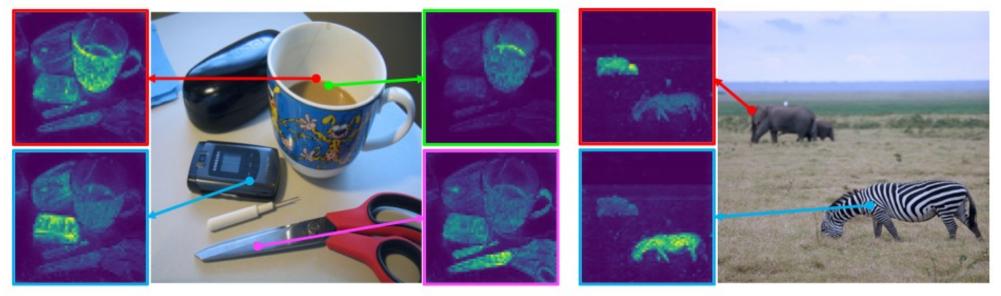
Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

- The [CLS] token is an extra token added to summarize the whole image into a vector.
- Visualize the attention map of different attention heads using different colors.



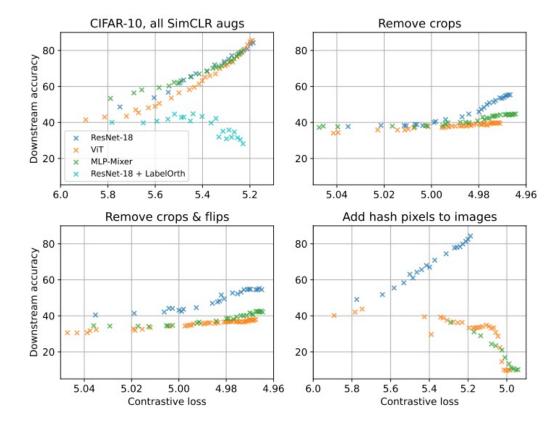
- The [CLS] token is an extra token added to summarize the whole image into a vector.
- Visualize the attention map of different attention heads using different colors.
- Showing understanding of different objects and parts.

- We can also visualize the attention by querying from a location.
- Weak separation of objects.



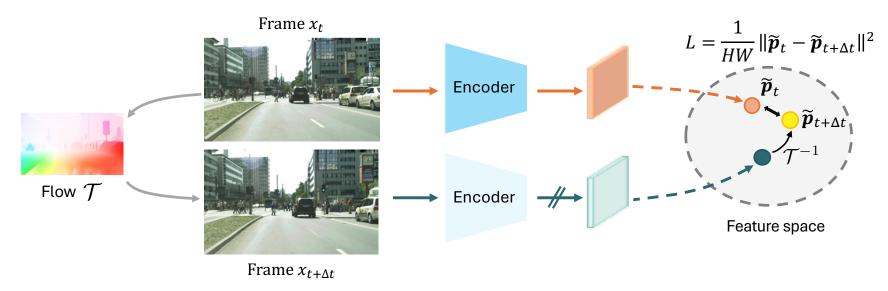
Why Does SSL Work?

- The unsupervised loss is a surrogate. If an image belongs to a similarity class, it also belongs to the same semantic class.
- The choice of similarity class matters.



SSL with Motion

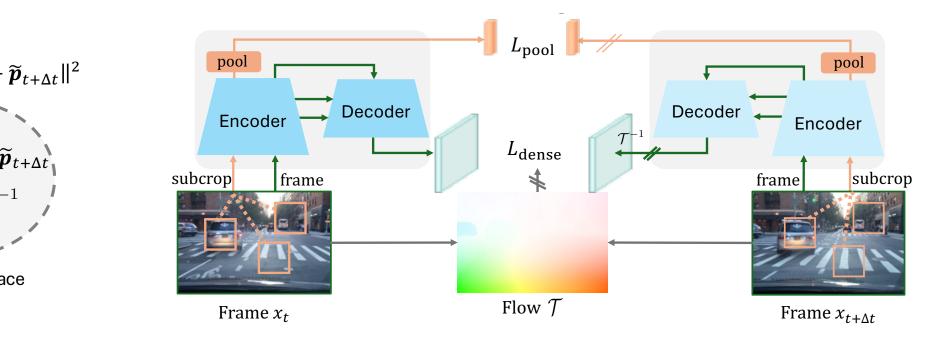
- Can we use adjacent frames as self-supervision?
- Objects move densely throughout the image.

