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Lecture Slides for Note Taking




Diffusion Models

* A popular model for generative model today is diffusion model.




Diffusion Models

* A popular model for generative model today is diffusion model.

* The intuition is to iteratively denoise from Gaussian random noises
Into an image.




Diffusion Models

* A popular model for generative model today is diffusion model.

* The intuition is to iteratively denoise from Gaussian random noises
Into an iImage.

q(xe|xe—q)

Pure Noise

-

Original Image (\




Diffusion Models y O‘i

J
* Forward process: q(x¢|xi—1) = N (x5 /1 — tht—la<5tz)-
_ v N——
P& prov

q(xe|xe—q)

Original Image Pure Noise




Diffusion Models

e Forward process: q(T¢|T¢—1) :@t; V1= Bixi_1,Bed).
* You can also write: xy = /1 — Bsxi—1 + \/ﬁ_f@et ~ N(0,1).
T —— —_—

q(xe|xe—q)

o 00 O
=

Original Image Pure Noise




Properties of the Forward Process

 Forward process: =+ = /1 — Brxi—1 + /Bier




Properties of the Forward Process

 Forward process: =+ = /1 — Brxi—1 + /Bier

* Write x; as a function of x, with larger noises:

- q@\mg N(xs;/arzo, (1 — ayp)l).

ANYU




Properties of the Forward Process

* Forward process: x; = /1 — Biwi_1 + /Brey
* Write x; as a function of x, with larger noises:
q(zt|z0) = N (145 07 (1 —ay)l).

e —

. _ t
 Cumulative schedule: @t =1— 0. o = |[._; @s.




Properties of the Forward Process

 Forward process: =+ = /1 — Brxi—1 + /Bier

* Write x; as a function of x, with larger noises:

q(x¢|zo) = N(xe; v/ agxo, (1 —ay)I).

. _ t
 Cumulative schedule: @t =1— 0. o = |[._; @s.

(S e

1 — 54756.
,._/_/




Cumulative Schedule

O{tzl—ﬁt.

L _ t
* Show it’s true for x,: @ = ][._; as.

T2 = \/1 = Boz1 + v/Baea = /1 — Bar/1 — Brxg + /Baez + /1 — Bor/Bre1
= ajaozo + /(1 — B2)B1 + Pae
= oz + /1 — (1 — B1)(1 — Ba)e
= axg + V1 — ase.




Reverse Process

* A generative model wants to predict x, from x;.

— e

Do (Xp—1]x¢)

© 00 ©

Generated Image Pure Noise




Reverse Process

* A generative model wants to predict x, from x;.

* The reverse process transition is also Gaussian distributed. But we
don’t know what the transition will be like just by looking at the noisy
Image!

Do (Xp—1]x¢)

Generated Image Pure Noise




Reverse Process

* SO, we need to learn a “model”:

po(xi—1|me) = N(21—1;5 po (4, 1), Lo (4, 1)).

Do (Xp—1]x¢)

o 00 O
=

Generated Image Pure Noise




Reverse Process

* SO, we need to learn a “model”:

29(3%—1 ) = N($t—1;$t,§)a Yo(xe,t)).

@s the denoising vector.

Do (Xp—1]x¢)

© 00 ©
=

Generated Image Pure Noise




Reverse Process

e Compute ug? Derive p(x;_1]x;).




Reverse Process

e Compute ug? Derive p(x;_1]x;).

* Bayes rule: (z¢|ze—1 0g(@e 1

Q(xt—l‘xt) =4 @




Reverse Process

e Compute ug? Derive p(x;_1]x;).

* BayeS rule: q(xe|re—1)q(Ti_1)
q(wt) '

. i“t we don’t know the marginal distribution q(x;_;). We only know

and‘q(xtlxt_l).




Reverse Process

e Compute ug? Derive p(x;_1]x;).

* Bayes rule: q(ze|zi—1)q(wi-1)

q(xt)

C](CUt—l\ilft) —

* But we don’t know the marginal distribution q(x;_;). We only know
qr and q(x¢|x:—1).
* Solution: Condition on thgoriginal input@

q(zi—1|Te, 10) = Q(xt%?]%@t@




Reverse Process

q(xe|re—1)q(Ts—1]T0)
q(zt|To)

C]($t—1\$taﬂfo) =




Reverse Process

q(xe|re—1)q(Ts—1]T0)
q(zt|To)

C](%—l\mt,xo) —

q(zi—1]|Te, T0) = N (2415 it BI)




Reverse Process

q(Ti—1|T8,T0) = q<xt|mt_1)Q(xt—1@, X 4hoife

q(w¢|zo)
q(Ti—1|ze, T0) = N(Cﬁt—1@)-
/ /]t _L\/a_%ft_lwt 4+ \/OztB_tlﬂt Vloé_t(a:t . 15_tat 6).
¢ N ’
fnwij I /l+er(>oh-f-\ém be toeen )C_t‘f X5




Reverse Process

q(xe|re—1)q(Ts—1]T0)
q(zt|To) '

C](%—l\wt,ﬂfo) —

q(zi—1]|Te, T0) = N (2415 it BI)

fip = \/a_tgft_lxt 4 \/atB—tlﬂt To = \/z_t(xt B 6).

* Want: train up a ug to match with ;.

/ 1)
retw ork et




Training

e Sometimes it iIs more common to
predict the denoising vector €

instead of_y.
fir = : (2 — & €),
v/ Ot \/]. — C_kt
1 By




Training

e Sometimes it is more common to

predict the denoising vector €
instead of u.

* Randomly pick at a time step and
predict the difference between the
noisy and the original.

iy = —— (1 — ——o)
Lt \/OTtt \/1——C_kt’
1 B




boo bel
—— Training [ -

looo

* Sometimes it is more common to  Algorithm 1 Training
predict the denoising vector €
instead of u.

