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Multi-Sensor Fusion

• LiDAR is precise in depth perception, but the point cloud format is 
sparse and non-uniform (dense around the ego-car and sparse in long 
distance.)
• Camera provides high resolution 2D view and good for long distance 

but lacks 3D. Can we achieve the best of both worlds?
• Late fusion: Generate proposals from one branch (e.g. LiDAR) and 

refine (e.g. using Camera).
• Is there a way to combine the features from both modality in lower 

layers?



• Unproject LiDAR points to camera 
view (i.e. Range View)

Camera-LiDAR Projection

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.
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• Unproject LiDAR points to camera 
view (i.e. Range View)
• Query the closest camera RGB 

features for each LiDAR point.
• For empty space in BEV, we can 

interpolate from neighboring 
points using kNN.
• Continuous Fusion: ℎ! =
∑"$%& '" , )" − )! .

Camera-LiDAR Projection

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.
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Supervised Dense Depth

• Drawback of continuous 
fusion: Sparse LiDAR can 
cause the fusion process to be 
less accurate. Relies on kNN.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
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less accurate. Relies on kNN.
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Supervised Dense Depth

• Drawback of continuous 
fusion: Sparse LiDAR can 
cause the fusion process to be 
less accurate. Relies on kNN.
• Why not predict a dense 

depth to pair with the camera 
image?
• Depth completion module is 

supervised by sparse LiDAR 
and is used for dense fusion.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
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3D Perception

• With the ease of use of automatic differentiation libraries, we can 
compose a computation graph in millions of ways.
• We can design layers and operators to accomodate different types of 

inputs and outputs. 3D, point cloud, sparse data, etc.
• We can fuse different modalities together too, by leveraging 

geometric relationships.



2D to 3D

• Not all embodied agents have the luxury to have a full set of sensors.
• Can we infer the geometric structure with 2D perception?



Classic Vision on Depth and Disparity

• One source of depth is from the displacement of pixels in a stereo 
setup.
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Classic Vision on Depth and Disparity

• One source of depth is 
from the displacement 
of pixels in a stereo 
setup.
• But we need to estimate 

disparity.
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From 2D to 3D: Depth Network

• A network that can output disparity.
• Using LiDAR or depth camera as groundtruth supervision.

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.

o



The Energy-Based Approach

• The energy penalize matching with high cost 
(unary), and when neighboring pixels have 
disparity differences greater or equal to one 
(pairwise).
• Cost network: Train with binary classification

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.

Energy

Smoothness prediction



Self-Supervised Depth

• Appearance matching loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.
Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004.
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Self-Supervised Depth

• Appearance matching loss

• Disparity smoothness loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.
Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004.



Self-Supervised Depth

• Appearance matching loss

• Disparity smoothness loss

• Left-right disparity 
consistency loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.
Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. TIP 2004.



Motion, Optical Flow

• Optical Flow: Estimate the motion of pixels across two consecutive 
video frames.
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• Optical Flow: Estimate the motion of pixels across two consecutive 
video frames.
• Classic method uses brightness constancy assumption.
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Classical Approach

• Under-constrained system
• Use a local patch and assume smooth motion
• Rigid, contains many assumptions



Correlation Volume Approach

• Simple Approach: 
Concatenate the 
two images 
together.

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.



Correlation Volume Approach

• Simple Approach: 
Concatenate the 
two images 
together.
• Correlation: 

Extract some 
levels of features, 
and convolve one 
feature on top of 
another.

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.
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Iterative Refining through Feature Pyramid

Sun et al. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume.
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• Photometric Consistency (Appearance)

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020
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Wang et al., 2018
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• Photometric Consistency (Appearance)
• Occlusion Estimation
• Forward-backward consistency

• Smoothness
• Self-supervision: Ensure consistent flow at 

different augmentation (e.g. crops)

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

Wang et al., 2018
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• Photometric Consistency (Appearance)
• Occlusion Estimation
• Forward-backward consistency

• Smoothness
• Self-supervision: Ensure consistent flow at 

different augmentation (e.g. crops)
• Can 3D information help us reason about 

motion?

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

Wang et al., 2018



Depth, Flow, and Pose Movement

• The static objects follow rigid flow: determined by camera motion 
and depth.