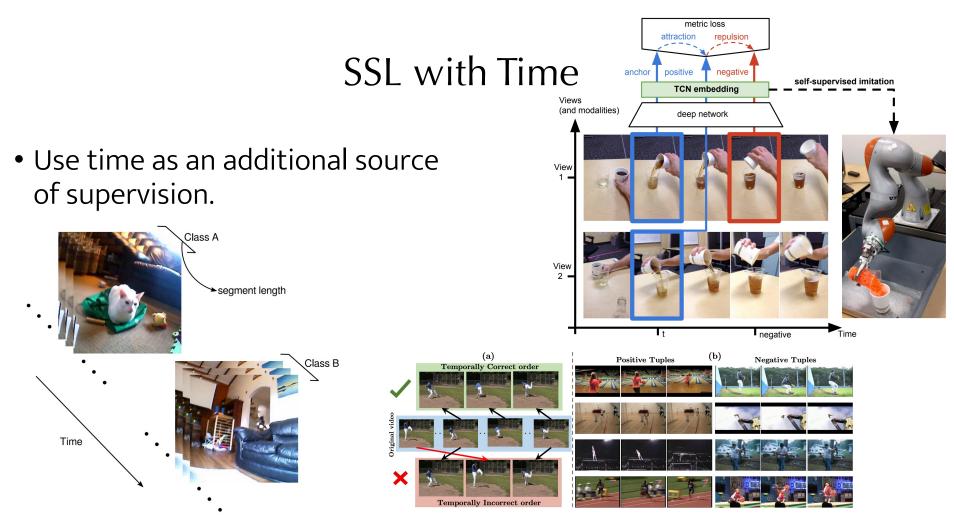


su

SSL with Motion

• Perform SSL in multiple scales (small objects vs. big regions).

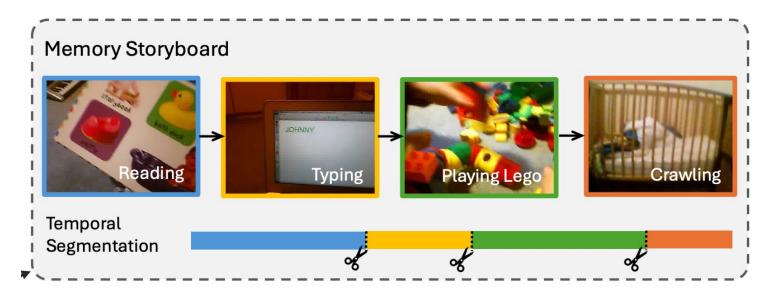




Misra et al. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. ECCV 2016. Sermanet et al. Time-Contrastive Networks: Self-Supervised Learning from Video. ICRA 2018. Orhan et al. Self-Supervised Learning through the Eyes of a Child. NeurIPS 2020.

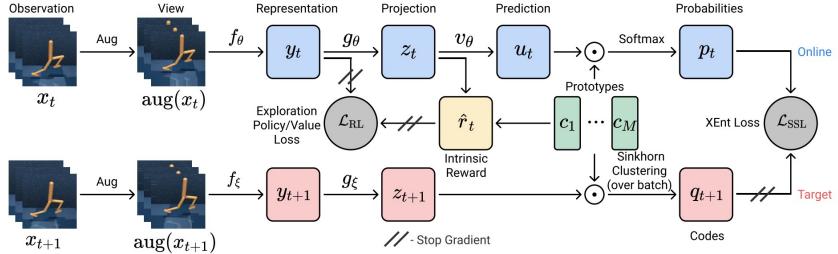
SSL with Time

- We can segment videos into meaningful events.
- Leverage the spatiotemporal continuity structure.

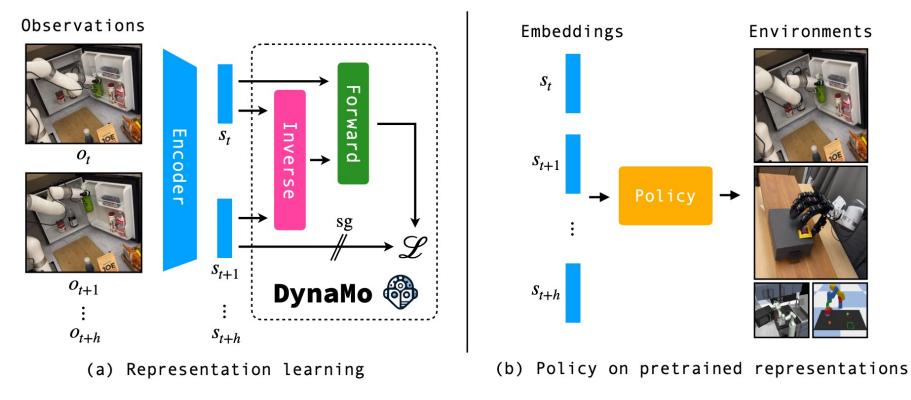


Yang & Ren. Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from Egocentric Videos. arXiv 2025.

