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Why Do We Need Learning in Real-World Agents?

• Opinion 1: We always need learning in exploring new environments. 
There will always be something unknown. There will always be room 
for improvement. There won’t be enough capacity to store all 
existing knowledge.
• Opinion 2: You can represent infinite variations with finite length 

description of an abstract symbolic system. We may not have seen 
all possible variations, but the underlying system remains the same.
• Opinion 3: While theoretically O2 might be true, empirically it is 

hard to realize. Given limited resource, you might be able to learn 
more abstract and invariant representations by compressing raw 
data. You can either be good at one thing without learning, or you 
need learning to be good at everything.

!
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Hubel and Wiesel’s Experiments

Wiesel, T.N., and Hubel, D.H. (1963) 

Simple Cells, Gabor Filters

Espinosa and Stryker (2012)



Human Developmental Periods

Piaget's Theory of Cognitive Development

Sensorimotor learning
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Insights from the Brain

• Perception and motion
• Low-level to high-level 

representation
• Hippocampus and memory
• Abstraction

Critical Periods of Development
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Direction 1: End-to-end self-supervised learning for 
perception and planning 

• Existing end-to-end learning-based planning frameworks are mostly 
focused on supervised learning of labeled objects and human 
demonstrations.
• Demonstrations and rewards are forms of labels.
• How do we achieve label-efficient learning and exploration through 

self-supervision?
• Is planning and action necessary for a label-efficient algorithm for 

perception?
• Explore the full spectrum from end-to-end learning to modular 

designs.
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Direction 2: Enhancing foundation models for 
spatial intelligence

• Foundation model are trained with discrete tokens and are less 
familiar with the 3D world to perform exact perception, inference and 
planning.
• Augment pretrained foundation models with the ability to perceive 

and plan under precision in embodied environments.
• How do we enhance robustness in real-world environments?
• Can be synthetic/realistic, 2D/3D environments.
• Can models with geometric designs beat generic foundation models 

in terms of learning efficiency?
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Direction 3: Continual learning for embodied 
intelligence

• How do we apply continual learning algorithms to embodied tasks?
• Skill learning, open world learning
• Memory design, retrieval augmentation, continuous finetuning
• Incremental learning with experience/action abstraction
• Replay with physical constraints
• Actively choosing learning objectives



Other Directions?

• You are allowed to form your own research ideas.
• Need to get my approval first. Talk to me early in the semester.
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Embodied Environments

• You must demonstrate your project in an embodied environment.
• You can focus on one aspect of the algorithm. No need for a full stack.
• Your TAs will showcase demos on some exemplar environments.

Habitat indoor home NuPlan self-driving Ego-Exo4D Egocentric Videos
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GenAI Policy

• AI may not be used in weekly paper reviews and paper presentations 
(except AI illustrations). 
• AI may be used towards coding assistance and report writing 

assistance in the course project. 
• The use of AI can still impact the grade if the report contains poor 

writings and non-factual statements.
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Office Hours

• Myself: Thursday 1:00pm – 2:00pm Zoom Link on course website and 
calendar.
• In person by appointment Room 508, 60 5th Ave

• TAs:

Chris Hoang
Wed 2-3PM
Room 502

Ying Wang
Thu 2-3PM
Room 763



Paper Review

• Week 2 due next Thursday
• Week 3 due on the same day as W2
• Choose from the recent papers (<= 3 years)o
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Content

• Introduction and Brief History
• Deep Learning and Structured Outputs
• 3D Vision and Mapping
• Self-Supervised Representation Learning and Object Discovery
• World Models and Forecasting
• End-to-End Planning
• Continual Learning
• Few-Shot Learning
• LLM Agents
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Deep Learning

• Over decades, optimizing deep neural networks was not trivial.
• Progress came from (taken for granted nowadays):
• Initialization
• Normalization (BN, LN, GN, etc.)
• Skip connection (recurrent net, residual net)
• Regularization (dropout, noise, augmentation)
• Attention (generalization)
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Classification

• To test how we can fit a deep neural network well, people have relied 
on simple benchmarks, such as image classification.

# “horse”Net 0

input
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What are Structured Outputs?

• An embodied agent needs to have a 
structured output space.
• Object localization, tracking, motion, spatial 

segmentation, 3d occupancy
• Trajectory, forecasting, planning

• A naïve solution is to simply have multiple 
output dimensions.