: repeat

1
2: [Xo)~ q(x0)

3: [t Uniform({1,...,7T})
4

5

wk at a time step and e Ni%» L) d' |
: e gradient descent step on
predict the difference between the Vo |l - Ba(varxo + VI~ are, )|

noisy and the original. 6: until converged')
~ 1 51‘, “éémk
— T+ — ) .
fht \/a—t( t T — _t@)

A NYU




Sampling

* How do we sample an image?

Algorithm 2 Sampling

1. x7 NN(O,I)
2: fort=1T,...,1do
3: z~N(0,I)ift > 1,elsez=0

4: X1 = \/%—t (Xt — \}%—dﬂtee(m,t)) + 012
5: end for
6: return xg




Sampling

* How do we sample an image?

* We know g which will help us Algorithm 2 Sampling
transition from x; to x;_4. 1: xp ~ N(0,T)
1 575 2: fort:T,...,.ldo
@xt,t) — (-Tt_ _ 60(3715))- 3: z~N(0,I)ift > 1,elsez=0
\/0775 V91— oy 4: x¢—1 = \/%—t (xt — \}%@(m,ﬂ) + o1z
5: end for

6: return xg




Sampling

* How do we sample an image?

* We know pg which will help us Algorithm 2 Sampling
transition from x; to x;_1. . x1 ~ N(0,1)
cfort=1T,...,1do
1 Bt

1
2
_ 3: z~N(0,I)ift > 1,elsez=0

o(T¢, 1) = Ty — — €9
Iu ( ’ ) \/ Ot ( \ 1 — (¢ 4: x¢—1 = \/La—t (Xt - \}%Ge(xtat» OtZ
5: end for f’
5 6: return xg
* Sample from N(ajt—l;fL@(ajta t),o;) jcm,tp('e
. 0y can either be 8, or B; derived from
‘ Bror Br From posterior

the posterior.
Crawucsip. distributo,
A NYU

(71))-




More on Samplers

* DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANSs.

[Song et al. 2021]

@
Song et al. Denoising Diffusion Implicit Models. ICLR 2021. 1 NYU
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* DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANSs.

* In the non-Markovian model, we can first generate x;, and based on
xt and x, we can generate x_; and so on.

[Song et al. 2021]




More on Samplers

* DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANSs.

* In the non-Markovian model, we can first generate x;, and based on
xt and x, we can generate x_; and so on.

* Joint distribution:
T
q(z1.7|v0) = q(zr|vo) [ [1=0 @(2t-1]21, T0).

[Song et al. 2021]

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.



More on Samplers

* DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANSs.

* In the non-Markovian model, we can first generate x;, and based on
xt and x, we can generate x_; and so on.

* Joint distribution:
T
q(z1.7|v0) = q(zr|vo) [ [1=0 @(2t-1]21, T0).

. Estimat@based on xo and x;:
Q(ﬂft—ﬂxt,xo) =N (\/at—ll’o + \/1 — Q1 — U? ' mt\;goa(ﬁ]) .

[Song et al. 2021]

ANYU




More on DDIM Samplers

* Prediction of x:

5 (1) = o= (e — VT — g - e (w1)).

[Song et al. 2021]

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.



More on DDIM Samplers

L
* Sampling process: 1 |
p(t)(ajt_l‘xt) — N( 9( )( )) I) ift=1
: q(@¢—1]z4, fe(t) (x¢)) otherwise.

—
N

[Song et al. 2021]

@
Song et al. Denoising Diffusion Implicit Models. ICLR 2021. 1 NYU




Guided Diffusion

* We can add guidance on the diffusion updates at inference time.

___Classifier Guidance / External Score Model

€ eg(xt) — V1 — a; Vi, log pg(ylz:)
z¢_1 < sample from N (u + sX Vg, logpg(y[21), X) 1 « /A1 (% Vi_tt_é‘fe) + 1 —ap_q€

I(\'\&jc /fo czﬂ'g .fv'q, ,

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurlPS 2021. (C/l NYU
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022. !




inbereny only Guided Diffusion

* We can add guidance on the diffusion updates at inference time.

Classifier Guidance / External Score Model

€+ eg(zt) — V1 — 0y Vg, log py (y|xt)
i1 < sample from N@+ XV, logps(ylze),X) x4 1 « VA1 (% Vi_ét_afe) + /T —a&;_1€

* We also can train a conditional diffusion model.

repeat
(x,c) ~p(x,c) > Sample data with conditioning from the dataset
C <+ O wIi ability punconda > Randomly discard conditioning to train unconditionally
A~ p(N) o > Sample log SNR value
e ~N(0,I)
Z) = Q)X + O)\€ > Corrupt data to the sampled log SNR value
Take gradient step on V ||€(z», ) — €| > Optimization of denoising model

until converged

Rejuires trams
Dhariwal & Nichol. Diffusion Mlog;/S Beat GANs on Image Synthesis. NeurlPS 2021. (C// NYU
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022. !




Test-Time Adaptation

* Diffusion can be combined / guided with reward functions at test

Inference Best-of-N FK Steering Unshaped

A A A \

1 I 1 a

; g 25 | | i) @) I l

| | 1 Vi 1! el

! e | A i

Reward E i E/' D/:.::- E I":: "n

l ¢ o || ol I

i ¢/ [ Eb/ v

: P [ | ol H ~

) ‘e | N [ Es

n—‘ﬂ‘\\‘ o— 1.1 &

NN P e D\“$" ﬁ |

1 ~ ] 1

1 1 1
t =T — Denoising —» t =0 t =T — Denoising — t =0 t =T — Denoising — £ =0 I

(1) Iteratively de-noise zp — xp_1 — ... = Zo. I

Prompt: E@wp sign in a red field” (2) Generate multiple samples (particles).
N

€
¢ (3) Resample promising particles at intermediate steps.

