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Lecture Slides for Note Taking



Diffusion Models

• A popular model for generative model today is diffusion model.
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• A popular model for generative model today is diffusion model.
• The intuition is to iteratively denoise from Gaussian random noises 

into an image.
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Diffusion Models

• Forward process:
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Diffusion Models

• Forward process:
• You can also write: 

!! !"#$ !" !%… …

Original Image Pure Noise

"(!"|!"#$)

q(xt|xt−1) = N (xt;
√
1− βtxt−1,βtI).

xt =
√
1− βtxt−1 +

√
βtϵt, ϵt ∼ N (0, I).
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Properties of the Forward Process
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Properties of the Forward Process

• Forward process:
• Write !!  as a function of !" with larger noises:  

q(xt|x0) = N (xt;
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Properties of the Forward Process

• Forward process:
• Write !!  as a function of !" with larger noises:  

• Cumulative schedule: 

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

xt =
√

1− βtxt−1 +
√

βtϵt

αt = 1− βt. ᾱt =

∏
t

s=1
αs.
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Properties of the Forward Process

• Forward process:
• Write !!  as a function of !" with larger noises:  

• Cumulative schedule: 
•  

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

xt =
√

1− βtxt−1 +
√

βtϵt

xt =
√

ᾱtx0 +
√

1− ᾱtϵ.

αt = 1− βt. ᾱt =

∏
t

s=1
αs.
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Cumulative Schedule

• Show it’s true for !#:
αt = 1− βt.

ᾱt =

∏
t

s=1
αs.

x2 =
√

1− β2x1 +
√

β2ϵ2 =
√

1− β2

√

1− β1x0 +
√

β2ϵ2 +
√

1− β2

√

β1ϵ1

= α1α2x0 +
√

(1− β2)β1 + β2ϵ

= ᾱ2x0 +
√

1− (1− β1)(1− β2)ϵ

= ᾱ2x0 +
√

1− ᾱ2ϵ.



Reverse Process

• A generative model wants to predict !" from !$ .
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Reverse Process

• A generative model wants to predict !" from !$ .
• The reverse process transition is also Gaussian distributed. But we 

don’t know what the transition will be like just by looking at the noisy 
image!
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Reverse Process

• So, we need to learn a “model”:
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

!! !"#$ !" !%… …

Generated Image Pure Noise

&&(!"#$|!")
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Reverse Process

• So, we need to learn a “model”:

• "%  is the denoising vector. 
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

!! !"#$ !" !%… …

Generated Image Pure Noise
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• Bayes rule:

• But we don’t know the marginal distribution $ !!&' . We only know 
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q(xt)
.
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Reverse Process

• Compute "%? Derive # !!&' !! .
• Bayes rule:

• But we don’t know the marginal distribution $ !!&' . We only know 
$$  and $ !! !!&' .
• Solution: Condition on the original input !":

q(xt−1|xt) =
q(xt|xt−1)q(xt−1)

q(xt)
.

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.
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Reverse Process

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).



Reverse Process

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).

µ̃t =
√

αtβ̄t−1

β̄t

xt +
√
αt−1βt

β̄t

x0 = 1
√

αt

(xt −
βt

√

1−ᾱt
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Reverse Process

• Want: train up a "%  to match with %"! .

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).

µ̃t =
√

αtβ̄t−1

β̄t

xt +
√
αt−1βt

β̄t

x0 = 1
√

αt

(xt −
βt

√

1−ᾱt

ϵ).
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Training

• Sometimes it is more common to 
predict the denoising vector &
instead of ".

µ̃t =
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Training

• Sometimes it is more common to 
predict the denoising vector &
instead of ".
• Randomly pick at a time step and 

predict the difference between the 
noisy and the original.
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Training

• Sometimes it is more common to 
predict the denoising vector &
instead of ".
• Randomly pick at a time step and 

predict the difference between the 
noisy and the original.

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).
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• How do we sample an image?



Sampling

• How do we sample an image?
• We know !! which will help us 

transition from "" to ""#$.
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Sampling

• How do we sample an image?
• We know !! which will help us 

transition from "" to ""#$.

• Sample from                                                    
. #" can either be $"	or &$" derived from 
the posterior.

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).

N (xt−1;µθ(xt, t),σ
2

t )
s
0

sample
fromposterior
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More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample. 
Slower than NFs and GANs.