• It often does not reason the joint probability



Network Architecture for Structured Outputs

• Segmentation
• Spatial, high-resolution we

If



Network Architecture for Structured Outputs

• Object Detection

Girshick et al., 2013

Ren et al., 2015

o

proposal refined
score



Object Detection as Inference

• Bounding boxes are structured latent variables.
person

horse

!
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• Bounding boxes are structured latent variables.
• Occupancy as physical constraints.
• One spatial 3D location can only present a single 

physical object.
• Object co-occurrence in the scene
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person

horse

!

"
8D



Object Detection as Inference

• Bounding boxes are structured latent variables.
• Occupancy as physical constraints.
• One spatial 3D location can only present a single 

physical object.
• Object co-occurrence in the scene
• Context

• The role of the network is to perform “inference” 
on the latent variables.

person

horse

!
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Non-Maximal Suppression

• Box Proposals: Samples of 
boxes that may come from a 
single object (latent)
• Each with a confidence score, 

density representation of the 
inferred latent distribution 
! " # .
• MAP: take the mode of the 

distribution



Segmentation as CRF Inference

Chen et al., 2015
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Inference Problem

• Knows % # " .	
• Wants to know % " # .	Bayes rule.

• Brute force
• Message passing, sum-product, belief propagation (DP)
• Variational inference, mean field
• Stochastic sampling, MCMC

p(z|x; θ) = p(x,z;θ)∫
z
p(x,z;θ)

.
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• Jensens inequality to get ELBO.
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Variational Inference

• Jensens inequality to get ELBO.



Mean-Field Inference

• If there are many latent variables, we can assume factorization (local 
variational approximation):



Mean-Field Inference

• If there are many latent variables, we can assume factorization (local 
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[Krähenbühl & Koltun, 2012]
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Inference Operations

• CRF with pairwise energy. Use x as labels.

[Krähenbühl & Koltun, 2012]
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Inference in Fully Connected CRF

• Iterative mean-field inference.

[Krähenbühl & Koltun, 2012]

y

D
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CRFs as RNNs

[Zheng et al., 2015]
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Summary

• Perception of high dimensional objects can be viewed as inferring 
latent variables with probabilistic distributions.
• We can impose structure.
• We can learn through the inference process.
• Taking the inference process into account.
• Learning representations that matter.
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Some Nuances

• If the process is deterministic or unimodal, standard deep networks 
may work.
• Network forward propagation vs. relaxed probabilistic inference.
• Having a stronger prior has the potential to be more data efficient.
• And you will need structured / generative learning when there are 

multiple modes.
• E.g. Planning: there can be multiple future trajectoriesI
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Autoregressive Modeling

• Another type of output is autoregressive modeling.
• Example: Object detection/segmentation.
• Intuition: Our visual attention focus on one object at a time.



Teacher Forcing

• Teacher Forcing: Pretend that you know the whole sequence 
'!…'"  at training time, and train for '"#!.
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Teacher Forcing

• Teacher Forcing: Pretend that you know the whole sequence 
'!…'"  at training time, and train for '"#!.

• Problem: You have to know the ordering.

Autoregressive Model

"! ""

"#

"$"% "& "' "(

Autoregressive Model

"! $""

$"#

$"$"% "& $"' $"(

$"' $"" $"( $"$
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More on Ordering

• There are many set to set problems.
• E.g. Detection, segmentation, generating multiple objects, clustering
• Input does not follow a particular order. Loss function should not 

favor a particular order.
• Attention: The attention operation is order-invariant.
• Matching: The teacher can match the next input based on the closest 

matching groundtruth instances.
-

-

FG l



Instance Segmentation using Attention

• Attending to one region at a time.
• Zooming in for segmentation.
• End-to-end differentiable box proposals 

and external memory.
• State-of-the-art on leave segmentation 

problems for many years.
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Summary

• Autoregressive models
• Exact likelihood (instead of a lower bound or approximation)
• Conditional probability may be easier to model
• Need an ordering
• Can take a long time to decode

• Autoregressive models aren’t just for language.
• Planning
• Set prediction problems
• Perception

• Generating the next variable is a different objective from learning a 
good representation of the whole sequence.
• No hierarchical planning.
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Energy-Based Modeling

• The goal is to learn a distribution %(#) to model the set of examples.
• Assuming Boltzmann distribution:

• Maximizing the likelihood:

p(x; θ) =
1

Z(θ)
exp(−E(x; θ))

Z(θ) =

∫
X

exp(−E(x; θ))

∂
∂θ

log p(x; θ) = Ex′
∼p(x)

[

∂E(x′;θ)
∂θ

]

−

∂E(x;θ)
∂θ

.