[Singhal et al. 2025]

Singhal et al. A General Framework for Inference-time Scaling and Steering of Diffusion Models. arXiv 2025.

Yang et al. Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous and Instruction-guided Driving. CVPR 2024.

“Change to the left lane”

[Yang et al. 2024]
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Diffusion for Detection

Po(Xe-11%t)
@ @B @
R, //

q(xelxe-1)

()

'é.-. |
" N A e VO S T

Figure 1. Diffusion model for object detection. (a) A diffusion
model where q is the diffusion process and py is the reverse pro-
cess. (b) Diffusion model for image generation task. (c) We pro-
pose to formulate object detection as a denoising diffusion process
from noisy boxes to object boxes.

Chen et al. DiffusionDet: Diffusion Model for Object Detection. ICCV 2023.

Image Encoder

Detection Decoder
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Diffusion for Generating Simulation Scenes |
(fewnel Crafted

\ N |
~
/ | et Zh ‘\fii’
e

Spatial Region Constraint Actor Attribute Constraint Initial Scene Constraint Collision Constraint On-road Constraint

.

—

Scene Input Final Scene
s ’ i
% ; { A

B —— \ > _ = > —_— s —_— i'

Rand: f i i <
i Init;rl}zgtrign ' ‘ i{ . i ii T Diffusion Steps i

i

Each Diffusion Step

i

traint
Constraints » Predicted Noise

Region

Density ~ Speed 7
- — — ;’/ // 2 ///’ i

Lu et al. SceneControl: Diffusion for Controllable Traffic Scene Generation. ICRA 2024.



Diffusion for Planning and Control

7T Action !
| Representation |
I p(a) :
: I
| Scalar (Regression) |
I
Explicit Policy : e 4 )
§ NN 1
I / /\ \
Fy(o) |i = |
| Mixture of Gaussians |
I
: I
| I
I I
I

Categorical

(a) Explicit Policy

Implicit Policy
argmin(E)
. ao.o
Ey(0,a).
A A 0.5

@ @ 19% 05 00 05 1.0

Energy 1

T —
-~
-»

(b) Implicit Policy o
~’~

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.

1.0
Diffusion Policy 0.5
VE(a)-----,
D i .1 |aoo
€9(0,2)j 1
4 i =U.
At 0.5

Gradient Field

vVVvvwvy

\p”, vyY VO

YZAAAALLY

VZAAAA A

YYfia. 'vi
vy i 'VYV'
WY YYVVVYYVYY

-~ ~ ~

AaY AAAAAAAAAA_ JAA

@ 190 -05 00 05 1.0
(0]

(c) Diffusion Policy

—




Diffusion for Planning and Control

Input: Image Observation Sequence Observation O« Ous
Diffusion Policy €4(O, A, k) »
ja AR 3 >

Action Sequence A:
<——Prediction Horizon Tp—

a e,

t+4, . .

Output: Action Sequence a) Diffusion Policy General Formulation

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.




Diffusion Planner for Self-Driving
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https://openreview.net/forum?id=wM2sfVgMDH

Diffusion-Based Planning for Autonomous Driving with Flexible Guidance. OpenReview 2024.
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Summary: DL for Structured Outputs




Summary: DL for Structured Outputs

* Expanding the output dimension has limitations.




Summary: DL for Structured Outputs

* Expanding the output dimension has limitations.

* Requires us thinking about generative models.
* Graphical models
* Autoregressive

* Energy-based 4/) %

e Diffusion
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Summary: DL for Structured Outputs

* Expanding the output dimension has limitations.

* Requires us thinking about generative models.
* Graphical models
* Autoregressive
* Energy-based
* Diffusion

* Understand pros and cons. Experiment with each option.




Summary: DL for Structured Outputs

* Expanding the output dimension has limitations.

* Requires us thinking about generative models.
* Graphical models
* Autoregressive
* Energy-based /
 Diffusion -

* Understand pros and cons. Experiment with each option.
* Application in embodied environments.




The World is 3D

* We have previously focused on using 2D images as input.

Ay
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The World is 3D

* We have previously focused on using 2D images as input.

* But, the world is 3D. Many non-rigid in 2D becomes rigid in 3D. There
are also a wide range of 3D sensors.

i
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The World is 3D

* We have previously focused on using 2D images as input.

* But, the world is 3D. Many non-rigid in 2D becomes rigid in 3D. There
are also a wide range of 3D sensors.

 Stereo (our binocular vision), infrared camera, LIDAR, radar, etc.

il

A NYU






Multi-View CNN

* Treat it as a 2D problem.
* Aggregate the views together with a max-pooling layer.

4 (o
Loyl
'Y 4 bathtub
. bed
‘ chair
s ) desk
\ — dresser
/ :
/
’ toilet
I
3D shape model
rendered with 2D rendered our multi-view CNN architecture output class
different virtual cameras images predictions

Su et al., Multi-view convolutional neural networks for 3D shape recognition, ICCV 2015.



3D Convolution on Voxels @

* 3D convolution on occupancy
voxels.

* This can be expensive (memory +
compute).

Trans latbng [ efm‘vanmar @
iTe0) = Tipooy
: X v Z, Axes

—s
@ @ EANYU




Bird’s Eye View (BEV) Voxel

* Treat the z-dimension as different
channels.

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1



Bird’s Eye View (BEV) Voxel

* Treat the z-dimension as different

channels.

* 3D convolution — 2D convolution o
Popular in self-driving domain, e.g.
80m X bt

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1




Bird’s Eye View (BEV) Voxel

* Treat the z-dimension as different

channels.

* 3D convolution — 2D convolution =
Popular in self-driving domain, e.g.
80mM x g e

* 140m x 3m (very thin!) Sra e

© XBom & L

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1




Bird’s Eye View (BEV) Voxel

* Treat the z-dimension as different

channels.