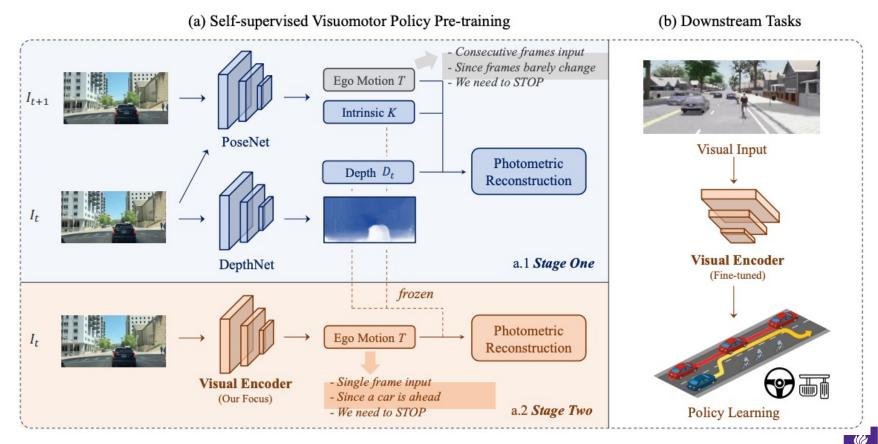
SSL for Visual Control



SSL for Visual Control



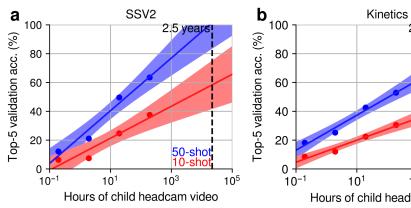
SSL for Visual Control

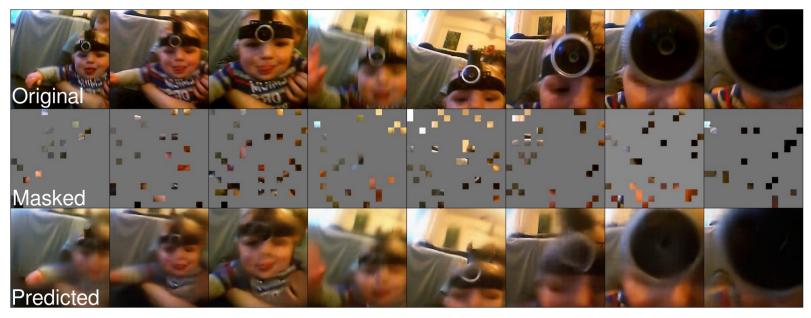


YU

Wu et al. Policy Pre-training for Autonomous Driving via Self-supervised Geometric Modeling. ICLR 2023.

• Run visual learning algorithms on baby headcam videos.





• Representation learning leverage the information in unlabeled data.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.
- Inductive biases matter.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.
- Inductive biases matter.
- Possible learning objectives for egocentric videos.

- Representation learning leverage the information in unlabeled data.
- A foundation for sensorimotor learning.
- Inductive biases matter.
- Possible learning objectives for egocentric videos.
- Incorporate 3D vision and actions for downstream planning.

• SSL representations show awareness of object classes and instance identities.

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?
- The network is encouraged to associate different parts of the objects together in order to identify whether two inputs belong to the same image or not.

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?
- The network is encouraged to associate different parts of the objects together in order to identify whether two inputs belong to the same image or not.
- Attending to semantically similar parts facilitates the process.

- SSL representations show awareness of object classes and instance identities.
- Why does attention show awareness of objects?
- The network is encouraged to associate different parts of the objects together in order to identify whether two inputs belong to the same image or not.
- Attending to semantically similar parts facilitates the process.
- The network is a hierarchical information processing pipeline Lower layers integrate more granular and smaller neighborhood.

Weak-to-Strong Supervision

• General idea: Use self-supervised learning to learn good features, which allow us to generate low-quality masks.

Weak-to-Strong Supervision

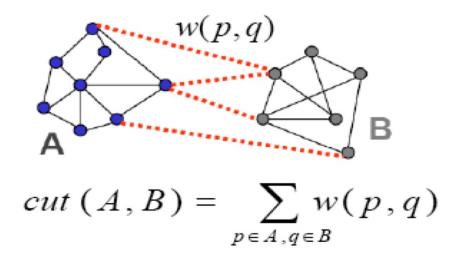
- General idea: Use self-supervised learning to learn good features, which allow us to generate low-quality masks.
- Then use these masks as pseudo labels and supervise the network to predict these low-quality masks.

Weak-to-Strong Supervision

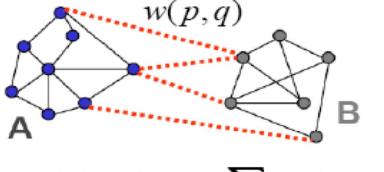
- General idea: Use self-supervised learning to learn good features, which allow us to generate low-quality masks.
- Then use these masks as pseudo labels and supervise the network to predict these low-quality masks.
- Question: how do we come up with masks? What loss is used to supervise the network?

Graph Cut

• Segmentation is essentially a clustering problem.

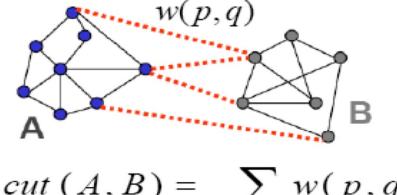


- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.



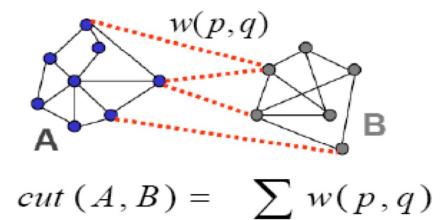
$$cut(A,B) = \sum_{p \in A, q \in B} w(p,q)$$

- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.
- Pixel = node.



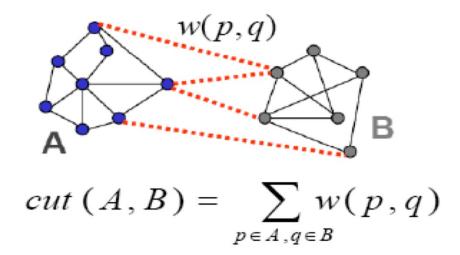
$$ut(A,B) = \sum_{p \in A, q \in B} w(p,q)$$

- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.
- Pixel = node.
- Affinity between the two pixels = edge value (flow).

