
DS-GA.3001
Embodied
Learning and
Vision

Mengye Ren

NYU

Spring 2025

embodied-learning-vision-course.github.io

Lecture Slides for Note Taking

Diffusion Models

• A popular model for generative model today is diffusion model.

Diffusion Models

• A popular model for generative model today is diffusion model.
• The intuition is to iteratively denoise from Gaussian random noises

into an image.

Diffusion Models

• A popular model for generative model today is diffusion model.
• The intuition is to iteratively denoise from Gaussian random noises

into an image.

!! !"#$!" !%… …

Original Image Pure Noise

"(!"|!"#$)

Dec

Enc

Diffusion Models

• Forward process:

!! !"#$!" !%… …

Original Image Pure Noise

"(!"|!"#$)

q(xt|xt−1) = N (xt;
√
1− βtxt−1,βtI).

n 51

mÉrwÑ

Diffusion Models

• Forward process:
• You can also write:

!! !"#$!" !%… …

Original Image Pure Noise

"(!"|!"#$)

q(xt|xt−1) = N (xt;
√
1− βtxt−1,βtI).

xt =
√
1− βtxt−1 +

√
βtϵt, ϵt ∼ N (0, I).

0

Properties of the Forward Process

• Forward process: xt =
√

1− βtxt−1 +
√

βtϵt

Properties of the Forward Process

• Forward process:
• Write !! as a function of !" with larger noises:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

xt =
√

1− βtxt−1 +
√

βtϵt

Properties of the Forward Process

• Forward process:
• Write !! as a function of !" with larger noises:

• Cumulative schedule:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

xt =
√

1− βtxt−1 +
√

βtϵt

αt = 1− βt. ᾱt =

∏
t

s=1
αs.

a

Properties of the Forward Process

• Forward process:
• Write !! as a function of !" with larger noises:

• Cumulative schedule:
•

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

xt =
√

1− βtxt−1 +
√

βtϵt

xt =
√

ᾱtx0 +
√

1− ᾱtϵ.

αt = 1− βt. ᾱt =

∏
t

s=1
αs.

a

Cumulative Schedule

• Show it’s true for !#:
αt = 1− βt.

ᾱt =

∏
t

s=1
αs.

x2 =
√

1− β2x1 +
√

β2ϵ2 =
√

1− β2

√

1− β1x0 +
√

β2ϵ2 +
√

1− β2

√

β1ϵ1

= α1α2x0 +
√

(1− β2)β1 + β2ϵ

= ᾱ2x0 +
√

1− (1− β1)(1− β2)ϵ

= ᾱ2x0 +
√

1− ᾱ2ϵ.

Reverse Process

• A generative model wants to predict !" from !$.

!! !"#$!" !%… …

Generated Image Pure Noise

&&(!"#$|!")

Reverse Process

• A generative model wants to predict !" from !$.
• The reverse process transition is also Gaussian distributed. But we

don’t know what the transition will be like just by looking at the noisy
image!

!! !"#$!" !%… …

Generated Image Pure Noise

&&(!"#$|!")

Reverse Process

• So, we need to learn a “model”:
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

!! !"#$!" !%… …

Generated Image Pure Noise

&&(!"#$|!")

W W 49

Reverse Process

• So, we need to learn a “model”:

• "% is the denoising vector.
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

!! !"#$!" !%… …

Generated Image Pure Noise

&&(!"#$|!")0
Do

Reverse Process

• Compute "%? Derive # !!&' !! .

Reverse Process

• Compute "%? Derive # !!&' !! .
• Bayes rule:

q(xt−1|xt) =
q(xt|xt−1)q(xt−1)

q(xt)
.

Reverse Process

• Compute "%? Derive # !!&' !! .
• Bayes rule:

• But we don’t know the marginal distribution $!!&' . We only know
$$ and $!! !!&' .

q(xt−1|xt) =
q(xt|xt−1)q(xt−1)

q(xt)
.

of

Reverse Process

• Compute "%? Derive # !!&' !! .
• Bayes rule:

• But we don’t know the marginal distribution $!!&' . We only know
$$ and $!! !!&' .
• Solution: Condition on the original input !":

q(xt−1|xt) =
q(xt|xt−1)q(xt−1)

q(xt)
.

