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Why Do We Need Learning in Real-World Agents?

* Opinion 1: We always need learning in exploring new environments.
There will always be something unknown. There will always be room
for improvement. There won’t be enough capacity to store all
existing knowledge.
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Why Do We Need Learning in Real-World Agents?

* Opinion 1: We always need learning in exploring new environments.
There will always be something unknown. There will always be room
for improvement. There won’t be enough capacity to store all
existing knowledge.

* Opinion 2: You can represent infinite variations with finite length
description of an abstract symbolic system. We may not have seen
all possible variations, but the underlying system remains the same.

* Opinion 3: While theoretically 02 might be true, empirically it is
hard to realize. Given limited resource, you might be able to learn
more abstract and invariant representations by compressing raw
data. You can either be good at one thing without learning, or you
need learning to be good at everything.




Hubel and Wiesel’s Experiments

A Experimental setup B Stimulus Stimulus
orientation  presented

Light bar stimulus
projected on screen

Recording from visual cortex
Record

BAau
ENNN
BAaau

NENNN

Simple Cells, Gabor Filters

Start of End of
Eye Opening Critical Period Critical Period

Binocular Matching

B‘inocularity
Ori;niation Selectiv-ity
0 1 2 3 Retinotopy . .
Time (s) |||||||||[||||%|[||[|é|||||||||||||i|||||||
PO P5 P10 P15 P20 P25 P30 P35 P40




Human Developmental Periods

Sensorimotor learning

~
Simple Reflexes (birth-1 month)
Infants use reflexes such as rooting, sucking, following moving objects with the eyes, and grasping
objects. (For example: Infant closes their hand when a toys touches their palm.)
~
Primary Circular Reactions (1-4 months)
A primary circular reaction is when an infant tries to reproduce an event that happened by accident
because they find it to be pleasurable. (For example: Intentionally mouthing a toy bunny.)
J
N

Secondary Circular Reactions (4-8 months)

Child becomes more focused on the world and begins to intentionally repeat an action in order to trigger
an environmental response. (For example: purposefully picking up a pacifier to put it in their mouth.)

J
Coordination Of Secondary Circular Reactions (8-12 months)
Child acts intentionally and follows steps to achieve goals. Child begin to do things intentionally and
understands object permanence. (For example: Child will push one toy aside to get to a second toy
partially concealed underneath.) /

Tertiary Circular Reactions (12-18 months)

Child discovers new means to meet goals and begins to modify earlier behaviors to meet existing needs.
Piaget described children in this stage as “young scientists”. (For example: Child repeatedly drops/throws
a set of plastic keys and observes how they move through space.)

~
Internalization of schemas (18-24 months)
Child begins to use symbols and form mental representations. The beginnings of insight and creativity

are associated with this stage. (For example: Child pushes a chair across the kitchen and climbs up on it
to reach a cookie on the counter.)

/

Sensorimotor

Preoperational
Reasoning

2 Years
to
6 -7 Years

Intelligence in action: child
interacts with environment
by manipulating objects;
object permanence

Thinking dominated by perception,
but child becomes more capable
of symbolic functioning;
conservation problem; language
development occurs

Concrete
Operational

7 Years
to
11-12 Years

6

Formal
Operational

11-12 Years
to
Lifetime

Logical reasoning only
applied to objects that are
real or can be seen

Individual can think logically
about potential events or abstract
ideas; advanced reasoning

Piaget's Theory of Cognitive Development
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Insights from the Brain

Amygdala-dependent learning

(cued conditioning,
Implicit learning) Hippocampus-dependent learning

Higher cognitive
function

* Perception and motion

* Low-level to high-level e,
representation ,

Plasticity

/ I
i ! | Infancy Childhood
Actions ] face tracking . ratienal, éoal- | | | | |
g { i | } biolc.)gicall i i i i | dire;ted ection_s
= | ; , I A ; ; o | | Development
Q physics | . | | | |stabilty [} SISy .
[&] { | | { { i ’ ! t f } | |
5 o feeer  |RERERT Crltlcal Periods of Development
(a | ] | { { | I { i f
I Object permanence shapte
i i | constancy
Objects I solldlty rlgldlty _ | :
[Emmanuel § 5 | 5 l natural klnd categorles Age (months)

