Optical Flow and Motion-Based SSL

2025-02-20 Chris Hoang

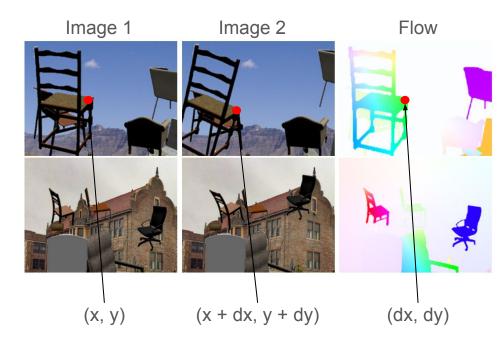
Optical flow example

Optical flow problem

Task: estimate motion of pixels between video frames

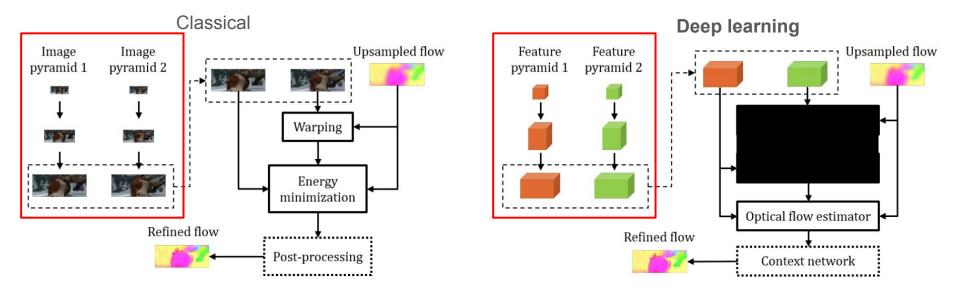
Estimate the flow field that contains the motion of each pixel coordinate (x, y) from image1 \rightarrow image2

- flow[x, y] = dx, dy
- image1(x, y) \leftrightarrow image2(x + dx, y + dy)



Deep learning for optical flow

Replace image pyramids and hand-crafted features with end-to-end neural networks that produce **feature pyramids**



Model architectures for optical flow

Suppose we have the features for each image

We are trying to learn how to match the two feature maps

We use correlations between the two features as useful information for flow

Correlation layer

Inputs: two tensors u, v that are each of dimension H x W x D. For example, features from two images

Output: one tensor z of dimension H x W x H' x W'

Correlation layer

Inputs: two tensors u, v that are each of dimension H x W x D. For example, features from two images

Output: one tensor z of dimension H x W x H' x W'

 H' < H / W' < W if we want to only search a local neighborhood for each point

Intermediate flow predictions

For flow prediction, we can start with predictions to match coarse, high-level features

Refine these predictions to match more fine-grained features

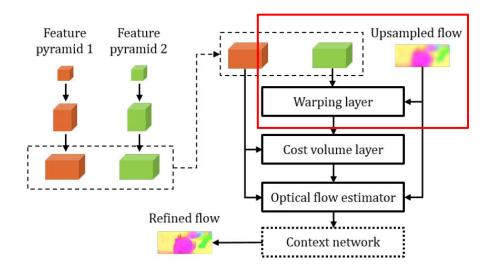
Warp (align) features using flow predictions before computing correlations

Intermediate flow predictions

For flow prediction, we can start with predictions to match coarse, high-level features

Refine these predictions to match more fine-grained features

Warp (align) features using flow predictions before computing correlations



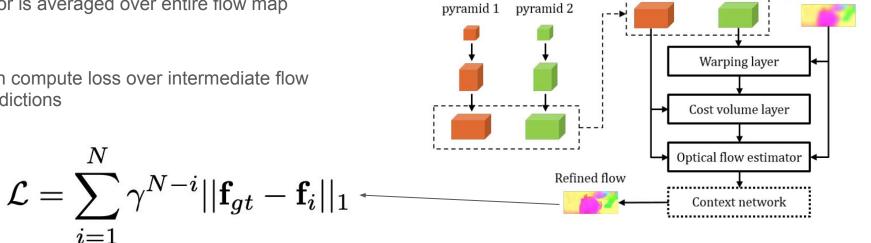
Learning objectives for optical flow models

To train the model to predict flow, we will minimize the error between the model's predicted flow and the ground-truth flow