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

Reverse Process

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

Reverse Process

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).

Reverse Process

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).

µ̃t =
√

αtβ̄t−1

β̄t

xt +
√
αt−1βt

β̄t

x0 = 1
√

αt

(xt −
βt

√

1−ᾱt

ϵ).

noise

00

É platinbetween 4 totraining
target

Reverse Process

• Want: train up a "% to match with %"! .

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).

µ̃t =
√

αtβ̄t−1

β̄t

xt +
√
αt−1βt

β̄t

x0 = 1
√

αt

(xt −
βt

√

1−ᾱt

ϵ).

targetNtetwork

Training

• Sometimes it is more common to
predict the denoising vector &
instead of ".

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).

Training

• Sometimes it is more common to
predict the denoising vector &
instead of ".
• Randomly pick at a time step and

predict the difference between the
noisy and the original.

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).

Training

• Sometimes it is more common to
predict the denoising vector &
instead of ".
• Randomly pick at a time step and

predict the difference between the
noisy and the original.

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).

É too1000

network

Sampling

• How do we sample an image?

Sampling

• How do we sample an image?
• We know !! which will help us

transition from "" to ""#$.
µ̃t =

1
√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).O

Sampling

• How do we sample an image?
• We know !! which will help us

transition from "" to ""#$.

• Sample from
. #" can either be $"	or &$" derived from
the posterior.

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).

N (xt−1;µθ(xt, t),σ
2

t)
s
0

sample
fromposterior
Gaussiandistributi

More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANs.

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]

More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANs.
• In the non-Markovian model, we can first generate !$, and based on
!$ and !" we can generate !$&' and so on.

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]

More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANs.
• In the non-Markovian model, we can first generate !$, and based on
!$ and !" we can generate !$&' and so on.
• Joint distribution:

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

q(x1:T |x0) = q(xT |x0)
∏

T

t=2
q(xt−1|xt, x0).

[Song et al. 2021]

More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANs.
• In the non-Markovian model, we can first generate !$, and based on
!$ and !" we can generate !$&' and so on.
• Joint distribution:

• Estimate !!&' based on !" and !! :

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

q(x1:T |x0) = q(xT |x0)
∏

T

t=2
q(xt−1|xt, x0).

q(xt−1|xt, x0) = N
(√

at−1x0 +
√

1− αt−1 − σ2
t
· xt−

√

αtx0
√

1−αt

,σ2

t
I

)

.

[Song et al. 2021]

0

More on DDIM Samplers

• Prediction of !":

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]

f
(t)
θ

(xt) =
1

√

αt

(xt −

√

1− αt · ϵ
(t)
θ
(xt)).

More on DDIM Samplers

• Prediction of !":

• Sampling process:

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]

f
(t)
θ

(xt) =
1

√

αt

(xt −

√

1− αt · ϵ
(t)
θ
(xt)).

p
(t)
θ
(xt−1|xt) =

{

N (f
(1)
θ

(xt)),σ
2
1I) if t = 1

q(xt−1|xt, f
(t)
θ

(xt)) otherwise.

Guided Diffusion

• We can add guidance on the diffusion updates at inference time.

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurIPS 2021.
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022.

Classifier Guidance / External Score Model

Imagenet Classifier

Guided Diffusion

• We can add guidance on the diffusion updates at inference time.

• We also can train a conditional diffusion model.

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurIPS 2021.
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022.

Classifier Guidance / External Score Model

inference
only

O

0

Requires training

Test-Time Adaptation

• Diffusion can be combined / guided with reward functions at test
time.

Singhal et al. A General Framework for Inference-time Scaling and Steering of Diffusion Models. arXiv 2025.
Yang et al. Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous and Instruction-guided Driving. CVPR 2024.

[Yang et al. 2024][Singhal et al. 2025]

0

Diffusion for Detection

• x

Chen et al. DiffusionDet: Diffusion Model for Object Detection. ICCV 2023.

ñ

Diffusion for Generating Simulation Scenes

Lu et al. SceneControl: Diffusion for Controllable Traffic Scene Generation. ICRA 2024.

HandCrafted

O O

M

guidance

Diffusion for Planning and Control

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.

Diffusion for Planning and Control

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.