Dupoux] g {1 2 3 45 6 7 8 9 1011 12 13 14 | |
- ‘A NYU




Insights from the Brain

Amygdala-dependent learning

(cued conditioning,
Implicit learning) Hippocampus-dependent learning

Higher cognitive
function

* Perception and motion

* Low-level to high-level e
representation ,
* Hippocampus and memory

1 [
Infancy Childhood
| | | \

Plasticity

l rational, goal-

Actions ’ face tracking |
] i | ] directed actions

5 biological || || | |drecedactons
=4 sl R T [ S N S e I N B Development
@ Physics | stability | s o it
(&) z | t f H | |
5 loupport’ || e ||| Crltlcal Periods of Development
o . | i : : i : | . i i |
I Object permanence shape
. { | | constancy
Objects I solldlty rlgldlty _ . _ ' |
[Emmanuel | 5 5 5 l natural kind categories Age (months)

Dupoux] g {1 2 3 45 6 7 8 9 1011 12 13 14 = |
- ‘A NYU




Insights from the Brain

Amygdala-dependent learning

(cued conditioning,

Implicit learning) Hippocampus-dependent learning Higher cognitive
function

* Perception and motion
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* Existing end-to-end learning-based planning frameworks are mostly
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demonstrations.
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Direction 1: End-to-end self-supervised learning for
perception and planning

* Existing end-to-end learning-based planning frameworks are mostly
focused on supervised learning of labeled objects and human
demonstrations.

* Demonstrations and rewards are forms of labels.

* How do we achieve label-efficient learning and exploration through
self-supervision?

* Is planning and action necessary for a label-efficient algorithm for
perception?

* Explore the full spectrum from end-to-end learning to modular
designs.
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familiar with the 3D world to perform exact perception, inference and
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Direction 2: Enhancing foundation models for
spatial intelligence

* Foundation model are trained with discrete tokens and are less
familiar with the 3D world to perform exact perception, inference and
planning.

* Augment pretrained foundation models with the ability to perceive
and plan under precision in embodied environments.

* How do we enhance robustness in real-world environments?
* Can be synthetic/realistic, 2D/3D environments.

* Can models with geometric designs beat generic foundation models
in terms of learning efficiency?

ANYU




Direction 3: Continual learning for embodied
intelligence

* How do we apply continual learning algorithms to embodied tasks?
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Direction 3: Continual learning for embodied
intelligence

* How do we apply continual learning algorithms to embodied tasks?
* Skill learning, open world learning

* Memory design, retrieval augmentation, continuous finetuning

* Incremental learning with experience/action abstraction

* Replay with physical constraints

* Actively choosing learning objectives




Other Directions?

* You are allowed to form your own research ideas.
* Need to get my approval first. Talk to me early in the semester.




Embodied Environments

* You must demonstrate your project in an embodied environment.

Habitat indoor home NuPlan self-driving Ego-Exo4D Egocentric Videos
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Embodied Environments

* You must demonstrate your project in an embodied environment.
* You can focus on one aspect of the algorithm. No need for a full stack.
* Your TAs will showcase demos on some exemplar environments.

Habitat indoor home NuPlan self-driving Ego-Exo4D Egocentric Videos

ANYU
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GenAl Policy

* Al may not be used in weekly paper reviews and paper presentations
(except Al illustrations).

* Al may be used towards coding assistance and report writing
assistance in the course project.

* The use of Al can still impact the grade if the report contains poor
writings and non-factual statements.




Office Hours

* Myself: Thursday 1:00pm - 2:00pn~@n course website and
calendar.

* In person by appointment Room 508, 60 5t" Ave




Office Hours

* Myself: Thursday 1:00pm - 2:00pm Zoom Link on course website and
calendar.
* In person by appointment Room 508, 60 5t" Ave

* TAs:
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Chris Hoang Ying Wang
Wed 2-3PM Thu 2-3PM
Room 502 Room 763 ‘4 NYU




Paper Review

* Week 2 due next Thursday

» Week 3 due on the same day as W2

* Choose from the recent pape@

e
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Content

* Introduction and Brief History

e Deep Learning and Structured Outputs L~

* 3D Vision and Mapping

* Self-Supervised Representation Learning and Object Discovery
fV%rId Models and Forecasting -

* End-to-End Planning

» Continual Learning —

* Few-Shot Learning

- LLM Agents




Deep Learning

* Over decades, optimizing deep neural networks was not trivial.




? \. Deep Learning LL\

* Over decades, optimizing deep neural networks was not trivial.

* Progress came from (taken for granted nowadays): /\/

+» Initialization l/
* Normalization (BN, LN, GN, etc.) ./

* Skip connection (recurrent net, residual net)

Regularization ( \rog@nmse augmentatlon)
'\>7 Attentlon genera lon)

ANYU




Classification

* To test how we can fit a deep neural network well, people have relied
on simple benchmarks, such as image classification.
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* An embodied agent needs to have a
structured output space.
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segmentation, 3d occupancy -
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What are Structured Outputs?

* An embodied agent needs to have a
structured output space.