* 3D convolution — 2D convolution =
Popular in self-driving domain, e.g.

* 140m x 3m (very thin!) e

* Transformation in x-y plane is still L |,
rigid.

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1




Bird’s Eye View (BEV) Voxel

* Treat the z-dimension as different

channels.

e 3D convc_)lution — 2D convol.ution s
Popular in self-driving domain, e.g.
80m X

* 140m x 3m (very thin!)
* Transformation in x-y plane is still :
rigid.

* Bird’s eye view: Top down p(&f?n o |

representation of the scene (rigid,
sparse) vs. Range view (non-rigid,
dense) |

Zhang et al. Efficient convolutions for real-time semantic segmentation of 3D point clouds, 3DV 2018.1




* Bird’s eye view object
detection.

PIXOR

3D LIDAR point cloud

Input representation

s

PIXOR detector

3D BEV detections

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.

I
800x700x36

200x175x1  200x175%6

b D 23
ﬁ [ 1 4 3
B
Backbone
1/16
S I '
Res_block_5 1x1, 196 |
96-96-384, /2, #3 s [ - i [
Up_sample_6 | Deconv
! 3x3, 128, x2
Res_block_4 _1281’&—4 -
64-64-256, /2, #6 v N Conv
A2 28y st | N )
P |
96, x2 N |
Res_block_3 Head 1
48-48-192, /2, #6 eader |
3x3, 96
Res_block_2 3x3, 96
24-24-96, /2, #3 3x3, 96
3x3, 96
3x3, 32 | |
3x3, 32 3x3, 1 3x3, 6 (]
(1) (3.6 A NYU




PIXOR

3D LIDAR point cloud

* Bird’s eye view object
detection. =0

e Used the ResNet +

Input representation

PIXOR detector

3D BEV detections

FPN network single-
stage architecture.

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.

o
sl
Backbone
1/16
R !
Res_block_5 1x1, 196
96-96-384, /2, #3 _ ¥
1/8 Up_sample_6
Res_block_4 _128l,x2—(
64-64-256, /2, #6 P
—— 1/4 Up_sample_7
P |
96, x2
Res_block_3 Head
48-48-192, /2, #6 eader |
3x3, 96
Res_block_2 3x3, 96
24-24-96, /2, #3 3x3, 96
7 3x3, 96
3x3, 32
3x3, 32 (3x3,1 ] (33,6 )

D
800x700x36

200x175x1  200x175%6

|

.

o

“ !

|

N

Nt

N
\

d

Deconv
3x3, 128, x2

1x1, 128
|
!

A NYU




‘_______--—————-—‘1

D D [Fo M X(Y‘)/"". PIXOR LY X LLY¥ doo X [o22

3D LIDAR point cloud Input representation PIXOR detector 3D BEV detections

* Bird's eye view object . . e ‘ N

detection.

* Used the ResNet + = | P ’ 9L
FPN network single- #&.- w i | |
stage architecture. packbone

S

* Detection: Res ok 5

96-96-384, /2, #3

|
Y i |
ificati ——— "8 [ upsamples | | “
Classification + T |
. 64-64-256, /2, #6 I .
!

96, x2 N
Res_block_3 H a—'
48-48-192, /2, #6 Seelsr |

1/16

3x3, 96
Res_block_2 3x3, 96
D 2{( 24-24-96, /2, #3 3x3, 96
3x3, 96
r (55 ©

S T r— 3x3, 32 | |
3x3, 32 (3x3,1 ) ((3x3,6 ) W Y
Yang @t al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018. D 1 N U
800x700x36 200x175%x1  200x175x6




PIXOR

3D LIDAR point cloud
* Bird’s eye view object
detection.

* Used the ResNet +
FPN network single-

Input representation

PIXOR detector

3D BEV detections

stage architecture.

e Detection:
Classification +
regression
cos0,sinB,dx,dy,w,|.

e First real-time 3D
detection network.

Yang et al. PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.

i i
L~ /// & } ;
Backbone
1/16
N I '
Res_block_5 1x1, 196 |
96-96-384, /2, #3 s vy - i i
Up_sample_6 | ﬂ
: 3x3, 128, x2
Res_block_4 _1281’&—( -
64-64-256, /2, #6 v N Conv
(42 12 4 (pcsampie | N )
»| AN
96, x2 L |
Res_block_3 Head 1
48-48-192, /2, #6 eader |
3x3, 96
Res_block_2 3x3, 96
24-24-96, /2, #3 3x3, 96
7 3x3, 96
3x3, 32
3x3, 32 (3x3,1 ) ((3x3,6 ) (]

D
800x700x36

200x175x1  200x175%6




Point Cloud

RGBD sensor, LIDAR

oo: & DSee 0 T Lo gy
ot o, %0 Y Y T X
DRI - T L% S

o o S ola aMn aﬁ ooo“ 9 :Dﬂowwmt‘-’ﬂom oo L
.hl el oe -.- .t”uwf -‘.oonaaamo.ﬂ“ L
“l. .N..vn ....o.bo.vw’o\'..\.e e °
O Gon I.-\.,n?“*\.ocl o 0%
BRSSO P ok A
o b
i

Q‘.ﬁ)
e
3D point cloud

3D voxels

* Point cloud is native for many 3D-depth sensors
sensor, etc.



Point Cloud
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Permutation Invariance

* Point cloud is a set.

Zaheer et al. Deep Sets. NIPS 2017. https.//argmax.ai/blog/setinvariance/



Permutation Invariance

* Point cloud is a set.
* Permutation does not affect the classification in the output.
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Zaheer et al. Deep Sets. NIPS 2017. https.//argmax.ai/blog/setinvariance/



Permutation Invariance

* Point cloud is a set.