Diffusion Planner for Self-Driving

Diffusion-Based Planning for Autonomous Driving with Flexible Guidance. OpenReview 2024.
https://openreview.net/forum?id=wM2sfVgMDH

Summary: DL for Structured Outputs

Summary: DL for Structured Outputs

• Expanding the output dimension has limitations.

Summary: DL for Structured Outputs

• Expanding the output dimension has limitations.
• Requires us thinking about generative models.
• Graphical models
• Autoregressive
• Energy-based
• Diffusion

Xt Xt

II

Summary: DL for Structured Outputs

• Expanding the output dimension has limitations.
• Requires us thinking about generative models.
• Graphical models
• Autoregressive
• Energy-based
• Diffusion

• Understand pros and cons. Experiment with each option.

Summary: DL for Structured Outputs

• Expanding the output dimension has limitations.
• Requires us thinking about generative models.
• Graphical models
• Autoregressive
• Energy-based
• Diffusion

• Understand pros and cons. Experiment with each option.
• Application in embodied environments.

The World is 3D

• We have previously focused on using 2D images as input.

The World is 3D

• We have previously focused on using 2D images as input.
• But, the world is 3D. Many non-rigid in 2D becomes rigid in 3D. There

are also a wide range of 3D sensors.

The World is 3D

• We have previously focused on using 2D images as input.
• But, the world is 3D. Many non-rigid in 2D becomes rigid in 3D. There

are also a wide range of 3D sensors.
• Stereo (our binocular vision), infrared camera, LiDAR, radar, etc.

LiDAR

Multi-View CNN

• Treat it as a 2D problem.
• Aggregate the views together with a max-pooling layer.

Su et al., Multi-view convolutional neural networks for 3D shape recognition, ICCV 2015.

0

3D Convolution on Voxels

• 3D convolution on occupancy
voxels.
• This can be expensive (memory +

compute). BEtranslational equivariant Of T x T f x
Xyz axes

Bird’s Eye View (BEV) Voxel

• Treat the z-dimension as different
channels.

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1

O

H

Bird’s Eye View (BEV) Voxel

• Treat the z-dimension as different
channels.
• 3D convolution → 2D convolution

Popular in self-driving domain, e.g.
80m x

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1

Bird’s Eye View (BEV) Voxel

• Treat the z-dimension as different
channels.
• 3D convolution → 2D convolution

Popular in self-driving domain, e.g.
80m x
• 140m x 3m (very thin!)

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1

3m
80M

Bird’s Eye View (BEV) Voxel

• Treat the z-dimension as different
channels.
• 3D convolution → 2D convolution

Popular in self-driving domain, e.g.
80m x
• 140m x 3m (very thin!)
• Transformation in x-y plane is still

rigid.

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1

Bird’s Eye View (BEV) Voxel

• Treat the z-dimension as different
channels.
• 3D convolution → 2D convolution

Popular in self-driving domain, e.g.
80m x
• 140m x 3m (very thin!)
• Transformation in x-y plane is still

rigid.
• Bird’s eye view: Top down

representation of the scene (rigid,
sparse) vs. Range view (non-rigid,
dense)

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1

design choice
parser

PIXOR

• Bird’s eye view object
detection.

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.

PIXOR

• Bird’s eye view object
detection.
• Used the ResNet +

FPN network single-
stage architecture.

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.

PIXOR

• Bird’s eye view object
detection.
• Used the ResNet +

FPN network single-
stage architecture.
• Detection:

Classification +
regression
cosθ,sinθ,dx,dy,w,l.

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.

1401m 224 224 600 1000

0
atone 1

PIXOR

• Bird’s eye view object
detection.
• Used the ResNet +

FPN network single-
stage architecture.
• Detection:

Classification +
regression
cosθ,sinθ,dx,dy,w,l.
• First real-time 3D

detection network.
Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.

Point Cloud

• Point cloud is native for many 3D-depth sensors: RGBD sensor, LiDAR
sensor, etc.

Point Cloud

• Point cloud is native for many 3D-depth sensors: RGBD sensor, LiDAR
sensor, etc.
• List of 3D points: [(!', *', +'), (!#, *#, +#), … , (!(, *(, +()]

Permutation Invariance

• Point cloud is a set.