Yin & Shi. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose. CVPR 2018.

f
rig
t !→s(pt) = KTt !→sDt(pt)K

−1pt − pt.
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Training Losses

• Appearance Loss (Warping):
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• Appearance Loss (Warping):

• Smoothness Loss:
L =

∑
pt

|∇D(pt)| · (exp(−|∇I(p(t)|))T .



Training Losses

• Appearance Loss (Warping):

• Smoothness Loss:

• Forward-Backward Consistency:

L =
∑

pt

|∇D(pt)| · (exp(−|∇I(p(t)|))T .

L =
∑

pt

[δ(pt)] · ∥∆f
full
t !→s (pt)∥1.

δ(pt) = ∥ffull
t !→s (pt)∥2 max{α,β∥ffull

t !→s (pt)∥2}.of
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Summary

• Leverage cross correlation structure for spatial similarity matching.
• Can be used towards: depth, flow, and pose prediction.
• Can form triangulation for self-supervision.

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and 
Motion Segmentation. CVPR 2019
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Classical Mapping

• Estimating 3D structure and location from 2D observations.
• Simultaneous Localization and Mapping.
• Common Techniques: Extended Kalman Filter, GraphSLAM

Garg & Jain
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Common Drawbacks

• Probabilistic inference can take long to compute, and mapping takes 
a large memory storage.
• Great for 3D reconstruction but downstream tasks may not need a 

full precision explicit map.
• May not fully understand dynamic objects (averaging across multiple 

scans).
• Is there a more end-to-end version?



Mapping in the Brain: Grid and Place Cells

May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place Cells, Grid Cells, and Memory. 

Morris water maze

Matthias Wandel, 2018
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Neural Mapping

• Can we learn a mapping representation?
• Metric space, top-down warping (known egomotion).

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. IJCV 2017.
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Hierarchical Planning

• How do we use the learned map (allocentric) feature of the world?

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. IJCV 2017.
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Simultaneous Localization and Registration

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.
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• The observations ,#  are transformed into a stack ,#$ by applying a 
rotation resampler.
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Simultaneous Localization and Registration

• The observations ,#  are transformed into a stack ,#$ by applying a 
rotation resampler.

• ,#$ convolve with the base feature. 

• Transform observations into allocentric

• Update belief:

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

pt = Softmax(mt−1 ∗ o
′

t
).

ôt =
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Simultaneous Localization and Registration

• The observations ,#  are transformed into a stack ,#$ by applying a 
rotation resampler.

• ,#$ convolve with the base feature. 

• Transform observations into allocentric

• Update belief:

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

pt = Softmax(mt−1 ∗ o
′

t
).

ôt =
∑

uvw
puvwT (o|u, v, w).

mi,j,t+1 = LSTM(mi,j,t, ôi,j,t).

o′ijkl = [R(o, 2πl/r)]ijk.

Loss:

0



Joint Localization, Perception and Prediction

Philips et al. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction CVPR 2021.



Continuous 3D Perception and Mapping

• x

Wang et al. Continuous 3D Perception Model with Persistent State. arXiv 2025.
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Topological Mapping

• High-level graph representation
• Each node contains more 

summarized information
• Enables global planning

Johnson. Topological Mapping and Navigation in Real-World Environments. 2018.
Chaplot et al. Neural Topological SLAM for Visual Navigation. CVPR 2020. Johnson, 2018
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Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics): 

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features. 
• Design joint learning frameworks.
• Using geometric transformation to ground representations.
• Useful for planning (a few weeks from now).
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Representation Learning

• Efficient encoding of the world that can help us recognize semantic 
concepts (high-level cognition).
• Efficient learning of visual data without extra supervision.
• Recognition of motion also requires global matching.
• Historically, largely driven by supervised classification.



Unsupervised Learning

• Encoder / bottom-up / cognition & decoder / top-down / generation
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Unsupervised Learning

• Encoder / bottom-up / cognition & decoder / top-down / generation
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Denoising Autoencoder (DAE)

• Making representations robust 
to partial corruption

Vincent et al. Extracting and Composing Robust Features with Denoising Autoencoders. ICML 2008.
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Denoising Autoencoder (DAE)

• Making representations robust 
to partial corruption
• Low-dimensional manifold near 

which the data concentrate: 
- ) .) = /%!" &! ) .

Vincent et al. Extracting and Composing Robust Features with Denoising Autoencoders. ICML 2008.



Denoising Autoencoder (DAE)

• Regular autoencoders do not learn 
good filters.