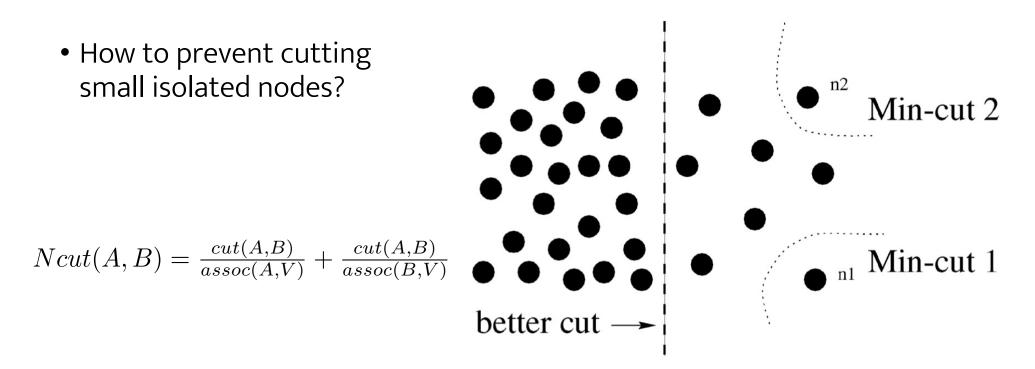


 $p \in A, q \in B$

- Segmentation is essentially a clustering problem.
- We can transform the clustering problem with the graph cut problem.
- Pixel = node.
- Affinity between the two pixels = edge value (flow).
- Objective: Cut the graph into disconnected components with a minimum sum of edge values.



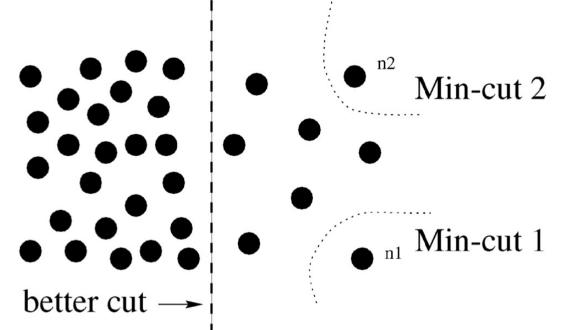
Normalized Graph Cut (NCut)



Normalized Graph Cut (NCut)

- How to prevent cutting small isolated nodes?
- Normalize by the total edge connections of a group to all the nodes.

$$Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

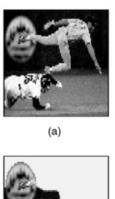


NCut Details (Optional)

- A form of spectral clustering.
- Degree matrix $D N \times N$ with d_i on the diagonal.
- Weight matrix $W N \times N$ symmetric w_{ij} .
- Selection vector $x_i = 1$ if $i \in A$ otherwise -1.
- Solve the minimization: $\min_y \frac{y^\top (D-W)y}{y^\top Dy}$ $y = (1+x) \frac{\sum_{i|x_i>0} d_i}{\sum_{i|x_i<0} d_i}(1-x).$
- Generalized eigenvalue system: $(D W)y = \lambda Dy$.
- Let $z = D^{1/2}y$ $D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}}z = \lambda z$.

NCut

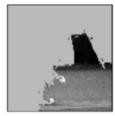
• Sort the eigenvectors from the smallest to the largest.

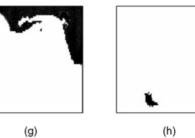


(e)

(f)

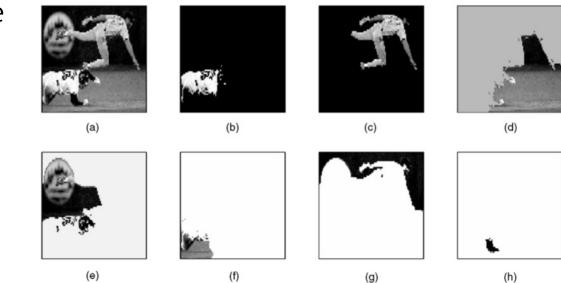
(c)





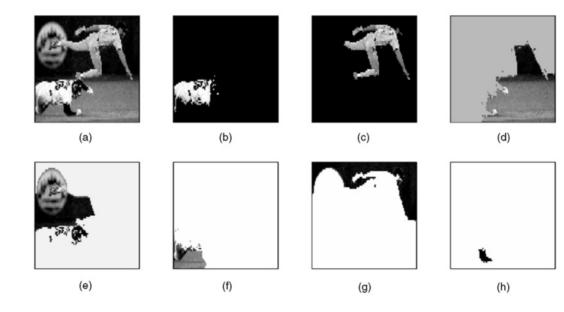
NCut

- Sort the eigenvectors from the smallest to the largest.
- This was a classic image segmentation technique operating directly on image intensity.