Zaheer et al. Deep Sets. NIPS 2017. https://argmax.ai/blog/setinvariance/

Permutation Invariance

• Point cloud is a set.
• Permutation does not affect the classification in the output.

Zaheer et al. Deep Sets. NIPS 2017. https://argmax.ai/blog/setinvariance/

Permutation Invariance

• Point cloud is a set.
• Permutation does not affect the classification in the output.
• What operations are permutation invariant?

Zaheer et al. Deep Sets. NIPS 2017. https://argmax.ai/blog/setinvariance/

permfte

sutured

repr

PointNet

• Apply an MLP on each
point.
• Max pool the features

across all points.

Qi et al., PointNet: Deep learning on point sets for 3D classification and segmentation, CVPR 2017.

I

PointNet++

Qi et al., PointNet++: Deep hierarchical feature learning on point sets in a metric space, NIPS 2017.

pointnet

wing

8D

0 I

VoxelNet

Zhou and Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. CVPR 2018.

VoxelNet

• Zooming inside voxel feature encoding (VFE)

Zhou and Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. CVPR 2018.

MLP

PointPillar

• x

Lang et al. PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.

O

O

Deformable Convolution in Point Cloud

• Can we convolve a point cloud
with a spatially defined kernel
function?

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.

Deformable Convolution in Point Cloud

• Can we convolve a point cloud
with a spatially defined kernel
function?
• Resample the kernel at the

point location.

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.

000

Deformable Convolution in Point Cloud

• Can we convolve a point cloud
with a spatially defined kernel
function?
• Resample the kernel at the

point location.
• Compute the weighted sum

around a neighborhood.

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.

3D Filters

• Visualizing 3D convolution kernels.

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.

Multi-Sensor Fusion

• LiDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)

Multi-Sensor Fusion

• LiDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)
• Camera provides high resolution 2D view and good for long distance

but lacks 3D. Can we achieve the best of both worlds?

Multi-Sensor Fusion

• LiDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)
• Camera provides high resolution 2D view and good for long distance

but lacks 3D. Can we achieve the best of both worlds?
• Late fusion: Generate proposals from one branch (e.g. LiDAR) and

refine (e.g. using Camera).

Multi-Sensor Fusion

• LiDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)
• Camera provides high resolution 2D view and good for long distance

but lacks 3D. Can we achieve the best of both worlds?
• Late fusion: Generate proposals from one branch (e.g. LiDAR) and

refine (e.g. using Camera).
• Is there a way to combine the features from both modality in lower

layers?

• Unproject LiDAR points to camera
view (i.e. Range View)
• Query the closest camera RGB

features for each LiDAR point.
• For empty space in BEV, we can

interpolate from neighboring
points using kNN.
• Continuous Fusion: ℎ) =
∑*234 5* , !* − !) .

Camera-LiDAR Projection

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.

Supervised Dense Depth

• Drawback of continuous
fusion: Sparse LiDAR can
cause the fusion process to be
less accurate. Relies on kNN.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.

Supervised Dense Depth

• Drawback of continuous
fusion: Sparse LiDAR can
cause the fusion process to be
less accurate. Relies on kNN.
• Why not predict a dense

depth to pair with the camera
image?

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.

Supervised Dense Depth

• Drawback of continuous
fusion: Sparse LiDAR can
cause the fusion process to be
less accurate. Relies on kNN.
• Why not predict a dense

depth to pair with the camera
image?
• Depth completion module is

supervised by sparse LiDAR
and is used for dense fusion.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.

3D Perception

• With the ease of use of automatic differentiation libraries, we can
compose a computation graph in millions of ways.

3D Perception

• With the ease of use of automatic differentiation libraries, we can
compose a computation graph in millions of ways.
• We can design layers and operators to accomodate different types of

inputs and outputs. 3D, point cloud, sparse data, etc.

3D Perception

• With the ease of use of automatic differentiation libraries, we can
compose a computation graph in millions of ways.
• We can design layers and operators to accomodate different types of

inputs and outputs. 3D, point cloud, sparse data, etc.
• We can fuse different modalities together too, by leveraging

geometric relationships.

2D to 3D

• Not all embodied agents have the luxury to have a full set of sensors.
• Can we infer the geometric structure with 2D perception?

Classic Vision on Depth and Disparity

• One source of depth is from the displacement of pixels in a stereo
setup.