* Object localization, tracking, motion, spatial
segmentation, 3d occupancy

* Trajectory, forecasting, planning

* A naive solution is to simply have multiple
output dimensions.

* |t often does not reason the joint probability




Network Architecture for Structured Outputs

* Segmentation

* Spatial, high-resolution

forward /inference

backward /learning

U

output

\4

segmentation
5 map

=»conv 3x3, RelLU

512 2
) - 1 g & copy and crop
1024 512
S e ¥ max pool 2x2
102 o 4 up-conv 2x2
=» conv 1x1

ANYU




Network Architecture for Structured Outputs
Propose [ refined.

e Object Detection
J —) Score.

A classifier

R-CNN: Regions with CNN features prOpoy / ZD/
Tl E warpe}d region

: s | Region Proposal Network
~- feature maps
iy RS N C NN N4 :

1. Input 2. Ex¥r721ct region 3. Compute 4. Classify L f
image proposals (~2k) CNN features regions
conv layers ‘ :
Girshick et al., 2013 4 /
ST 77

Ren et al., 2015 (§” NYU
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Object Detection as Inference

* Bounding boxes are structured latent variables.

* Occupancy as physical constraints.

* One spatial 3D location can only present a single
physical object.

* Object co-occurrence in the scene
* Context

* The role of the network is to perform° mference
on the latent variables.




Non-Maxi

* Box Proposals: Samples of
boxes that may come from a
single object (latent)
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Non-Maximal Suppression

* Box Proposals: Samples of 7
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Non-Maximal Suppression

* Box Proposals: Samples of L e
mustard(0.94),y mustard(0.99)
boxes that may come from a . 8
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" ;/ Segmentation as CRF Inference

Aeroplane Coarse

Score mae
-

DCNN
Atrous Convolution

Bi-linear Interpolation

Final Output Fully Connected CRF

Chen et al., 2015
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Inference Problem

* Knows p(x|z).
* Wants to know p(z|x). Bayes rule.

x,z;0
p(z|x;0) = ff;(x,z;)gy

* Brute force

* Message passing, sum-product, belief propagation (DP)
 Variational inference, mean field

e Stochastic sampling, MCMC




Variational Inference

* Jensens inequality to get ELBO.

Q/@
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Variational Inference

* Jensens inequality to get ELBO.
log p(x) = log / p(z, 2)

og [ oo

" (%pw
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Variational Inference

* Jensens inequality to get ELBO.

log/Z (, z)q(—2
— log (IE p(( :
z)

)
(S5
= E, log p(z, Z)\_iEq log q(2) :@

T
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Mean-Field Inference

* If there are many latent variables, we can assume factorization (local
variational approximation):

q(21,- -, 2m) = H;nzl@y




Mean-Field Inference

* If there are many latent variables, we can assume factorization (local
variational approximation):

q(21; -5 2m) = [ 1521 a(5).

L =logp(z)+ > 7., q(zj)@ Eq2,) loglq(z;)).

ANYU




Inference Operations

* CRF with pairwise energy. Use x as labels.

E(x) =) tu(z)

Uneey.

[Krahenbiihl & Koltun, 2012]

ANYU




Inference Operations

* CRF with pairwise energy. Use x as labels.

E(X) = Z"pu(xz) + Z"pp(xia xj)a

1<j

Up(@iy ;) = p(i, x5) Sge g w™E™ (£, £;)

- >

k(f;,f5)

[Krahenbiihl & Koltun, 2012]
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Inference Operations

* CRF with pairwise energy. Use x as labels.
"pu 372) + wp Liy Ly ) .
Z ; ’ \QK(’/\
/

Vp(Ti, T5) = p(zi, x5) ZK 1 w(m‘@ /
OG;((«

k(f;,£5)

; — pil? I, — I |2
kO™ (£, £5) = exp(—3 (F — £)TAM (£ - £))  wWexp (_Ip 295]| = 202J| ) i exP( 292%' )

A .
Apearance kernel smoothness kernel

,LI,(QB,“:[,'J) = [z; # [KréhenbUhl & Koltun, 2012]

bivol ie 967 @ NYU




Inference in Fully Connected CRF

.
Algorithm 1 Mean field in fully connected CRFs

* |lterative mean-field inference. iz > Qu(w) ¢ 4 exp{~gu (i)}
while not converged do > See Section 6 for convergence analysis
ng) () > k™) (£;,£,)Q;(1) for all m > Message passing from all X to all X;
Qi(z;) « dier p™ (2, ), w(m)ng) ) > Compatibility transform
Qi(z:) « exp{—vu(z;) — Qi(z:)} > Local update
normalize Q;(x;)
end while

Ad

-- [Krahenbuhl & Koltun, 2012]

(a) Image (b) Unary classifiers (c) Robust P CRF (d) Fully connected CRF, (e) Fully comCRF, (?/l NYU

MOCMCinference, 36 hrs our approacif, 0 onds




!