Picture from LeCun
in

energy energy

II pos



Structured Prediction

• EBM can be easily adapted to model the joint distribution of # and '.
• Requires optimization of ' at inference time. 00

argmon E X Y
Y
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• Computing                                        is non-trivial. We need to sample 
from p(x).

Song & Kingma. How to Train Your Energy-Based Models. 
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Optimization

• Computing                                        is non-trivial. We need to sample 
from p(x).
• But we only know +(#)!
• Through MCMC samplers: MH, Langevin, HMC, Gibbs.
• Approximations: Using truncated steps (Contrastive Divergence)
• Score Matching: Tries to model                                 and
• If we know the gradient, we can improve the samples.
• Closely related to diffusion models

Song & Kingma. How to Train Your Energy-Based Models. 

Ex′
∼p(x)

[

∂E(x′;θ)
∂θ

]

∇x log pdata(x) ∇x log pθ(x)
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• Inverse RL for learning 
the reward function.

Ziebart et al. Maximum Entropy Inverse Reinforcement Learning. AAAI 2008.
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Max-Entropy Inverse RL

• Inverse RL for learning 
the reward function.
• In practice, use rewards 

as negative energy.

Ziebart et al. Maximum Entropy Inverse Reinforcement Learning. AAAI 2008.

Slide credit: Sergey Levine
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Max-Entropy Inverse RL

• In a discrete MDP, we can use DP to compute probability.

Slide credit: Sergey Levine
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Max-Margin Learning

• In addition to probabilistic learning, we can also apply the max-
margin framework.
• Review: SSVM vs. CRF.

• Margin can be difference in trajectories.
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Max-Margin Learning

• In addition to probabilistic learning, we can also apply the max-
margin framework.
• Review: SSVM vs. CRF.

• Margin can be difference in trajectories.
• Non-probabilistic

argminθ
∑N

n=1
max[0,m+ E(xn; θ)− E(x∗; θ)] + λ||θ||2

2
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Max-Margin Learning

• In addition to probabilistic learning, we can also apply the max-
margin framework.
• Review: SSVM vs. CRF.

• Margin can be difference in trajectories.
• Non-probabilistic
• Still need to run optimization to find the best #∗

argminθ
∑N

n=1
max[0,m+ E(xn; θ)− E(x∗; θ)] + λ||θ||2

2
.

9



Max-Margin Planning

Ratliff et al. Maximum Margin Planning. ICML 2006.

is
train
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Diffusion Models

• Forward process:
• You can also write: 

%) %*+! %* %,… …

Original Image Pure Noise

&(%*|%*+!)

q(xt|xt−1) = N (xt;
√
1− βtxt−1,βtI).

xt =
√
1− βtxt−1 +

√
βtϵt, ϵt ∼ N (0, I).
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Properties of the Forward Process

• Forward process:
• Write #"  as a function of #% with larger noises:  

• Cumulative schedule: 
•  

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

xt =
√

1− βtxt−1 +
√

βtϵt

xt =
√

ᾱtx0 +
√

1− ᾱtϵ.

αt = 1− βt. ᾱt =

∏
t

s=1
αs.



Cumulative Schedule

• Show it’s true for #&:
αt = 1− βt.

ᾱt =

∏
t

s=1
αs.

x2 =
√

1− β2x1 +
√

β2ϵ2 =
√

1− β2

√

1− β1x0 +
√

β2ϵ2 +
√

1− β2

√

β1ϵ1

= α1α2x0 +
√

(1− β2)β1 + β2ϵ

= ᾱ2x0 +
√

1− (1− β1)(1− β2)ϵ

= ᾱ2x0 +
√

1− ᾱ2ϵ.



Reverse Process

• A generative model wants to predict #% from #' .
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Reverse Process

• A generative model wants to predict #% from #' .
• The reverse process transition is also Gaussian distributed. But we 

don’t know what the transition will be like just by looking at the noisy 
image!
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Reverse Process

• So, we need to learn a “model”:
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).
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Reverse Process

• So, we need to learn a “model”:

• ,(  is the denoising vector. 
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

%) %*+! %* %,… …

Generated Image Pure Noise
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Reverse Process

• Compute ,(? Derive % #")! #" .
• Bayes rule:

• But we don’t know the marginal distribution ! #")! . We only know 
!'  and ! #" #")! .
• Solution: Condition on the original input #%:

q(xt−1|xt) =
q(xt|xt−1)q(xt−1)

q(xt)
.