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]
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More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample. 
Slower than NFs and GANs.
• In the non-Markovian model, we can first generate !$ , and based on 
!$  and !" we can generate !$&' and so on.
• Joint distribution:

• Estimate !!&' based on !" and !! :

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

q(x1:T |x0) = q(xT |x0)
∏

T

t=2
q(xt−1|xt, x0).

q(xt−1|xt, x0) = N
(√

at−1x0 +
√

1− αt−1 − σ2
t
· xt−

√

αtx0
√

1−αt

,σ2

t
I

)

.

[Song et al. 2021]
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More on DDIM Samplers

• Prediction of !":

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]

f
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(xt) =
1

√

αt

(xt −

√
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θ
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More on DDIM Samplers

• Prediction of !":

• Sampling process:

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]

f
(t)
θ

(xt) =
1

√

αt

(xt −

√

1− αt · ϵ
(t)
θ
(xt)).

p
(t)
θ
(xt−1|xt) =

{

N (f
(1)
θ

(xt)),σ
2
1I) if t = 1

q(xt−1|xt, f
(t)
θ

(xt)) otherwise.



Guided Diffusion

• We can add guidance on the diffusion updates at inference time.

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurIPS 2021.
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022.

Classifier Guidance / External Score Model

Imagenet Classifier



Guided Diffusion

• We can add guidance on the diffusion updates at inference time.

• We also can train a conditional diffusion model.

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurIPS 2021.
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022.

Classifier Guidance / External Score Model

inference
only

O

0

Requires training



Test-Time Adaptation

• Diffusion can be combined / guided with reward functions at test 
time.

Singhal et al. A General Framework for Inference-time Scaling and Steering of Diffusion Models. arXiv 2025.
Yang et al. Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous and Instruction-guided Driving. CVPR 2024.

[Yang et al. 2024][Singhal et al. 2025]
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Diffusion for Detection

• x

Chen et al. DiffusionDet: Diffusion Model for Object Detection. ICCV 2023.

ñ



Diffusion for Generating Simulation Scenes

Lu et al. SceneControl: Diffusion for Controllable Traffic Scene Generation. ICRA 2024.

HandCrafted

O O

M

guidance



Diffusion for Planning and Control

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.



Diffusion for Planning and Control

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.



Diffusion Planner for Self-Driving

Diffusion-Based Planning for Autonomous Driving with Flexible Guidance. OpenReview 2024.
https://openreview.net/forum?id=wM2sfVgMDH
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• Graphical models
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• Understand pros and cons. Experiment with each option.



Summary: DL for Structured Outputs

• Expanding the output dimension has limitations.
• Requires us thinking about generative models.
• Graphical models
• Autoregressive
• Energy-based
• Diffusion

• Understand pros and cons. Experiment with each option.
• Application in embodied environments.
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The World is 3D

• We have previously focused on using 2D images as input.
• But, the world is 3D. Many non-rigid in 2D becomes rigid in 3D. There 

are also a wide range of 3D sensors.
• Stereo (our binocular vision), infrared camera, LiDAR, radar, etc.



LiDAR



Multi-View CNN

• Treat it as a 2D problem.
• Aggregate the views together with a max-pooling layer.

Su et al., Multi-view convolutional neural networks for 3D shape recognition, ICCV 2015.

0



3D Convolution on Voxels

• 3D convolution on occupancy 
voxels.
• This can be expensive (memory + 

compute). BEtranslational equivariant Of T x T f x
Xyz axes



Bird’s Eye View (BEV) Voxel

• Treat the z-dimension as different 
channels.

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1
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Popular in self-driving domain, e.g. 
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• 140m x 3m (very thin!)
• Transformation in x-y plane is still 
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Bird’s Eye View (BEV) Voxel

• Treat the z-dimension as different 
channels.
• 3D convolution → 2D convolution 

Popular in self-driving domain, e.g. 
80m x
• 140m x 3m (very thin!)
• Transformation in x-y plane is still 

rigid.
• Bird’s eye view: Top down 

representation of the scene (rigid, 
sparse) vs. Range view (non-rigid, 
dense)

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1

design choice
parser



PIXOR

• Bird’s eye view object 
detection.

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.



PIXOR

• Bird’s eye view object 
detection.
• Used the ResNet + 

FPN network single-
stage architecture. 

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.



PIXOR

• Bird’s eye view object 
detection.
• Used the ResNet + 

FPN network single-
stage architecture. 
• Detection: 

Classification + 
regression 
cosθ,sinθ,dx,dy,w,l.