Vincent et al. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local 
Denoising Criterion. JMLR 2010.
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Connection to Diffusion Models

• Both has denoising as learning objective.
• Diffusion models – Fully generative; DAE – Locally generative, aim 

was to learn good representations.
• Not straightforward to extract good representations.
• DAE: Simple architecture, aims to denoise in one go, not a good 

generative model.
• Stacked DAE: Stacked layerwise noise-denoise mechanism. Used to 

“pretrain” deep networks.

futurity
noise 29
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Masked Autoencoder (MAE)

• Modernized version of 
denoising autoencoder.



Masked Autoencoder (MAE)

• Modernized version of 
denoising autoencoder.
• Mask noise: No 

artifacts
• ViT: No overlapping 

region, no empty space, 
no boundary.
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Masked Autoencoder (MAE)

• Modernized version of 
denoising autoencoder.
• Mask noise: No 

artifacts
• ViT: No overlapping 

region, no empty space, 
no boundary.
• Idea also came from 

masked language 
models. Transformer



Energy-Based Learning

• Example: RBMs
• Energy:

Hinton. Restricted Boltzmann Machines.

E(v, h) = −

∑
i,j vihjwij .

∂ log p(v)
∂wij

=< vihj >
0
− < vihj >

∞ .

p(hj = 1|vi) = σ(
∑

ij viwij).

input Z

Ysible
hidden

P'T 11nF
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General EBMs

• Inference requires running gradient descent and MCMC 
samples.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurIPS 2019.
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• Inference requires running gradient descent and MCMC 
samples.

• Can be applied on hand manipulation trajectory generation.
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General EBMs

• Inference requires running gradient descent and MCMC 
samples.

• Can be applied on hand manipulation trajectory generation.
• Good results in generation but still not a generalized 

representation learning algorithm.

Du & Mordatch. Implicit Generation and Modeling with Energy-Based Models. NeurIPS 2019.
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Self-Supervised Visual Learning

• Match the same image (with severe augmentation)
• Joint embedding approach: Apply loss on the embedding level.
• Use negative examples (contrastive) or not (non-contrastive).
• Energy is defined between a pair of images.
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Several Embedding Loss Formulations

• Instance Classification:

• Contrastive Learning: Cross entropy on pairs

• Non-contrastive Learning (Positive Only)
• Moving Average [Grill et al., 2020]
• Stop Gradient [Chen & He, 2020]

• Use of projectors and predictors
• Use of co-variance regularization

Wu et al., 2018

Zbontar et al. 2021
Bardes et al. 2021Chen & He, 2021Chen et al. 2020

Chen et al. 2020
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DINO

• Knowledge distillation between a student 
and a teacher network. 
• Student:

• Minimize CE:

• Stop gradient on the teacher (no true label).
• Teacher network has EMA weights copied 

from student (prevent collapse). 
Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

ps(x) =
exp(gθs (x)i/τs)∑
k
exp (gθs (x)k/τs)

.



Preventing Collapse

• Cross entropy objective can make both sides collapse to uniform 
distribution.
• Apply sharpening, apply a temperature term on both teacher and student.
•                                 The higher the temperature, the more uniform.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.
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Preventing Collapse

• Cross entropy objective can make both sides collapse to uniform 
distribution.
• Apply sharpening, apply a temperature term on both teacher and student.
•                                 The higher the temperature, the more uniform.

• It can also collapse into always activating a single unit.
• Mean statistics:

• Center teacher prediction:  

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

softmax(g/τ)

ct = mct−1 + (1−m) 1

B

∑B

i=1
gθt(xi)

pt(x) =
exp((gθt (x)i−ct)/τt)∑
k
exp ((gθt (x)k−ct)/τt)

.



Centering and Sharpening

• Only centering: Always uniform distribution, high entropy, easy to 
guess.
• Only sharpening: Collapsed into one unit, easy to guess, low loss, but 

no real learning.



Visualizing Attention

• The [CLS] token is an extra token 
added to summarize the whole 
image into a vector.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.



Visualizing Attention

• The [CLS] token is an extra token 
added to summarize the whole 
image into a vector.
• Visualize the attention map of 

different attention heads using 
different colors.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.



Visualizing Attention

• The [CLS] token is an extra token 
added to summarize the whole 
image into a vector.
• Visualize the attention map of 

different attention heads using 
different colors.
• Showing understanding of 

different objects and parts.

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.