FCN + CRF-RNN

|

P |
! Meanfield :
U | Iteration Hy  ~~ LY
| H Hz = &2 Qi(l) + £+ exp (Ui(1)) for all ¢ > Initialization
' fo(U, Hy,I) | . .
: : while not converged do
| | ™ Q™ (1) « X, k™ (£, £)Q; (1) for all m
| @D > Message Passing
| s Qi) « X, w™Q™ (W)
: X > Weighting Filter Outputs
E | Softmax E Q'l(l) A Zl’e[, l‘l’(l7 ll)Qz(l/)
» |Normalization ! ) > Compatibility Transform
Qi(l) < Ui(l) — Q:(l) )
: : > Adding Unary Potentials
o . Qi < = exp (Qz(l))
Figure 2. The CRF-RNN Network. We formulate the iterat Z; o
mean-field algorithm as a Recurrent Neural Network (RNN). G - m
ing functions GG1 and G, are fixed as described in the text. end while

[Zheng et al., 2015] NYU



Summary

* Perception of high dimensional objects can be viewed as inferring
latent variables with probabilistic distributions.




Summary

* Perception of high dimensional objects can be viewed as inferring
latent variables with probabilistic distributions.

* We can impose structure.




Summary

* Perception of high dimensional objects can be viewed as inferring
latent variables with probabilistic distributions.

* We can impose structure.

* We can learn through the inference process.
* Taking the inference process into account.
* Learning representations that matter.
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Some Nuances

* If the process is deterministic or unimodal, standard deep networks
may work.

* Network forward propagation vs. relaxed probabilistic inference.
* Having a stronger prior has the potential to be more data efficient.

* And you will need structured / generative learning when there are
multiple modes.
* E.g. Planning: there can be multiple future trajectories

—
—
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* Another type of output is autoregressive modeling.
* Example: Object detection/segmentation.
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* Intuition: Our visual attention focus on one object at a time.




Teacher Forcing

* Teacher Forcing: Pretend that you know the whole sequence

A

Autoregressive Model OD Autore{gressive Model
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Test

{y1 ... y+} at training time, and traln for yiyq.
P51 X,.5) ‘ﬂi %ﬁ W W

Train
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* Teacher Forcing: Pretend that you know the whole sequence
{y1 ... ¥¢} at training time, and train for y,, ;.

* Problem: You have to know the ordering.

; 8| | ]

Autoregressive Model Autoregressive Model
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* There are many set to set problems.
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* There are many set to set problems.
* E.g. Detection, segmentation, generating multiple objects, clustering

* Input does not follow a particular order. Loss function should not
favor a particular order.
* Attention: The attention operation is order-invariant.

* Matching: The teacher can match the next input based on the closest
matchlng groundtruth instances.

=
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Instance Segmentation using Attention

IT)) Score net |— - - = C_)Seg_.net1

* Attending to one region at a time. | > |

» Zooming in for segmentation. || tinear <

A

* End-to-end differentiable box proposals ! —
and external memory.

* State-of-the-art on leave segmentation
problems for many years.
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Attention

Input image Predicted attention Predicted box of ' I

over the image one instance ' |

Output Glabal Local I
I

| B) Box net
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count: O
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Segmentation
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Output
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All predicted
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Summary

* Autoregressive models
* Exact likelihood (instead of a lower bound or approximation)
* Conditional probability may be easier to model

* Autoregressive models aren’t just for language.
* Planning
* Set prediction problems
* Perception

* Generating the next variable is a different objective from learning a
good representation of the whole sequence.

* No hierarchical planning.
—=t Planning A NYU




Energy-Based Modeling

* The goal is to learn a distributio p(x)\to model the set of examples.
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Energy-Based Modeling

* The goal is to learn a distribution p(x) to model the set of examples.
* Assuming Boltzmann distribution:

1
) — _Er:
p(r:0) = 7 xp(—B(r:0))
2(6) = [ ep(-E(a:6))

X Picture from LeCun

 Maximizing the likelihood: 1eneryy J/e,nq,ﬂjy
OFE(z' 9 aE a;(é\
\

' ANYU




Structured Prediction

* EBM can be easily adapted to model the joint distribution of@n@
* Requires optimization of y at inference time.

Rigrun E(X,Y)
/




Optimization

* Computing E./wp(a) {M} is non-trivial. We need to sample
from p(x).