Classic Vision on Depth and Disparity

• One source of depth is
from the displacement
of pixels in a stereo
setup.
• But we need to estimate

disparity.

00s az e

Xp 1 1,1
z s x_ Xr

in
adf.in

m
ef

BEIII III

a

From 2D to 3D: Depth Network

• A network that can output disparity.
• Using LiDAR or depth camera as groundtruth supervision.

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.

The Energy-Based Approach

• The energy penalize matching with high cost
(unary), and when neighboring pixels have
disparity differences greater or equal to one
(pairwise).
• Cost network: Train with binary classification

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.

Energy

Self-Supervised Depth

• Appearance matching loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.

Self-Supervised Depth

• Appearance matching loss

• Disparity smoothness loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.

Self-Supervised Depth

• Appearance matching loss

• Disparity smoothness loss

• Left-right disparity
consistency loss

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.

Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.

Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.
• Classic method uses brightness constancy assumption.

Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.
• Classic method uses brightness constancy assumption.

Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.
• Classic method uses brightness constancy assumption.

Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.
• Classic method uses brightness constancy assumption.

Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.
• Classic method uses brightness constancy assumption.

Motion, Optical Flow

• Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.
• Classic method uses brightness constancy assumption.

Classical Approach

• Under-constrained system

Classical Approach

• Under-constrained system
• Use a local patch and assume smooth motion

Classical Approach

• Under-constrained system
• Use a local patch and assume smooth motion
• Rigid, contains many assumptions

Correlation Volume Approach

• Simple Approach:
Concatenate the
two images
together.

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.

Correlation Volume Approach

• Simple Approach:
Concatenate the
two images
together.
• Correlation:

Extract some
levels of features,
and convolve one
feature on top of
another.

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.

Iterative Refining through Feature Pyramid

Sun et al. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume.

• Photometric Consistency (Appearance)

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

• Photometric Consistency (Appearance)
• Occlusion Estimation
• Forward-backward consistency

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

Wang et al., 2018

• Photometric Consistency (Appearance)
• Occlusion Estimation
• Forward-backward consistency

• Smoothness

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

Wang et al., 2018

• Photometric Consistency (Appearance)
• Occlusion Estimation
• Forward-backward consistency

• Smoothness
• Self-supervision: Ensure consistent flow at

different augmentation (e.g. crops)

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

Wang et al., 2018

• Photometric Consistency (Appearance)
• Occlusion Estimation
• Forward-backward consistency

• Smoothness
• Self-supervision: Ensure consistent flow at

different augmentation (e.g. crops)
• Can 3D information help us reason about

motion?

Unsupervised Flow

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020

Wang et al., 2018

Depth, Flow, and Pose Movement

• The static objects follow rigid flow: determined by camera motion
and depth.

Yin & Shi. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose. CVPR 2018.

f
rig
t !→s(pt) = KTt !→sDt(pt)K

−1pt − pt.

Training Losses

• Appearance Loss (Warping):

Training Losses

• Appearance Loss (Warping):

• Smoothness Loss:
L =

∑
pt

|∇D(pt)| · (exp(−|∇I(p(t)|))T .

Training Losses

• Appearance Loss (Warping):

• Smoothness Loss:

• Forward-Backward Consistency:

L =
∑

pt

|∇D(pt)| · (exp(−|∇I(p(t)|))T .

L =
∑

pt

[δ(pt)] · ∥∆f
full
t !→s (pt)∥1.

δ(pt) = ∥ffull
t !→s (pt)∥2 max{α,β∥ffull

t !→s (pt)∥2}.

Summary

• Leverage cross correlation structure for spatial similarity matching.

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and
Motion Segmentation. CVPR 2019

Summary

• Leverage cross correlation structure for spatial similarity matching.
• Can be used towards: depth, flow, and pose prediction.

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and
Motion Segmentation. CVPR 2019

Summary

• Leverage cross correlation structure for spatial similarity matching.
• Can be used towards: depth, flow, and pose prediction.
• Can form triangulation for self-supervision.

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and
Motion Segmentation. CVPR 2019

Classical Mapping

• Estimating 3D structure and location from 2D observations.
• Simultaneous Localization and Mapping.
• Common Techniques: Extended Kalman Filter, GraphSLAM

Garg & Jain

Common Drawbacks

• Probabilistic inference can take long to compute, and mapping takes
a large memory storage.