Visualizing Attention

• We can also visualize the attention by querying from a location.
• Weak separation of objects.



Why Does SSL Work?

• The unsupervised loss is a 
surrogate. If an image belongs 
to a similarity class, it also 
belongs to the same semantic 
class.
• The choice of similarity class 

matters.

Aurora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning. 
Saunshi et al. Understanding Contrastive Learning Requires Incorporating Inductive Biases. 2022.



SSL with Motion

• Can we use adjacent frames as self-supervision?
• Objects move densely throughout the image.A. Flow Equivariance Learning B. Pooled and Dense Learning
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SSL with Motion

• Perform SSL in multiple scales (small objects vs. big regions).

Wang et al. PooDLe: Pooled and Dense Self-Supervised Learning from Naturalistic Videos. ICLR 2025.

A. Flow Equivariance Learning B. Pooled and Dense Learning
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SSL with Time

• Use time as an additional source 
of supervision.

Misra et al. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. ECCV 2016.
Sermanet et al. Time-Contrastive Networks: Self-Supervised Learning from Video. ICRA 2018.
Orhan et al. Self-Supervised Learning through the Eyes of a Child. NeurIPS 2020.



SSL with Time

• We can segment videos into meaningful events.
• Leverage the spatiotemporal continuity structure.

Yang & Ren. Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from 
Egocentric Videos. arXiv 2025.



SSL for Visual Control

Yarats. Reinforcement Learning with Prototypical Representations. ICML 2021.



SSL for Visual Control

Cui et al. DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control. NeurIPS 2024.



SSL for Visual Control

Wu et al. Policy Pre-training for Autonomous Driving via Self-supervised Geometric Modeling. ICLR 2023.



BabyCam

• Run visual learning algorithms on baby 
headcam videos.



Summary

• Representation learning leverage the information in unlabeled data.
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Summary

• Representation learning leverage the information in unlabeled data.
• A foundation for sensorimotor learning.
• Inductive biases matter.
• Possible learning objectives for egocentric videos.
• Incorporate 3D vision and actions for downstream planning.
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Emergent Attention, Object Discovery

• SSL representations show awareness of object classes and instance 
identities.
• Why does attention show awareness of objects?
• The network is encouraged to associate different parts of the objects 

together in order to identify whether two inputs belong to the same 
image or not.
• Attending to semantically similar parts facilitates the process. 
• The network is a hierarchical information processing pipeline – Lower 

layers integrate more granular and smaller neighborhood.
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Weak-to-Strong Supervision

• General idea: Use self-supervised learning to learn good features, 
which allow us to generate low-quality masks.
• Then use these masks as pseudo labels and supervise the network to 

predict these low-quality masks.
• Question: how do we come up with masks? What loss is used to 

supervise the network?
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Graph Cut

• Segmentation is essentially a 
clustering problem.
• We can transform the clustering 

problem with the graph cut problem.
• Pixel = node.
• Affinity between the two pixels = 

edge value (flow).
• Objective: Cut the graph into 

disconnected components with a 
minimum sum of edge values.



Normalized Graph Cut (NCut)

• How to prevent cutting 
small isolated nodes?

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

Ncut(A,B) = cut(A,B)
assoc(A,V ) +

cut(A,B)
assoc(B,V ) .



Normalized Graph Cut (NCut)

• How to prevent cutting 
small isolated nodes?
• Normalize by the total 

edge connections of a 
group to all the nodes.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

Ncut(A,B) = cut(A,B)
assoc(A,V ) +

cut(A,B)
assoc(B,V ) .



NCut Details (Optional)

• A form of spectral clustering.
• Degree matrix 0	2	×	2	with 4!  on the diagonal.
• Weight matrix 5	2	×	2	symmetric 6!" .
• Selection vector )! = 1 if 8 ∈ : otherwise −1.
• Solve the minimization:
• Generalized eigenvalue system:
• Let  

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.

miny
y⊤(D−W )y

y⊤Dy
y = (1 + x)−

∑
i|xi>0

di
∑

i|xi<0
di
(1− x).

(D −W )y = λDy.

z = D1/2y D
−

1

2 (D −W )D−

1

2 z = λz.



NCut

• Sort the eigenvectors from the 
smallest to the largest.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.



NCut

• Sort the eigenvectors from the 
smallest to the largest.
• This was a classic image 

segmentation technique 
operating directly on image 
intensity.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.