@
Song & Kingma. How to Train Your Energy-Based Models. 1 NYU




Optimization

aE(

* Computing E, Np(x)

from p(x).
e But we only kno E(x | @XP( LQ«U)

is non-trivial. We need to sample

@
Song & Kingma. How to Train Your Energy-Based Models. 1 NYU




Optimization

aE(a: :0)

* Computing E./wp(a) [ } is non-trivial. We need to sample

from p(x).
* But we only knov@
* Through MCMC samplers: MH, Langevin, HMC, Gibbs.

@
Song & Kingma. How to Train Your Energy-Based Models. 1 NYU




Optimization

OE(x';0)

* Computing E./wp(a) [ } is non-trivial. We need to sample

from p(x).
 But we only know E (x)!
* Through MCMC samplers: MH, Langevin, HMC, Gibbs.
* Approximations: Using truncated steps (Contrastive Divergence)
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Optimization

OE(x';0)

* Computing E./wp(a) [ } is non-trivial. We need to sample

from p(x).
 But we only know E (x)!
* Through MCMC samplers: MH, Langevin, HMC, Gibbs.
* Approximations: Using truncated steps (Contrastive Divergence)

* Score Matching: Tries to model V. log pdata(z) and V. logpy(x)

* If we know the gradient, we can improve the samples.
* Closely related to diffusion models

I

@
Song & Kingma. How to Train Your Energy-Based Models. 1 NYU




Max-Entrop @

* Inverse RL for learning
the reward function.

Ziebart et al. Maximum Entropy Inverse Reinforcement Learning. AAAI 2008.
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* Inverse RL for learning
the reward function.

* In practice, use rewards
as negative energy.

Ziebart et al. Maximum Entropy Inverse Reinforcement Learning. AAAI 2008.




Max-Entropy Inverse RL

* Inverse RL for learning o
the reward function. mfxﬁz;“/’(”) Z= / p(r) exp(ry (7))dr
* In practice, use rewards .
as negative energy. VoL = %va(n) _ % / p(7) exp(ry (7)) Vg (7)dr
p(T‘OI:T7¢)

Vwﬁ - ETNﬂ'*(T) [V¢T¢<Ti)] o ETNP(7'|01=T7¢) [V¢T¢(T)]

IS

7 \

estimate with expert samples soft optimal policy under current reward

Slide credit: Sergey Levine

@
Ziebart et al. Maximum Entropy Inverse Reinforcement Learning. AAAI 2008. 1 NYU




Max-Entropy Inverse RL

* In a discrete MDP, we can use DP to compute probability.

Slide credit: Sergey Levine




Max-Entropy Inverse RL

* In a discrete MDP, we can use DP to compute probability.

VoL = Ernns (1) [Vory(7)] = Ermp(r|0rr,u) [Vure(T)] let i (se, ar) oc (s, ar)a(st)
\ T )
T
Z//ut(st,at)vd,np(shat)dstdat

state-action visitation probability for eack (s, a;)

Slide credit: Sergey Levine




Max-Entropy Inverse RL |

* In a discrete MDP, we can use DP to compute probability.

VoL = Erne (1) [VoTu(Ti)] = Ermp(r|Orr ) [Vyry(7)] let i (se, ar) oc (s, ar)a(st)
\ T )
T
Z //,ut(st,at)vwnp(st, at)dstdat

state-action visitation probability for each (s, a;)

Slide credit: Sergey Levine

in the case where 7y (s, a;) = T f(s¢,a;), we can show that it optimizes

max H(7"*) such that E_ r, [f] = Er«[f] as random as possible
# 7 X while matching features
optimal max-ent policy under r¥ unknown expert policy

estimated with samples (?l NYU
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* In addition to probabilistic learning, we can also apply the max-
margin framework.
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Max-Margin Learning |

* In addition to probabilistic learning, we can aIso apply the max-
margin framework. ‘ % @(/afp
* Review: SSVM vs. CRF.

arg ming 25:1 max[(),@ E(x,;0) — E(x*;0)] + \||0]]3.

ANYU




Max-Margin Learning oo

* In addition to probabilistic learning, we can also apply the max- N
margin framework. =

e Review: SSVM vs. CRF.

arngj_lo, m + E(xa{8) — (") 0)

* Margin can be difference in trajectories. ‘
’ plavry




Max-Margin Learning

* In addition to probabilistic learning, we can also apply the max-
margin framework.

e Review: SSVM vs. CRF.

arg ming >, _, max[0,m + E(z,;0) — E(z*;0)] + \||0]]3.

* Margin can be difference in trajectories.
* Non-probabilistic




97,
Max-Margin Learning //

* In addition to probabilistic learning, we can also apply the max-
margin framework.

e Review: SSVM vs. CRF.

argmn@z _, max|0, m@ . + A|[6]]5.
* Margin can be difference in trajectories.