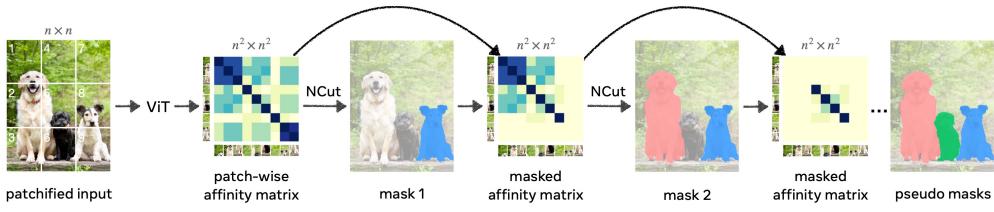
NCut

- Sort the eigenvectors from the smallest to the largest.
- This was a classic image segmentation technique operating directly on image intensity.
- Now, instead of segmenting pixels, we can directly segment semantically meaningful representations from selfsupervision.



MaskCut

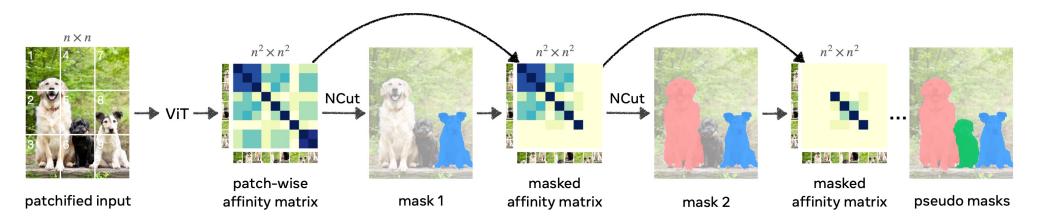
• Use a pretrained DINO ViT network.



Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022. Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023. 🧳 NYU

MaskCut

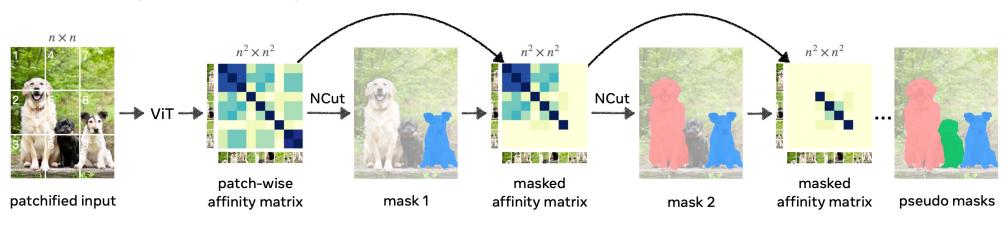
- Use a pretrained DINO ViT network.
- Use the "key" features from the last attention layer: $W_{ij} = \frac{K_i K_j}{\|K_i\|_2 \|K_i\|_2}$



Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022. Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

MaskCut

- Use a pretrained DINO ViT network.
- Use the "key" features from the last attention layer: $W_{ij} = \frac{K_i K_j}{\|K_i\|_2 \|K_i\|_2}$
- Iterative NCut on the pairwise matrix by masking out the regions from previous stages.



Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Iterative Self-Training

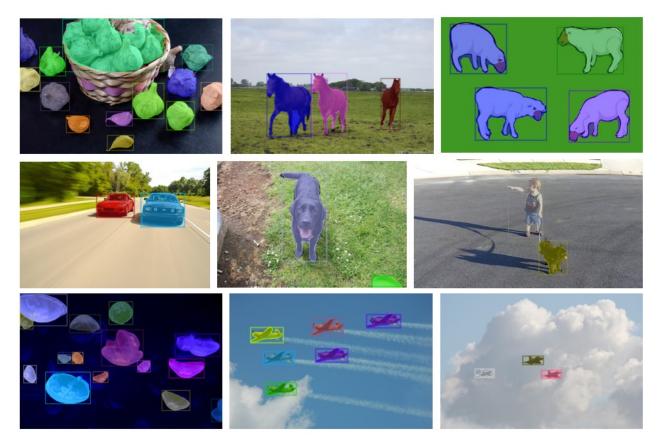
- Now add a MaskRCNN structure on top of the pretrained network.
- Select the predictions with the highest confidence score and use them as labels.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Iterative Self-Training

- Now add a MaskRCNN structure on top of the pretrained network.
- Select the predictions with the highest confidence score and use them as labels.
- Neural networks can learn from the noisy labels and output smoother predictions.