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.
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PIXOR

• Bird’s eye view object 
detection.
• Used the ResNet + 

FPN network single-
stage architecture. 
• Detection: 

Classification + 
regression 
cosθ,sinθ,dx,dy,w,l.
• First real-time 3D 

detection network.
Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.
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Point Cloud

• Point cloud is native for many 3D-depth sensors: RGBD sensor, LiDAR 
sensor, etc.
• List of 3D points: [(!', *', +'), (!#, *#, +#), … , (!( , *( , +()]
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• Point cloud is a set.

Zaheer et al. Deep Sets. NIPS 2017. https://argmax.ai/blog/setinvariance/
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Permutation Invariance

• Point cloud is a set.
• Permutation does not affect the classification in the output. 
• What operations are permutation invariant?

Zaheer et al. Deep Sets. NIPS 2017. https://argmax.ai/blog/setinvariance/

permfte

sutured
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PointNet

• Apply an MLP on each 
point.
• Max pool the features 

across all points.

Qi et al., PointNet: Deep learning on point sets for 3D classification and segmentation, CVPR 2017.

I



PointNet++

Qi et al., PointNet++: Deep hierarchical feature learning on point sets in a metric space, NIPS 2017.

pointnet

wing

8D

0 I



VoxelNet

Zhou and Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. CVPR 2018.



VoxelNet

• Zooming inside voxel feature encoding (VFE)

Zhou and Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. CVPR 2018.

MLP



PointPillar

• x

Lang et al. PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.

O

O



Deformable Convolution in Point Cloud

• Can we convolve a point cloud 
with a spatially defined kernel 
function?

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.



Deformable Convolution in Point Cloud

• Can we convolve a point cloud 
with a spatially defined kernel 
function?
• Resample the kernel at the 

point location.

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.
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Deformable Convolution in Point Cloud

• Can we convolve a point cloud 
with a spatially defined kernel 
function?
• Resample the kernel at the 

point location.
• Compute the weighted sum 

around a neighborhood.

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.



3D Filters

• Visualizing 3D convolution kernels.

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.
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Multi-Sensor Fusion

• LiDAR is precise in depth perception, but the point cloud format is 
sparse and non-uniform (dense around the ego-car and sparse in long 
distance.)
• Camera provides high resolution 2D view and good for long distance 

but lacks 3D. Can we achieve the best of both worlds?
• Late fusion: Generate proposals from one branch (e.g. LiDAR) and 

refine (e.g. using Camera).
• Is there a way to combine the features from both modality in lower 

layers?



• Unproject LiDAR points to camera 
view (i.e. Range View)
• Query the closest camera RGB 

features for each LiDAR point.
• For empty space in BEV, we can 

interpolate from neighboring 
points using kNN.
• Continuous Fusion: ℎ) =
∑*234 5* , !* − !) .

Camera-LiDAR Projection

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.



Supervised Dense Depth

• Drawback of continuous 
fusion: Sparse LiDAR can 
cause the fusion process to be 
less accurate. Relies on kNN.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.



Supervised Dense Depth

• Drawback of continuous 
fusion: Sparse LiDAR can 
cause the fusion process to be 
less accurate. Relies on kNN.
• Why not predict a dense 

depth to pair with the camera 
image?

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.



Supervised Dense Depth

• Drawback of continuous 
fusion: Sparse LiDAR can 
cause the fusion process to be 
less accurate. Relies on kNN.
• Why not predict a dense 

depth to pair with the camera 
image?
• Depth completion module is 

supervised by sparse LiDAR 
and is used for dense fusion.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
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• With the ease of use of automatic differentiation libraries, we can 
compose a computation graph in millions of ways.
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3D Perception

• With the ease of use of automatic differentiation libraries, we can 
compose a computation graph in millions of ways.
• We can design layers and operators to accomodate different types of 

inputs and outputs. 3D, point cloud, sparse data, etc.
• We can fuse different modalities together too, by leveraging 

geometric relationships.



2D to 3D

• Not all embodied agents have the luxury to have a full set of sensors.
• Can we infer the geometric structure with 2D perception?



Classic Vision on Depth and Disparity

• One source of depth is from the displacement of pixels in a stereo 
setup.



Classic Vision on Depth and Disparity

• One source of depth is 
from the displacement 
of pixels in a stereo 
setup.
• But we need to estimate 

disparity.
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From 2D to 3D: Depth Network

• A network that can output disparity.
• Using LiDAR or depth camera as groundtruth supervision.

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.



The Energy-Based Approach

• The energy penalize matching with high cost 
(unary), and when neighboring pixels have 
disparity differences greater or equal to one 
(pairwise).
• Cost network: Train with binary classification

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.

Energy



Self-Supervised Depth

• Appearance matching loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.



Self-Supervised Depth

• Appearance matching loss

• Disparity smoothness loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.