* Permutation does not affect the classification in the output.

* What operations are permutation invariant?

I‘I:

A ey
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Zaheer et al. Deep Sets. NIPS 2017. https.//argmax.ai/blog/setinvariance/
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PointNet

* Apply an MLP on each
point.

l PointNet

* Max pool the features

A * table? B )
7 across all points.

car?

Classification Part Segmentation ~ Semantic Segmentation trainable weights

X
Z-Z shared shared
MLP(64) MLP(1 28)
L

Qi et al., PointNet: Deep learning on point sets for 3D classification and segmentation, CVPR 2017.

trainable
256x9 biases

l 1x9
trix *
iy | pache

shared
MLP(1024)

reshape
3x3

———

mult
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PointNet++

skip link concatengti '\"\k N

unit
interpolate
. . pointnet
Classification

— — — ®
sampling & = pointnet ~ sampling&  pointnet g
grouping grouping @
S DN b o
Y 2'e E

set abstraction set abstraction

\

‘
o . o b e A NYU
Qi et al., PointNet++: Deep hierarchical feature learning on point sets in a metric space, NIPS 2017. 1




VoxelNet

Region Proposal Network

Convolutional Middle Layers

Feature Learning Network
Voxel Grouping Random Stacked Voxel Sparse 4D Tensor
Partition Sampling Feature Encoding CxD'xH'xW
(3]
©), 3| |3 ¢
oo oo 1.1 5 2 ‘E
e e v & (7] © )
7 o We $ 5 z| |= «
PLA I g o e ok/ = -y ® 3 g
¥ e o e * - i P | g il P g ~ I BITIE™ o
Y, ey i g g |2 :
“© &) > > sl | £
Point-wise o g o
DxHxW _ Input 2l | ) G §°
= 0)
Point-wise Point-wise Voxel-wise
Feature-1 Feature-n Feature

Zhou and Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. CVPR 2018.



VoxelNet

» Zooming inside voxel feature encoding (VFE)
mLp

(7]
= :
© c
3 > £
2 3
o Q
® e — % — x O|=>
o b 3
c 2
c Q s
[e] =) .!, =) -
Point-wise g E - <
= o
Input = . _ g o
i | Point-wise | £
[)
Feature o
Locally
Aggregated
Feature
Point-wise
concatenated
Feature

Zhou and Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. CVPR 2018.



PointPillar

Point cloud Predictions
Pillar Detection | s
Feature Net (ZD CN Head (SSD) NS 2
[ Point Stacked Learned Pseudo \'. ! &» Decony \‘.
! Pillars Features image ! ! c &2 2c 2 :
] ! : : wi2 | Conv X
: : : 7P Deconv Concat :
: - Wi4 | Conv 2C W% s :
1 1 6C !
: : : /8 Deconv s :
\ \\ 4C wi8 20 Hi2 ,/
S L R A S T I P SO0 N VU o i Al A e A e At e LA A S S v T -

- T A NYU
Lang et al. PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019. 1




Deformable Convolution in Point Cloud

/d& ‘\ o S ‘\ /do >
0°0, it h o b

* Can we convolve a point cloud £ ~ ; !

2 f ot N
\ / \ Q Q \ ’ \ 7

with a spatially defined kernel N ¥ s e SN\
(a) ( ()

o \
/ \
\

X

function?

b)

(a) (b) (c)
.
\-N&. Sum over neighborhood
e
)
® E
Separable Filter Deformed Filter
Tri-Linear Interpolation
Nearest Neighbors 3D Filter 3D Deformable Filter Convolution

@
Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019. 1 NYU




Deformable Convolution in Point Cloud

P, o3 N
« Canwe convolve a point cloud £ /o /7 % £t S R TR SR
with a spatially defined kernel . m - /’W\ ‘
function? -
(@) (b) ()

* Resample the kernel at the
point location. o o)

(c)
.
\-N&. Sum over neighborhood
e
)
® E
Separable Filter Deformed Filter
Tri-Linear Interpolation
———
Nearest Neighbors 3D Filter 3D Deformable Filter Convolution

@
Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019. 1 NYU




Deformable Convolution in Point Cloud

/do‘\ 9’5\\ /o'o"\\
« Canwe convolve a point cloud £ /7% /7 % £ 0% 8 T SR
with a spatially defined kernel . - /’W\ ‘
function?
(@) (b) (c)
* Resample the kernel at the
point location. o o) q
* Compute the weighted sum \
. "\_ Sum over neighborhood
around a neighborhood. A\ E
.®-

@
Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019. 1 NYU




3D Filters

* Visualizing 3D convolution kernels.

doea &
NG I,

Layer 1 Layer 2

Xiong et al. Deformable Filter Convolution for Point Cloud Reasoning. 2019.



Multi-Sensor Fusion

* LIDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)
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Multi-Sensor Fusion

* LIDAR is precise in depth perception, but the point cloud format is
sparse and non-uniform (dense around the ego-car and sparse in long
distance.)

» Camera provides high resolution 2D view and good for long distance
but lacks 3D. Can we achieve the best of both worlds?

* Late fusion: Generate proposals from one branch (e.g. LIDAR) and
refine (e.g. using Camera).

* Is there a way to combine the features from both modality in lower
layers?




Camera-LiDAR Projection

* Unproject LIDAR points to camera
view (i.e. Range View)

* Query the closest camera RGB "\ e eraio camera vew
features for each LiDAR point.

|

* For empty space in BEV, we can
interpolate from neighboring ~ wwse ;
points using kNN. D"",

«

0101

O

I

<: D (4) Retrieve lmage + Geometric

O‘ v E Features

* Continuous Fusion: h; =

2 MLP([fJ" Xj — xl]) :

(5) Output Feature to Target Plxel

Liang et al. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.