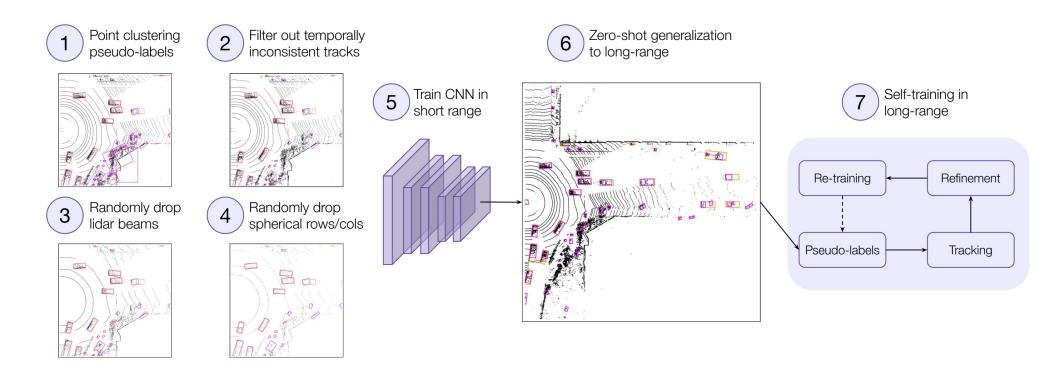
More Visualization



WNYU

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

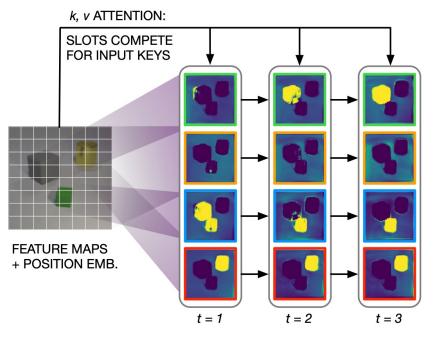
Pseudo Labels in 3D



Iterative Refinement of Pseudo Labels



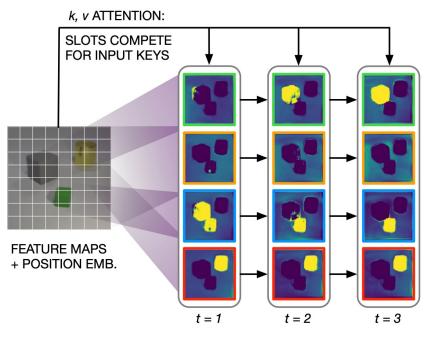
• Can we learn clustering as an end-toend operation?



(a) Slot Attention module.

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

- Can we learn clustering as an end-toend operation?
- Slot attention is inspired by the success of the attention mechanism.



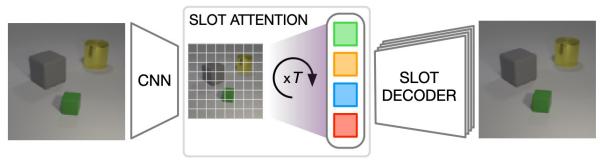
(a) Slot Attention module.

- Can we learn clustering as an end-toend operation?
- Slot attention is inspired by the success of the attention mechanism.
- Each "slot" attends to a region of the image and stores an object centric representation.

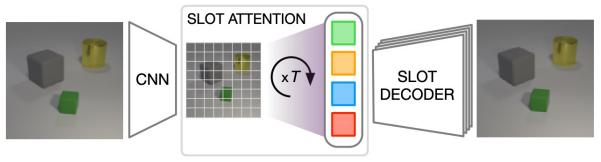


(a) Slot Attention module.

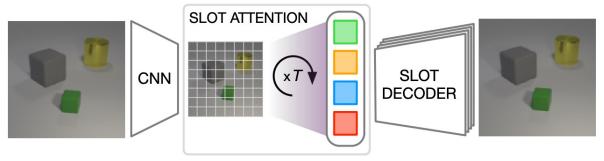
• Goal: Reconstruct the image with a concise slot-based representation.



- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize: $\widetilde{m}_{t-1} = LN(m_{t-1})$.

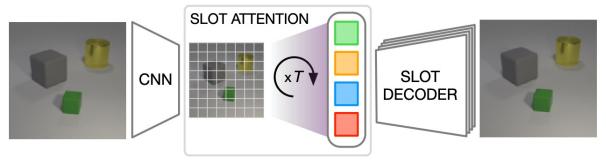


- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize: $\widetilde{m}_{t-1} = LN(m_{t-1})$.
- Attention over slots: $a_{t,i,j} = \frac{\frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}{\sum_j \frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}.$

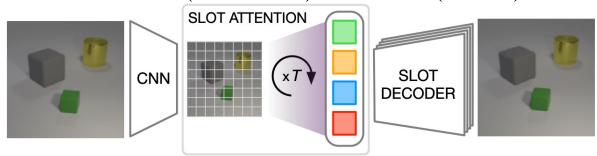


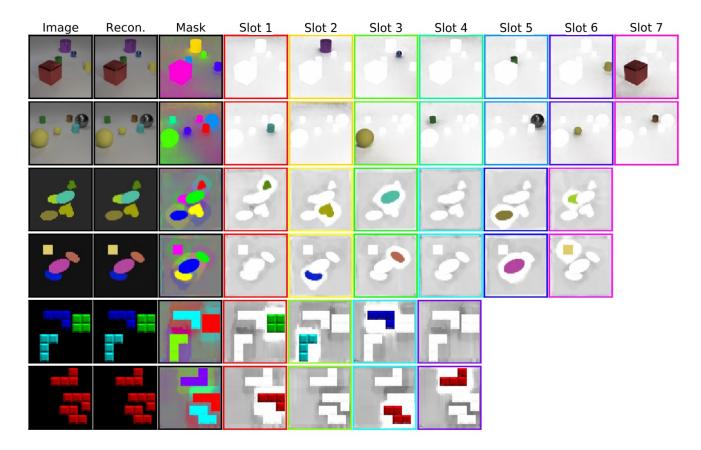
- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize: $\widetilde{m}_{t-1} = LN(m_{t-1})$. $\frac{1}{2}k(x_i) \cdot q(\widetilde{m}_i)^{\top}$
- Attention over slots: $a_{t,i,j} = \frac{\frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}{\sum_j \frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}.$

• Updates:
$$u_{tj} = \sum_i a_{tij} v(x_i)$$
.