* Non-probabilistic

* Still need to run optimization to find the best x*

ANYU




Max-Margin Planning

mode 1 - training

mode 1 - leamed coat map over novel region

mode 1 - learned path over novel region

mode 2 - trainng mode 2 - learned cost map over novel region mode 2 - learned path over novel region

Ratliff et al. Maximum Margin Planning. ICML 2006.
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Diffusion Models

* A popular model for generative model today is diffusion model.

* The intuition is to iteratively denoise from Gaussian random noises
Into an iImage.

q(xe|xe—q)

Original Image Pure Noise




Diffusion Models

* Forward process: q(x¢|xi—1) = N (x4 v/ 1 — Brwi—1, Bi]).

q(xe|xe—q)

Original Image Pure Noise




Diffusion Models

* Forward process: q(x¢|xi—1) = N (x4 v/ 1 — Brwi—1, Bi]).
e You can also write: x; = /1 — Bexs—1 + /Bres, € ~ N(0,1).

q(xe|xe—q)

o 00 O
=

Original Image Pure Noise




Properties of the Forward Process

 Forward process: =+ = /1 — Brxi—1 + /Bier
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Properties of the Forward Process

 Forward process: =+ = /1 — Brxi—1 + /Bier

* Write x; as a function of x, with larger noises:

q(@e|w0) = N (245 v/ aeao, (1 — ax)l).

. _ t
 Cumulative schedule: @t =1— 0. o = |[._; @s.

o Tt — \/O_étﬂf() + \/1 — 54756.




Cumulative Schedule

O{tzl—ﬁt.

L _ t
* Show it’s true for x,: @ = ][._; as.

T2 = \/1 = Boz1 + v/Baea = /1 — Bar/1 — Brxg + /Baez + /1 — Bor/Bre1
= ajaozo + /(1 — B2)B1 + Pae
= oz + /1 — (1 — B1)(1 — Ba)e
= axg + V1 — ase.




Reverse Process

* A generative model wants to predict x, from x;.

Do (Xp—1]x¢)

© 00 ©

Generated Image Pure Noise




Reverse Process

* A generative model wants to predict x, from x;.

* The reverse process transition is also Gaussian distributed. But we
don’t know what the transition will be like just by looking at the noisy
Image!

Do (Xp—1]x¢)

Generated Image Pure Noise




Reverse Process

* SO, we need to learn a “model”:
po(xi—1|ms) = N (215 po (4, 1), Lo (4, 1)).

Do (Xp—1]x¢)

© 00 ©

Generated Image Pure Noise




Reverse Process

* SO, we need to learn a “model”:

pQ(xt—l ’27,5) — N(mt—l; Mg(xta t)a 29(271% t))
* Ug Is the denoising vector.

Do (Xp—1]x¢)

o 00 O

Generated Image Pure Noise




Reverse Process

e Compute ug? Derive p(x;_1]x;).
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e Compute ug? Derive p(x;_1]x;).

* Bayes rule: q(ze|zi—1)q(wi-1)
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Reverse Process

e Compute ug? Derive p(x;_1]x;).

* Bayes rule: q(ze|zi—1)q(wi-1)

q(xt)

Q(fUt—l‘xt) —

* But we don’t know the marginal distribution q(x;_;). We only know
qr and q(x¢|x:—1).




Reverse Process

e Compute ug? Derive p(x;_1]x;).

* Bayes rule: q(ze|zi—1)q(wi-1)

q(xt)

Q(fUt—l‘xt) —

* But we don’t know the marginal distribution q(x;_;). We only know
qr and q(x¢|x:—1).
* Solution: Condition on the original input x:

q(we—1]|2t, 20) = Q(xt|wtq_(clc1(|]:z(j§_l|x0)




Reverse Process

q(xe|re—1)q(Ts—1]T0)
q(zt|To)

C]($t—1\$taﬂfo) =




Reverse Process

q(xe|re—1)q(Ts—1]T0)
q(zt|To)
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q(zi—1]|Te, T0) = N (2415 it BI)




Reverse Process

q(xe|re—1)q(Ts—1]T0)
q(zt|To) '

C](%—l\mt,xo) —

q(zi—1]|Te, T0) = N (2415 it BI)

0= Ve (Tt — 1B_tat €).

fir = Yogita + Y =




Reverse Process

q(xe|re—1)q(Ts—1]T0)
q(zt|To) '

Q(xt—l ‘ajta CEO) —

q(zi—1]|Te, T0) = N (2415 it B])

0= \/a—t(ajt - 15_7:5% €).

fip = \/a_tgft_lxt 4 \/atB—tlﬁtx _ 1

* Want: train up a ug to match with ;.