Supervised Dense Depth

* Drawback of continuous PPy —

> e

fus|on Spa rse L|DAR can Mapng 7 3D Detection . ZD Detection _ Depth Completion

cause the fusion process to be - il izl oont o
less accurate. Relies on kNN. - = o

RGB Camera Image

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.




Supervised Dense Depth

. .
Drawback of continuous e e —
fusion: Sparse LiDAR can Mapping _ _Depth Completion
cause the fusion process to be -l (i 'Y X. :
less accurate. Relies on kNN.

* Why not predict a dense

depth to pair with the camera
Image?

/// - S \ W .
LiDAR Point Cloud RGB Camera Image

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.




Supervised Dense Depth

* Drawback of continuous g e —

e

fUSiOﬂZ Spa rse LIDAR can Mapping 3D Detection 2D Detection _ Depth Completion

1.#%
S\

cause the fusion process to be
less accurate. Relies on kNN.

* Why not predict a dense
depth to pair with the camera
Image?

. Depth complet|on module is LiDAR Point Cloud RGB Camera Image
supervised by sparse LIDAR

and is used for dense fusion.

Liang et al. Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.




3D Perception

* With the ease of use of automatic differentiation libraries, we can
compose a computation graph in millions of ways.
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inputs and outputs. 3D, point cloud, sparse data, etc.




3D Perception

* With the ease of use of automatic differentiation libraries, we can
compose a computation graph in millions of ways.

* We can design layers and operators to accomodate different types of
inputs and outputs. 3D, point cloud, sparse data, etc.

* We can fuse different modalities together too, by leveraging
geometric relationships.




2D to 3D

* Not all embodied agents have the luxury to have a full set of sensors.
 Can we infer the geometric structure with 2D perception?

Milimeter-waye Surround Surround 4 Ultrasonic  16-line Lidar  GPS, IMU
Radars View Cam View Camy Radars A ;
| / /
. Vi
- 4 2
/
— e et
,/ \
! .
Teleﬁhoto Surroun d
Lens / View Cam.
.
.
1
.
4 Ultrasonic ADtU Surround 4 Ultrasonic 4 Ultrasonic

Radars View Camera Radars Radars




Classic Vision on Depth and Disparity

* One source of depth is from the displacement of pixels in a stereo
setup.




Classic Vision on Depth and Disparity

* One source of depth is (0.0.2) Uii’i}.o,ﬂ A= L
from the displacement = )
of pixels in a stereo = 22
setup. §=% -x i

* But we need to estimate [; Fx ] ¢
disparity. Tz

(0.9 o) i
left Com Pight Cam = P’j_c
z
= _Bi'




From 2D to 3D: Depth Network

* A network that can output disparity.
* Using LIDAR or depth camera as groundtruth supervision.

Left input image

_ - .
_ -

90 m 20 m 1:7 m
Right input image

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.




The Energy-Based Approach

* The energy penalize matching with high cost
(unary), and when neighboring pixels have
disparity differences greater or equal to one

(pairwise).

* Cost network: Train with binary classification

Energy  E(D) = Y (Clsca(e. D(P)

P

+ Y Py x 1{|D(p) - D(q)|

qEN,

+ Y Py x 1{|D(p) - D(a)| > 1}),

qeN,

Zbontar & LeCun. Computing the Stereo Matching Cost with a Convolutional Neural Network. CVPR 2015.

D(p) = argmin C(p, d).

L1:

L2:

L3:

Left image patch

Right image patch

5 5
Hai
‘. ‘5 ‘. ‘5
—_— 32 _ 32
’ . . i
| |200 | | 200
| | 200 | | 200
"’« ncatenate

L4:

L6:

L7:

L8:




Self-Supervised Depth

* Appearance matching loss (7
1- SSIM(IfJ )
ap N Za Cap .r‘\!)pea‘lb'auce matching loss s N
Cy5 Disparity smoothness loss Ir fl

2Hx2WxD/2

| o ‘A NYU
Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017. 1




Self-Supervised Depth

* Appearance matching loss (7
1 7l
1- SSIM(IW O R
(l—a) I —I Cap Appearance matching loss 2 (" D

Cap= NZ ] D (5

Cys Disparity smoothness loss T l

Cjr Left-Right disparity consistency loss / I I
I \ J \ J

* Disparity smoothness loss

Cas = _Z|a Jlel

Oy

Lle 6w 25|

2Hx2Wx D/2

| o ‘A NYU
Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017. 1




Self-Supervised Depth

* Appearance matching loss (7
l 1—- SSIM(I’ I4) -
Cop= NZ +(1—a)|;;— 1L |- f”‘ -
i
* Disparity smoothness loss | ﬁﬁ% |
: , e
0§s=%Z|azd§j|e-||azfﬁ||+|ayd§j|e—||3vfij||. ” 4 J ’j |
4,3
* Left-right disparity
conS|stencv Ioss (2}
lr :j-i-dﬁj '

o R o A NYU
Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017. 1




Motion, Optical Flow

* Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.
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Motion, Optical Flow

* Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) =I(x + Azx,y + Ay, t + At).
I(x+ Ax,y + Ay, t + At) :I(az,y,t)+%Aw+ %Ay+%At.




Motion, Optical Flow

* Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) = I(x + Az,y + Ay, t + At).
(x4 Az,y + Ay, t + At) = I(z,y,t) + LAz + gIAy+ SLAL.

Aaz+gIAy+gIAt—0

ANYU




Motion, Optical Flow

* Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) = (v + Az,y + Ay, t + At).
I(x+ Ax,y + Ay, t + At) = I(z,y,t) + gIA:U+ gIAy+ aIAt

-2 GeAz + GLAY + GLAL = 0.
ol

Iyzﬁ—y
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Motion, Optical Flow

* Another task that takes into a pair of image is to estimate the motion
of pixels across two consecutive video frames.