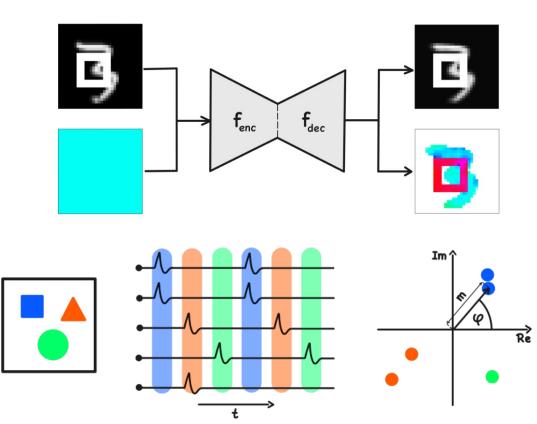
- Goal: Reconstruct the image with a concise slot-based representation.
- Input: $x \in \mathbb{R}^{N \times D}$ (after encoder), Slots: $m \in \mathbb{R}^{M \times D}$. Normalize: $\widetilde{m}_{t-1} = LN(m_{t-1})$.
- Attention over slots: $a_{t,i,j} = \frac{\frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}{\sum_j \frac{1}{\sqrt{D}}k(x_i) \cdot q(\tilde{m}_j)^{\top}}$.
- Updates: $u_{tj} = \sum_i a_{tij} v(x_i)$.
- Write into slots: $m_t = GRU(m_{t-1}, u_t) + MLP(\tilde{m}_{t-1}).$



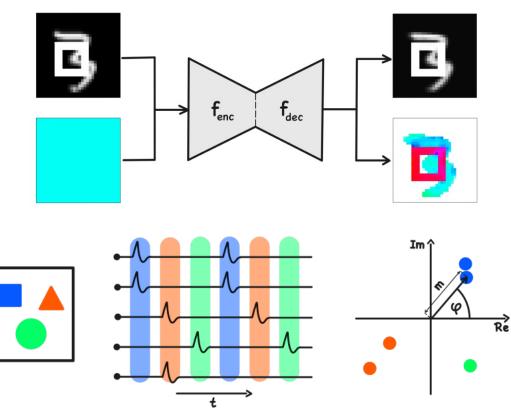


Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

• The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.

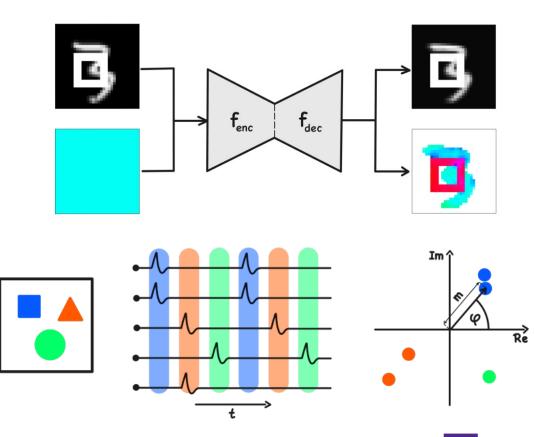


- The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.
- Each pixel starts with an initial phase 0.



- The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.
- Each pixel starts with an initial phase 0.

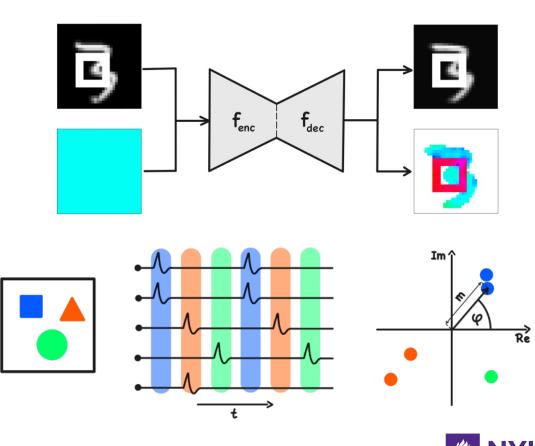
$$\hat{\mathbf{z}} = f_{\text{dec}}(f_{\text{enc}}(\mathbf{x})) \in \mathbb{C}^{h \times w}$$



- The complex number can represent magnitude and phase: $z = m \cdot e^{i\varphi} \in \mathbb{C}$.
- Each pixel starts with an initial phase 0.

$$\hat{\mathbf{z}} = f_{\text{dec}}(f_{\text{enc}}(\mathbf{x})) \in \mathbb{C}^{h \times w}$$

$$\hat{\mathbf{x}} = f_{\text{out}}(\hat{\mathbf{z}}) \in \mathbb{R}^{h \times w}.$$



• Apply weights separately to real and imaginary:

 $\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i \in \mathbb{C}^{d_{\operatorname{out}}}$

• Apply weights separately to real and imaginary:

$$\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i \quad \in \mathbb{C}^{d_{\operatorname{out}}}$$