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.
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Reverse Process

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).

µ̃t =
√

αtβ̄t−1

β̄t

xt +
√
αt−1βt

β̄t

x0 = 1
√

αt

(xt −
βt

√

1−ᾱt

ϵ).



Reverse Process

• Want: train up a ,(  to match with -," .

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
.

q(xt−1|xt, x0) = N (xt−1; µ̃t, β̃I).

µ̃t =
√

αtβ̄t−1

β̄t

xt +
√
αt−1βt

β̄t

x0 = 1
√

αt

(xt −
βt

√

1−ᾱt

ϵ).



Training

• Sometimes it is more common to 
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Training

• Sometimes it is more common to 
predict the denoising vector .
instead of ,.
• Randomly pick at a time step and 

predict the difference between the 
noisy and the original.

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −
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√
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Sampling

• How do we sample an image?
• We know !! which will help us 

transition from "" to ""#$.
µ̃t =

1
√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).



Sampling

• How do we sample an image?
• We know !! which will help us 

transition from "" to ""#$.

• Sample from                                                    
. #" can either be $"	or &$" derived from 
the posterior.

µ̃t =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵ),

µθ(xt, t) =
1

√

αt

(xt −

βt
√

1− ᾱt

ϵθ(xt)).

N (xt−1;µθ(xt, t),σ
2

t )



More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample. 
Slower than NFs and GANs.

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.
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More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample. 
Slower than NFs and GANs.
• In the non-Markovian model, we can first generate #' , and based on 
#'  and #% we can generate #')! and so on.
• Joint distribution:

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

q(x1:T |x0) = q(xT |x0)
∏
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More on Samplers

• DDPM relies on many iterations (e.g. 1000) to produce one sample. 
Slower than NFs and GANs.
• In the non-Markovian model, we can first generate #' , and based on 
#'  and #% we can generate #')! and so on.
• Joint distribution:

• Estimate #")! based on #% and #" :

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

q(x1:T |x0) = q(xT |x0)
∏

T

t=2
q(xt−1|xt, x0).

q(xt−1|xt, x0) = N
(√

at−1x0 +
√

1− αt−1 − σ2
t
· xt−

√

αtx0
√

1−αt

,σ2

t
I

)

.

[Song et al. 2021]



More on DDIM Samplers

• Prediction of #%:

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]
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More on DDIM Samplers

• Prediction of #%:

• Sampling process:

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.

[Song et al. 2021]

f
(t)
θ

(xt) =
1

√

αt

(xt −

√

1− αt · ϵ
(t)
θ
(xt)).

p
(t)
θ
(xt−1|xt) =

{

N (f
(1)
θ

(xt)),σ
2
1I) if t = 1

q(xt−1|xt, f
(t)
θ

(xt)) otherwise.



Guided Diffusion

• We can add guidance on the diffusion updates at inference time.

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurIPS 2021.
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022.

Classifier Guidance / External Score Model



Guided Diffusion

• We can add guidance on the diffusion updates at inference time.

• We also can train a conditional diffusion model.

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurIPS 2021.
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022.

Classifier Guidance / External Score Model



Test-Time Adaptation

• Diffusion can be combined / guided with reward functions at test 
time.

Singhal et al. A General Framework for Inference-time Scaling and Steering of Diffusion Models. arXiv 2025.
Yang et al. Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous and Instruction-guided Driving. CVPR 2024.

[Yang et al. 2024][Singhal et al. 2025]



Diffusion for Detection

• x

Chen et al. DiffusionDet: Diffusion Model for Object Detection. ICCV 2023.



Diffusion for Generating Simulation Scenes

Lu et al. SceneControl: Diffusion for Controllable Traffic Scene Generation. ICRA 2024.



Diffusion for Planning and Control

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.



Diffusion for Planning and Control

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.



Diffusion Planner for Self-Driving

Diffusion-Based Planning for Autonomous Driving with Flexible Guidance. OpenReview 2024.
https://openreview.net/forum?id=wM2sfVgMDH
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Summary: DL for Structured Outputs

• Expanding the output dimension has limitations.
• Requires us thinking about generative models.
• Graphical models
• Autoregressive
• Energy-based
• Diffusion

• Understand pros and cons. Experiment with each option.
• Application in embodied environments.



What’s Next

• Tutorial on simulation environments
• Next week: 3D vision, mapping