Self-Supervised Depth

• Appearance matching loss

• Disparity smoothness loss

• Left-right disparity 
consistency loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.
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Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion 
of pixels across two consecutive video frames.
• Classic method uses brightness constancy assumption.
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• Use a local patch and assume smooth motion



Classical Approach

• Under-constrained system
• Use a local patch and assume smooth motion
• Rigid, contains many assumptions
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Correlation Volume Approach

• Simple Approach: 
Concatenate the 
two images 
together.
• Correlation: 

Extract some 
levels of features, 
and convolve one 
feature on top of 
another.

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.



Iterative Refining through Feature Pyramid

Sun et al. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume.
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• Photometric Consistency (Appearance)
• Occlusion Estimation
• Forward-backward consistency

• Smoothness
• Self-supervision: Ensure consistent flow at 

different augmentation (e.g. crops)
• Can 3D information help us reason about 

motion?

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

Wang et al., 2018



Depth, Flow, and Pose Movement

• The static objects follow rigid flow: determined by camera motion 
and depth.

Yin & Shi. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose. CVPR 2018.

f
rig
t !→s(pt) = KTt !→sDt(pt)K

−1pt − pt.
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Training Losses

• Appearance Loss (Warping):

• Smoothness Loss:

• Forward-Backward Consistency:

L =
∑

pt

|∇D(pt)| · (exp(−|∇I(p(t)|))T .

L =
∑

pt

[δ(pt)] · ∥∆f
full
t !→s (pt)∥1.

δ(pt) = ∥ffull
t !→s (pt)∥2 max{α,β∥ffull

t !→s (pt)∥2}.
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Summary

• Leverage cross correlation structure for spatial similarity matching.
• Can be used towards: depth, flow, and pose prediction.
• Can form triangulation for self-supervision.

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and 
Motion Segmentation. CVPR 2019



Classical Mapping

• Estimating 3D structure and location from 2D observations.
• Simultaneous Localization and Mapping.
• Common Techniques: Extended Kalman Filter, GraphSLAM

Garg & Jain
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Common Drawbacks

• Probabilistic inference can take long to compute, and mapping takes 
a large memory storage.
• Great for 3D reconstruction but downstream tasks may not need a 

full precision explicit map.
• May not fully understand dynamic objects (averaging across multiple 

scans).
• Is there a more end-to-end version?



Mapping in the Brain: Grid and Place Cells

May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place Cells, Grid Cells, and Memory. 

Morris water maze

Matthias Wandel, 2018



Neural Mapping

• Can we learn a mapping representation?
• Metric space, top-down warping (known egomotion).

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. IJCV 2017.



Hierarchical Planning

• How do we use the learned map (allocentric) feature of the world?

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. IJCV 2017.



Simultaneous Localization and Registration

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.
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Simultaneous Localization and Registration

• The observations 8!  are transformed into a stack 8!+ by applying a 
rotation resampler.

• 8!+ convolve with the base feature. 

• Transform observations into allocentric

• Update belief:

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.
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Simultaneous Localization and Registration

• The observations 8!  are transformed into a stack 8!+ by applying a 
rotation resampler.

• 8!+ convolve with the base feature. 

• Transform observations into allocentric

• Update belief:

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

pt = Softmax(mt−1 ∗ o
′

t
).

ôt =
∑

uvw
puvwT (o|u, v, w).

mi,j,t+1 = LSTM(mi,j,t, ôi,j,t).

o′ijkl = [R(o, 2πl/r)]ijk.

Loss:



Joint Localization, Perception and Prediction

Philips et al. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction CVPR 2021.



Continuous 3D Perception and Mapping

• x

Wang et al. Continuous 3D Perception Model with Persistent State. arXiv 2025.



Topological Mapping

• High-level graph representation
• Each node contains more 

summarized information
• Enables global planning

Johnson. Topological Mapping and Navigation in Real-World Environments. 2018.
Chaplot et al. Neural Topological SLAM for Visual Navigation. CVPR 2020. Johnson, 2018



Summary



Summary

• Covers 3D, motion, depth, and mapping.



Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics): 

Spatial pyramid.



Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics): 

Spatial pyramid.
• Can be made unsupervised



Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics): 

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features. 



Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics): 

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features. 
• Design joint learning frameworks.



Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics): 

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features. 
• Design joint learning frameworks.
• Using geometric transformation to ground representations.



Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics): 

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features. 
• Design joint learning frameworks.
• Using geometric transformation to ground representations.
• Useful for planning (a few weeks from now).