* Classic method uses brightness constancy assumption.

I(z,y,t) = I(x + Az,y + Ay, t + At).
(x4 Az,y + Ay, t + At) = I(z,y,t) + LAz + gIAy+ SLAL.

-2 GeAz + GLAY + GLAL = 0.
ol

=73, Lou+ T+ I =0.
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Classical Approach

* Under-constrained system I,u+ I+ I = 0.




Classical Approach

* Under-constrained system I,u+ I+ I = 0.

* Use a local patch and assume smooth motion




Classical Approach

* Under-constrained system Iou+ Iyv+1; =0.
* Use a local patch and assume smooth motion
* Rigid, contains many assumptions

I:(p1) I,(p1)

L(px:) I(pwe) I,(pw2)




Correlation Volume Approach

* Simple Approach: "™ i
Concatenate the N
two images
together.

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.




Correlation Volume Approach

* Simple Approach:  fagee™e

ot
Concatenate the ;
two images §

together.

* Correlation: —

Extract some i ‘

feature on top of
another.

levels of features,

and convolve one
Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks. ICCV 2015.




Iterative Refining through Feature Pyramid

Feature Feature @~ ;------------------ » Upsampled flow

pyramid 1  pyramid 2 .. ﬁ ’ .
o - :~ -y T

|
| |
: Warping layer -
0 | l
:

: i —»  Cost volume layer
! b
' I

— Optical flow estimator ¢
Refined flow {

av

<+«——i  Context network

Sun et al. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume.



Unsupervised Flow

* Photometric Consistency (Appearance)

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020
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* Photometric Consistency (Appearance)

* Occlusion Estimation
* Forward-backward consistency

Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020
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* Occlusion Estimation
* Forward-backward consistency

* Smoothness

Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Unsupervised Flow

* Photometric Consistency (Appearance)

* Occlusion Estimation
* Forward-backward consistency

* Smoothness

* Self-supervision: Ensure consistent flow at
different augmentation (e.g. crops)

Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Unsupervised Flow

* Photometric Consistency (Appearance)

* Occlusion Estimation
* Forward-backward consistency

* Smoothness

* Self-supervision: Ensure consistent flow at
different augmentation (e.g. crops)

* Can 3D information help us reason about L -
. mage
motion? Wang et al., 2018

Jonschkowski et al. What Matters in Unsupervised Optical Flow. ECCV 2020




Depth, Flow, and Pose Movement

* The static objects follow rigid flow: determined by camera motion

and depth. Tig (pe)

t—s

= K14, Dy (pt)K_lpt

Input Frames DepthNet

(backward)
] |

Depth Map Rigid Flow

PoseNet Camera Motion

— Pt-

Final Flow

(backward)

v v

Rigid Structure Reconstructor Non-rigid Motion Localizer

Yin & Shi. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose. CVPR 2018.

P
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Training Losses

* Appearance Loss (Warping): »
L. = al—SSIJ\g(ItaI;"Zg) -+ (1 — Oé)”It - jgzg||1

B = full T
Lo = =S8 MULLET) 4 (1 o)1, — T,




Training Losses

* Appearance Loss (Warping): »
L. = al—SSIJ\g(ItaI;"Zg) -+ (1 — Oé)”It - jgzg||1

_ rfull ~
Lrw = =SS MULL ) 4 (1 — o)1, — I,
 Smoothness Loss:

L=3,, VD) - (exp(~[VI((H))"




Training Losses

* Appearance Loss (Warping): »
L. = al—SSIJ\g(ItaI;"Zg) -+ (1 — Oé)”lt - jgzg||1

_ rfull ~
Lrw = =SS MULL ) 4 (1 — o)1, — I,
 Smoothness Loss:

L=3,, VD) - (exp(~[VI((H))"

* Forward-Backward Consistency:
L=3,,00)] - 1AFLSS )

6(p) = f55 (pe)ll2 maxc{a, BIL 55 (o) 12}




Summary

* Leverage cross correlation structure for spatial similarity matching.

Monocular Depth Prediction Optical Flow Estimation
-
= D & » < F «—
l C—
i Loss
v
E o > -
f ! Loss
7T N
B — > \v4 L <+
=.J -
Camera Motion Estimation Motion Segmentation
Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and (?l NYU

Motion Segmentation. CVPR 2019



Summary

* Leverage cross correlation structure for spatial similarity matching.

* Can be used towards: depth, flow, and pose prediction.

Monocular Depth Prediction Optical Flow Estimation

l -t
i Loss
v
) E " > -
= Iy
T i Loss
e ﬁ v
S A ™
G | \/\’" o «— M <« *5
—-d = - ) —& » -
[y
Camera Motion Estimation Motion Segmentation

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and
Motion Segmentation. CVPR 2019

A NYU




Summary

* Leverage cross correlation structure for spatial similarity matching.

* Can be used towards: depth, flow, and pose prediction.
* Can form triangulation for self-supervision.

Monocular Depth Prediction Optical Flow Estimation

= TR R R

l . } Loss
4_ E j -
! |
N

A
i Loss
.4, .8
- \Y O «— M < &
-“ = - N i‘ e
——
Camera Motion Estimation Motion Segmentation

Ranjan et al. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera, Motion, Optical Flow and
Motion Segmentation. CVPR 2019
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Classical Mapping

* Estimating 3D structure and location from 2D observations.
* Simultaneous Localization and Mapping.
* Common Techniques: Extended Kalman Filter, GraphSLAM

* Given a set of corresponding points in two or more
images, compute the camera parameters and the 3D point
coordinates

Camera 1 0)

Camera 3

Camera 2 0)
Ryt Rty ? R

il Garg & Jain



Common Drawbacks

* Probabilistic inference can take long to compute, and mapping takes
a large memory storage.