Training

e Sometimes it is more common to
predict the denoising vector €

instead of u.
fir = : (2 — & €),
VOt V31— oy
1 By




Training

e Sometimes it is more common to

predict the denoising vector €
instead of u.

* Randomly pick at a time step and
predict the difference between the
noisy and the original.

iy = —— (1 — ——o)
Lt \/OTtt \/1——C_kt’
1 B




Training

* Sometimes it is more common to  Algorithm 1 Training

predict the denoising vector € 1: repeat
i 2: xo ~ q(x0)
instead of H- 3t (r)v U(IIIifOOI‘m({l, T}
* Randomly pick at a time step and 451: €~ N((c){.l) |
. . . € gra 1ent descent step on
prgdlct the d|ffe.re.nce between the Vo [le — o (Varxo + vT=are,t)[
noisy and the original. 6: until converged
fir = =y~ —2—e)
Ve V-
1 B




Sampling

* How do we sample an image?

Algorithm 2 Sampling

1. x7 NN(O,I)
2: fort=1T,...,1do
3: z~N(0,I)ift > 1,elsez=0

4: X1 = \/%—t (Xt — \}%—dﬂtee(m,t)) + 012
5: end for
6: return xg




Sampling

* How do we sample an image?

* We know pg which will help us Algorithm 2 Sampling
transition from x; to x;_1. 1: xr ~ N(0,1)
1 575 2: fort:T,...,.ldo
60(3715))- 3: z~N(0,I)ift > 1,elsez=0

,LL@(CCt, t) — (xt _ —

N V1—ay 4 xem1 = g (%= JEeo(xi,1)) + 0uz
5: end for
6: return xg




Sampling

* How do we sample an image?

* We know ug which will help us Algorithm 2 Sampling
transition from x; to x;_4. 1: xr ~ N(0,T)
1 5 2: fort=1T,...,1do
t (xt)) 3: z~N(0,I)ift > 1,elsez=0

to(xe, t) = (2 — — €y .
AT vV1— oy 4 xio1= e (Xt — \}%—dﬂtee(m,tﬁ + o1z
5: end for
6: return X

* Sample from N(xt_1;~u9(xt, t),o?)
. g; can either be f; or ; derived from
the posterior.




More on Samplers

* DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANSs.

[Song et al. 2021]

@
Song et al. Denoising Diffusion Implicit Models. ICLR 2021. 1 NYU
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More on Samplers

* DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANSs.

* In the non-Markovian model, we can first generate x;, and based on
xt and x, we can generate x_; and so on.

* Joint distribution:
T
q(z1.7|v0) = q(zr|vo) [ [1=0 @(2t-1]21, T0).

[Song et al. 2021]




More on Samplers

* DDPM relies on many iterations (e.g. 1000) to produce one sample.
Slower than NFs and GANSs.

* In the non-Markovian model, we can first generate x;, and based on
xt and x, we can generate x_; and so on.

* Joint distribution:
T
Q($1:T|$o) — C]($T|=’Eo) thg Q<xt—1’33ta CCO)-
* Estimate x;_; based on x, and x;:
Q(ﬂft—ﬂxt,xo) =N (\/at—l-r() + \/1 — Q1 — U? ' xt\;l_ioéfoaa?]) .

[Song et al. 2021]

ANYU




More on DDIM Samplers

* Prediction of x:

5 (1) = o= (e — VT — g - e (w1)).

[Song et al. 2021]

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.



More on DDIM Samplers

* Prediction of x:

5 (1) T (T — VI — oy ey’ (w1)).

t

N (@), 030)  ift=1

q(xi_1|xe, fe(t) (x¢)) otherwise.

* Sampling process:
pét)(fﬁt—l\xt) = {

[Song et al. 2021]

Song et al. Denoising Diffusion Implicit Models. ICLR 2021.



Guided Diffusion

* We can add guidance on the diffusion updates at inference time.

Classifier Guidance / External Score Model

€ eg(xt) — V1 — a; Vi, log pg(ylz:)
z¢_1 < sample from N (u + sX Vg, logpg(y[21), X) 1 « /A1 (% Vi_lt_é‘fe) + /1 — ;1€

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurlPS 2021. (C/‘ NYU
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022. !




Guided Diffusion

* We can add guidance on the diffusion updates at inference time.