Common Drawbacks

• Probabilistic inference can take long to compute, and mapping takes
a large memory storage.
• Great for 3D reconstruction but downstream tasks may not need a

full precision explicit map.

Common Drawbacks

• Probabilistic inference can take long to compute, and mapping takes
a large memory storage.
• Great for 3D reconstruction but downstream tasks may not need a

full precision explicit map.
• May not fully understand dynamic objects (averaging across multiple

scans).

Common Drawbacks

• Probabilistic inference can take long to compute, and mapping takes
a large memory storage.
• Great for 3D reconstruction but downstream tasks may not need a

full precision explicit map.
• May not fully understand dynamic objects (averaging across multiple

scans).
• Is there a more end-to-end version?

Mapping in the Brain: Grid and Place Cells

May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place Cells, Grid Cells, and Memory.

Morris water maze

Matthias Wandel, 2018

Neural Mapping

• Can we learn a mapping representation?
• Metric space, top-down warping (known egomotion).

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. IJCV 2017.

Hierarchical Planning

• How do we use the learned map (allocentric) feature of the world?

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. IJCV 2017.

Simultaneous Localization and Registration

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

Simultaneous Localization and Registration

• The observations 8! are transformed into a stack 8!+ by applying a
rotation resampler.

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

o′ijkl = [R(o, 2πl/r)]ijk.

Simultaneous Localization and Registration

• The observations 8! are transformed into a stack 8!+ by applying a
rotation resampler.

• 8!+ convolve with the base feature.

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

pt = Softmax(mt−1 ∗ o
′

t
).

o′ijkl = [R(o, 2πl/r)]ijk.

Simultaneous Localization and Registration

• The observations 8! are transformed into a stack 8!+ by applying a
rotation resampler.

• 8!+ convolve with the base feature.

• Transform observations into allocentric

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

pt = Softmax(mt−1 ∗ o
′

t
).

ôt =
∑

uvw
puvwT (o|u, v, w).

o′ijkl = [R(o, 2πl/r)]ijk.

Simultaneous Localization and Registration

• The observations 8! are transformed into a stack 8!+ by applying a
rotation resampler.

• 8!+ convolve with the base feature.

• Transform observations into allocentric

• Update belief:

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

pt = Softmax(mt−1 ∗ o
′

t
).

ôt =
∑

uvw
puvwT (o|u, v, w).

mi,j,t+1 = LSTM(mi,j,t, ôi,j,t).

o′ijkl = [R(o, 2πl/r)]ijk.

Simultaneous Localization and Registration

• The observations 8! are transformed into a stack 8!+ by applying a
rotation resampler.

• 8!+ convolve with the base feature.

• Transform observations into allocentric

• Update belief:

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

pt = Softmax(mt−1 ∗ o
′

t
).

ôt =
∑

uvw
puvwT (o|u, v, w).

mi,j,t+1 = LSTM(mi,j,t, ôi,j,t).

o′ijkl = [R(o, 2πl/r)]ijk.

Loss:

Joint Localization, Perception and Prediction

Philips et al. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction CVPR 2021.

Continuous 3D Perception and Mapping

• x

Wang et al. Continuous 3D Perception Model with Persistent State. arXiv 2025.

Topological Mapping

• High-level graph representation
• Each node contains more

summarized information
• Enables global planning

Johnson. Topological Mapping and Navigation in Real-World Environments. 2018.
Chaplot et al. Neural Topological SLAM for Visual Navigation. CVPR 2020. Johnson, 2018

Summary

Summary

• Covers 3D, motion, depth, and mapping.

Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics):

Spatial pyramid.

Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics):

Spatial pyramid.
• Can be made unsupervised

Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics):

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features.

Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics):

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features.
• Design joint learning frameworks.

Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics):

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features.
• Design joint learning frameworks.
• Using geometric transformation to ground representations.

Summary

• Covers 3D, motion, depth, and mapping.
• Still needs high-level features (recognizing the object and semantics):

Spatial pyramid.
• Can be made unsupervised
• Design end-to-end modules that contain rich features.
• Design joint learning frameworks.
• Using geometric transformation to ground representations.
• Useful for planning (a few weeks from now).