Common Drawbacks

* Probabilistic inference can take long to compute, and mapping takes
a large memory storage.

* Great for 3D reconstruction but downstream tasks may not need a
full precision explicit map.




Common Drawbacks

* Probabilistic inference can take long to compute, and mapping takes
a large memory storage.

* Great for 3D reconstruction but downstream tasks may not need a
full precision explicit map.

* May not fully understand dynamic objects (averaging across multiple
scans).




Common Drawbacks

* Probabilistic inference can take long to compute, and mapping takes
a large memory storage.

* Great for 3D reconstruction but downstream tasks may not need a
full precision explicit map.

* May not fully understand dynamic objects (averaging across multiple
scans).

* |s there a more end-to-end version?




Mapping in the Brain: Grid and Place Cells

insertion point N

insertion point insertion point

17, 3? =

S 17 R L8

. ..,',‘" .‘;A\",
<N\ /]

S\ N

visual landmark

Morris water maze

Matthias Wandel, 2018

May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place Cells, Grid Cells, and Memory.




Neural Mapping

* Can we learn a mapping representation?
* Metric space, top-down warping (known egomotion).

Confidence and belief about world Confidence and belief about world from
from previous time step. previous time step, warped using egomotion.
Differentiable
Warping
I
Ct—1
Updated confidence and
v belief about world.
Encoder Network Decoder Network with i -
(ResNet 50) residual connections Z /
Fully Connected > Combine
> Layers with o=
g : RelLUs.

C b
|G / - t t

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. [JCV 2017.



Hierarchical Planning

* How do we use the learned map (allocentric) feature of the world?

Goal at Scale 1 Goal at Scale 0

e v I g N
Fused world, goal Fused world, goal
O O O O and coarser scal and coarser scal
value map value map
Fully
Connected

47 Fuser - - Fuser - - Layers

Val Val with

Upsampled Maa;: Q-Value Updated Upsampled Maa:: Q-Value Updated RelU
Value Maps Maps Value Maps Value Maps Maps Value Maps eLUs

from Scale 2 [ Iterations from Scale 1 [ Iterations
Value lteration Module Value lteration Module
o ) / o ) ~/
—
8
Action
iy
-
Output from Scale 1 Output from Scale 0
mapper at Scale 1 mapper at Scale 0

Gupta et al. Cognitive Mapping and Planning for Visual Navigation. [JCV 2017. “ NYU



Simultaneous Localization and Registration

CNN —> Gr_oun_d oo Resam_pler s
projection (rotation)

);/;\;(
O
o~
\
(=)
o~

Pt

h
NINNN
Y
c
o
s —
&

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.




Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a
rotation resampler.

/
Okl

Henriques & Vedaldi. MapNet: An Allocen

= [R(O, 27—‘-[/74)]@]]?

Ground
projection

il
—>

Resampler
(rotation)

2

tric Spatial Memory for Mapping Environments. CVPR 2018.

()<

=
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Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler. .
O;ijl = [R(0,27l/7)]ijk- " 7 g b%

—> — < />
projection y (rotation)

* 0/ convolve with the base feature.

pr = Softmax(my_1 * 0}). C%ég iﬂ

| | o . ANYU
Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018. 1




Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler.
O;ijl — [R(Oa 27Tl/7“)]z'jk. Wi IR

projection

.

b4

Resampler
(rotation)

* 0/ convolve with the base feature.

— =
A J%
| 0

Ot
Y

pr = Softmax(my_1 * 0}).

oY

}j C s
* Transform observations into allocentric
Pt

Ot = D 1w Duvwl (0], v, Ww).

Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018.

A
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Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler. o
O’,ijkl — [R(07 QWZ/T)]zjk Ground -7 Resampler | /%

—> — < />
projection y (rotation)

* 0/ convolve with the base feature.

pr = Softmax(mg_1 * o}). @—»@—»ég é U

* Transform observations into allocentric
Ot = D 1w Duvwl (0], v, Ww).

* Update belief:
mi jt4+1 — LSTM(mi,jjt, 67;7]',15).

| | o o 2 NYU
Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018. 1




Simultaneous Localization and Registration

* The observations o; are transformed into a stack o{ by applying a

rotation resampler. o
O’,I,j Ll . [R(O, 27TZ/T)]ZJI{2 . Ground _/ Resampler %

7| projection | y_) (rotation) | /j/

* 0/ convolve with the base feature.

pr = Softmax(my_1 * 0}). S é , % l / . 7

* Transform observations into allocentric

Ot = . ow Duvw L (0|u, v, w). ,, L
* Update belief: Loss:
Mi,jt4+1 = LSTM(miJ’“ Oi’j’t)' ‘C(p) — 1Og Zt PH W, R;t-

| | o o 2 NYU
Henriques & Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Environments. CVPR 2018. 1




Joint Localization, Perception and Prediction
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Philips et al. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction CVPR 2021.



Continuous 3D Perception and Mapping

LT T

p
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¢ State Update :
State Readout

Image 2 State 2 [ [ [ 1]

c State Update
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Wang et al. Continuous 3D Perception Model with Persistent State. arXiv 2025.




Topological Map

* High-level graph representation

* Each node contains more
summarized information

* Enables global planning

Pt

Graph ( Gy )

Graph
Graph Update raph (G)

(ou) K

Goal Image (/)

Johnson. Topological Mapping and Navigation in Real-World Environments. 2018.
Chaplot et al. Neural Topological SLAM for Visual Navigation. CVPR 2020.
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Summary

* Covers 3D, motion, depth, and mapping.

* Still needs high-level features (recognizing the object and semantics):
Spatial pyramid.

 Can be made unsupervised

* Design end-to-end modules that contain rich features.

* Design joint learning frameworks.

* Using geometric transformation to ground representations.
* Useful for planning (a few weeks from now).