NCut

• Sort the eigenvectors from the 
smallest to the largest.
• This was a classic image 

segmentation technique 
operating directly on image 
intensity.
• Now, instead of segmenting 

pixels, we can directly segment 
semantically meaningful 
representations from self-
supervision.

Shi and Malik. Normalized Cuts and Image Segmentation. TPAMI 2000.



MaskCut

• Use a pretrained DINO ViT network.

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



MaskCut

• Use a pretrained DINO ViT network.
• Use the “key” features from the last attention layer:

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Wij =
KiKj

∥Ki∥2∥Kj∥2



MaskCut

• Use a pretrained DINO ViT network.
• Use the “key” features from the last attention layer:
• Iterative NCut on the pairwise matrix by masking out the regions 

from previous stages.

Wang et al. Self-supervised transformers for unsupervised object discovery using normalized cut. CVPR 2022.
Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.

Wij =
KiKj

∥Ki∥2∥Kj∥2



Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.
• Select the predictions with the highest confidence score and use 

them as labels. 

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



Iterative Self-Training

• Now add a MaskRCNN structure on top of the pretrained network.
• Select the predictions with the highest confidence score and use 

them as labels. 
• Neural networks can learn from the noisy labels and output smoother 

predictions.

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



More Visualization

Wang et al. Cut and Learn for Unsupervised Object Detection and Instance Segmentation. CVPR 2023.



Pseudo Labels in 3D

Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.



Iterative Refinement of Pseudo Labels

Zhang et al. Towards Unsupervised Object Detection from LiDAR Point Clouds. CVPR 2023.
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Slot Attention Networks

• Can we learn clustering as an end-to-
end operation?
• Slot attention is inspired by the 

success of the attention mechanism.
• Each “slot” attends to a region of the 

image and stores an object centric 
representation.

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.



Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.



Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	) ∈ ℝ'×)  (after encoder), Slots: = ∈ ℝ*×) . Normalize: 
>=#+, = %2 =#+, .
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Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	) ∈ ℝ'×)  (after encoder), Slots: = ∈ ℝ*×) . Normalize: 
>=#+, = %2 =#+, .

• Attention over slots: 

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.
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Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	) ∈ ℝ'×)  (after encoder), Slots: = ∈ ℝ*×) . Normalize: 
>=#+, = %2 =#+, .

• Attention over slots: 
• Updates:

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.
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Slot Attention Networks

• Goal: Reconstruct the image with a concise slot-based representation.
• Input: 	) ∈ ℝ'×)  (after encoder), Slots: = ∈ ℝ*×) . Normalize: 
>=#+, = %2 =#+, .

• Attention over slots: 
• Updates:
• Write into slots: 

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.

at,i,j =

1√
D
k(xi)·q(m̃j)

⊤

∑
j

1√
D
k(xi)·q(m̃j)⊤

.

utj =
∑

i atijv(xi).

mt = GRU(mt−1, ut) +MLP (m̃t−1).



Slot Attention Networks

Locatello et al. Object-Centric Learning with Slot Attention. NeurIPS 2020.



Complex-Valued Autoencoders (CAEs)

• The complex number can 
represent magnitude and 
phase:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
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Complex-Valued Autoencoders (CAEs)

• The complex number can 
represent magnitude and 
phase:
• Each pixel starts with an 

initial phase 0.

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.

z = m · e
iϕ

∈ C.

ẑ = fdec(fenc(x)) ∈ C
h×w.

x̂ = fout(ẑ) ∈ R
h×w.



CAE: More Details

• Apply weights separately to real and imaginary:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.



CAE: More Details

• Apply weights separately to real and imaginary:

• Bias on magnitude and phase:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.



CAE: More Details

• Apply weights separately to real and imaginary:

• Bias on magnitude and phase:

• Gating:

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.



CAE: More Details

• Apply weights separately to real and imaginary:

• Bias on magnitude and phase:

• Gating:

• Activation

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
Neuronal Synchrony in Complex-Valued Deep Networks. ICLR 2014.



Complex-Valued Autoencoders

Löwe et al. Complex-Valued Autoencoders for Object Discovery. TMLR 2022.
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Summary: Object Discovery

• Combine deep features with clustering algorithms.
• Pseudo-labels to train detector networks.
• Creative end-to-end learning-based solutions exist, but there are still 

plenty room for improvement.
• Possible to train from scratch!

• What do we make use of the discovered objects? Is it better to keep 
the awareness in the latent space?