Classifier Guidance / External Score Model

€+ eg(zt) — V1 — 0y Vg, log py (y|xt)
;-1 « sample from N'(u + sE Vg, logpg (y[z4), X) 241 < /& (% V;“") + VT —a_1é

* We also can train a conditional diffusion model.

repeat
(x,c¢) ~ p(x,c) > Sample data with conditioning from the dataset
c < @ with probability pynconda > Randomly discard conditioning to train unconditionally
A~ p(A) > Sample log SNR value
e ~N(0,I)
Z) = Q)X + O)\€ > Corrupt data to the sampled log SNR value
Take gradient step on Vg ||€s(z», c) — €| > Optimization of denoising model

until converged

Dhariwal & Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurlPS 2021. (C/‘ NYU
Ho & Salimans. Classifier-Free Diffusion Guidance. 2022. !




Test-Time Adaptation

* Diffusion can be combined / guided with reward functions at test

Inference Best-of-N FK Steering
A A A \D
1 I 1 | '
s a om || A -
1 1 R 1 ! 1 l. "
: RS AN
Reward| | L o ! Nx Vg -
eward| 1 ! o [l | =
1
: [:,/D,_.n/' AR ::1—/—:0/\( !
i ¢/ 1 E!J/ v
1 r— HH- - BR )
L 1 e : N | M | P 3
D—‘\'T\\‘ N ‘o D/
N e el e |
1 1 1
t =T — Denoising —» t =0 t =T — Denoising — t =0 t =T — Denoising — £ =0

« . . N (1) Iteratively de-noise zp — xp_1 — ... = Zo.
Prompt: “a green stop sign in a red fiel (2) Generate multiple samples (particles).

(3) Resample promising particles at intermediate steps.

[Singhal et al. 2025]

Unshaped
g |

I
i

Singhal et al. A General Framework for Inference-time Scaling and Steering of Diffusion Models. arXiv 2025.

Yang et al. Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous and Instruction-guided Driving. CVPR 2024.

@ “Change to the left lane”

[Yang et al. 2024]
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Diffusion for Detection

Po (x¢—1]x¢)
@ @D @

Q(xt|xt 1)

(c)

D ﬁ@ o
B ——> — —>
i Box

Image Encoder  Detection Decoder

Figure 1. Diffusion model for object detection. (a) A diffusion
model where q is the diffusion process and py is the reverse pro-
cess. (b) Diffusion model for image generation task. (c) We pro-
pose to formulate object detection as a denoising diffusion process
from noisy boxes to object boxes.

(7
Chen et al. DiffusionDet: Diffusion Model for Object Detection. ICCV 2023. 1 NYU




Diffusion for Generating Simulation Scenes

e
~ ~

- | Oy

N ~
/ / \ \\ f TN
Spatial Region Constraint Actor Attribute Constraint Initial Scene Constraint Collision Constraint On-road Constraint
Scene Input Final Scene
% ¥ 4 ’ a2
90, ¥y X '
% /% L3 ‘ 5 ’/' ¥ 3
- —_— L —_— s s s e i
Random ¢ 4 o
‘ i Initialization ' ‘ i', . .¢ ii T Diffusion Steps ‘ i
) Each Diffusion Step
Constraints 'i 'r Predicte:j N’oise
4
A . R/ 4
7 A Diffusion Model —— 7 * - /lf
i % A
i 5
Guidance Gradient
Region NS /, ‘
Density ~ Speed » Guidance Function —-= (]
- — — ;’/ // 7 //1 '

Lu et al. SceneControl: Diffusion for Controllable Traffic Scene Generation. ICRA 2024.



Diffusion for Planning and Control

Representation

p(a)

Scalar (Regression)

Explicit Policy

Fg(o)

v

Mixture of Gaussians

I
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! I
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. I

Categorical

(a) Explicit Policy

Implicit Policy
argmin(E) -~
S . ao.0
Eg(0,a); -
A A 0.5

@ @ 19% 05 00
o

(b) Implicit Policy

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.

1.0

Diffusion Policy

Gradient Field
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(c) Diffusion Policy




Diffusion for Planning and Control

Input: Image Observation Sequence Observation O« Ous

4 Al

4 N : , >

Diffusion Policy €4(O, A, k)

' >
Action Seauence A
<——Prediction Horizon Tp—
' s ® At+4
i : T
AL Al A’ Begd 1
Output: Action Sequence a) Diffusion Policy General Formulation

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. RSS 2023.




Diffusion Planner for Self-Driving
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https://openreview.net/forum?id=wM2sfVgMDH

Diffusion-Based Planning for Autonomous Driving with Flexible Guidance. OpenReview 2024.
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Summary: DL for Structured Outputs

* Expanding the output dimension has limitations.

* Requires us thinking about generative models.
* Graphical models
* Autoregressive
* Energy-based
* Diffusion

* Understand pros and cons. Experiment with each option.
* Application in embodied environments.




What’s Next

e Tutorial on simulation environments

* Next week: 3D vision, mapping