• Bias on magnitude and phase:

$$oldsymbol{m}_{oldsymbol{\psi}} = |oldsymbol{\psi}| + oldsymbol{b}_{oldsymbol{m}} \quad \in \mathbb{R}^{d_{ ext{out}}} \ oldsymbol{arphi}_{oldsymbol{\psi}} = rg(oldsymbol{\psi}) + oldsymbol{b}_{oldsymbol{arphi}} \quad \in \mathbb{R}^{d_{ ext{out}}}$$

• Apply weights separately to real and imaginary:

$$\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i \quad \in \mathbb{C}^{d_{\operatorname{out}}}$$

• Bias on magnitude and phase:

$$oldsymbol{m}_{oldsymbol{\psi}} = |oldsymbol{\psi}| + oldsymbol{b}_{oldsymbol{m}} \in \mathbb{R}^{d_{ ext{out}}} \ arphi_{oldsymbol{\psi}} = rg(oldsymbol{\psi}) + oldsymbol{b}_{oldsymbol{arphi}}$$

• Gating: $oldsymbol{\chi} = f_{oldsymbol{w}}(|oldsymbol{z}|) + oldsymbol{b}_{oldsymbol{m}} \in \mathbb{R}^{d_{ ext{out}}}$
 $oldsymbol{m}_{oldsymbol{z}} = 0.5 \cdot oldsymbol{m}_{oldsymbol{\psi}} + 0.5 \cdot oldsymbol{\chi} \in \mathbb{R}^{d_{ ext{out}}}$



Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

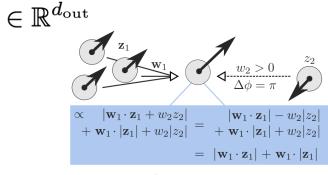
• Apply weights separately to real and imaginary:

$$\boldsymbol{\psi} = f_{\mathbf{w}}(\mathbf{z}) = f_{\mathbf{w}}(\operatorname{Re}(\mathbf{z})) + f_{\mathbf{w}}(\operatorname{Im}(\mathbf{z})) \cdot i \quad \in \mathbb{C}^{d_{\operatorname{out}}}$$

• Bias on magnitude and phase:

$$oldsymbol{m}_{oldsymbol{\psi}} = |oldsymbol{\psi}| + oldsymbol{b}_{oldsymbol{m}} \in \mathbb{R}^{d_{ ext{out}}} \ arphi_{oldsymbol{\psi}} = rg(oldsymbol{\psi}) + oldsymbol{b}_{oldsymbol{arphi}}$$

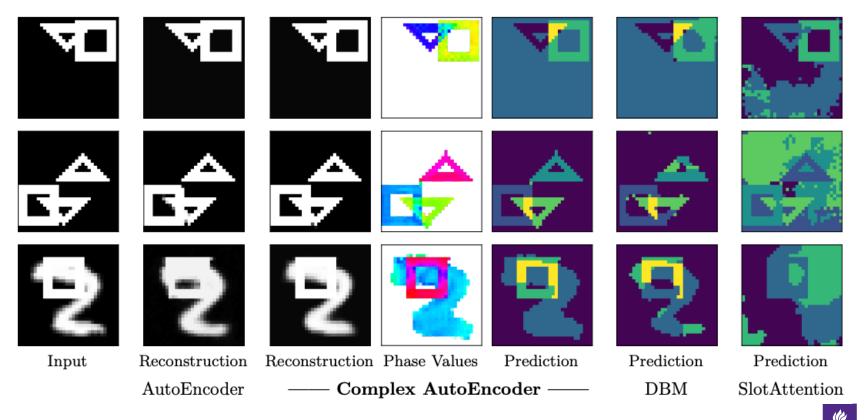
• Gating: $oldsymbol{\chi} = f_{oldsymbol{w}}(|oldsymbol{z}|) + oldsymbol{b}_{oldsymbol{m}} \in \mathbb{R}^{d_{ ext{out}}}$
 $oldsymbol{m}_{oldsymbol{z}} = 0.5 \cdot oldsymbol{m}_{oldsymbol{\psi}} + 0.5 \cdot oldsymbol{\chi} \in \mathbb{R}^{d_{ ext{out}}}$



• Activation $\mathbf{z}' = \operatorname{ReLU}(\operatorname{BatchNorm}(\boldsymbol{m}_{\mathbf{z}})) \circ e^{i \boldsymbol{\varphi}_{\boldsymbol{\psi}}} \in \mathbb{C}^{d_{\operatorname{out}}}$

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022. Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.

Complex-Valued Autoencoders



Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

• Combine deep features with clustering algorithms.

- Combine deep features with clustering algorithms.
- Pseudo-labels to train detector networks.

- Combine deep features with clustering algorithms.
- Pseudo-labels to train detector networks.
- Creative end-to-end learning-based solutions exist, but there are still plenty room for improvement.
 - Possible to train from scratch!

- Combine deep features with clustering algorithms.
- Pseudo-labels to train detector networks.
- Creative end-to-end learning-based solutions exist, but there are still plenty room for improvement.
 - Possible to train from scratch!
- What do we make use of the discovered objects? Is it better to keep the awareness in the latent space?