Error is averaged over entire flow map

Can compute loss over intermediate flow predictions

N



Feature

Feature

Upsampled flow

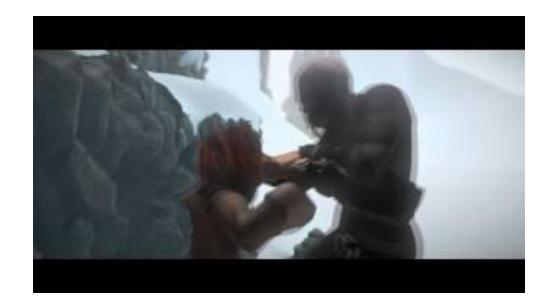
Datasets for optical flow models

Synthetically rendered datasets

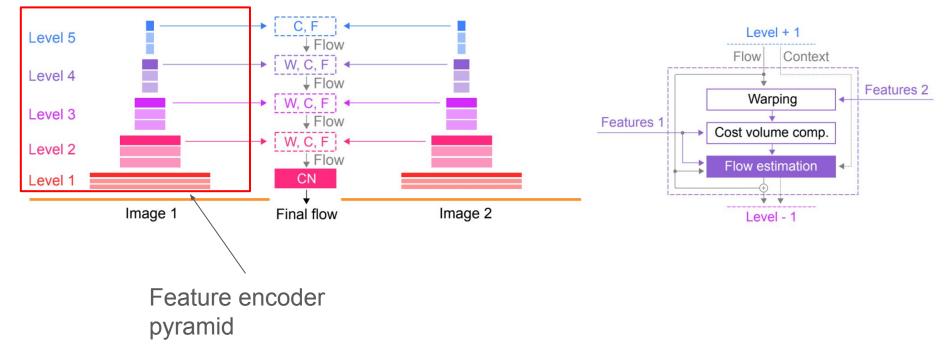
- 1. FlyingChairs
- 2. FlyingThings
- 3. MPI Sintel

Real datasets

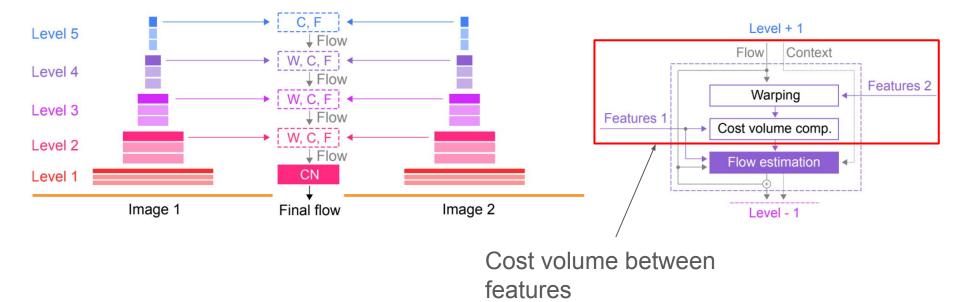
1. KITTI



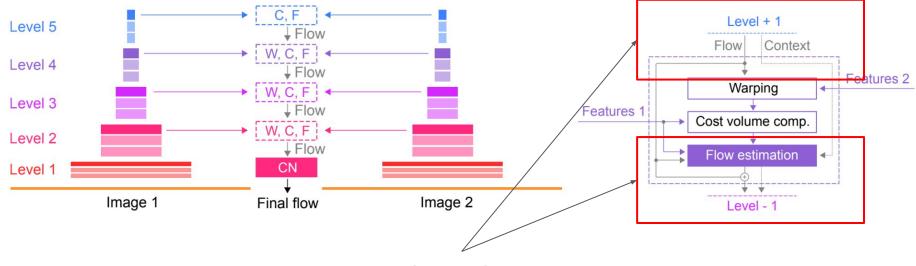
Optical flow architectures: PWC-Net



Optical flow architectures: PWC-Net

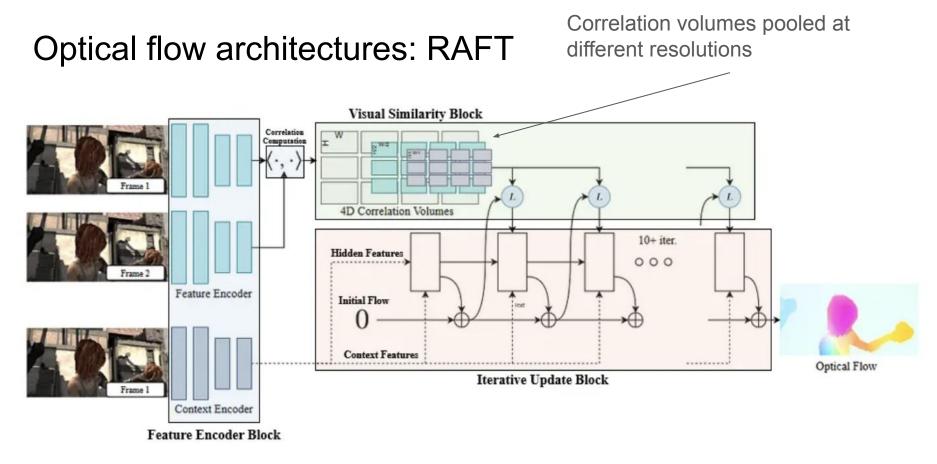


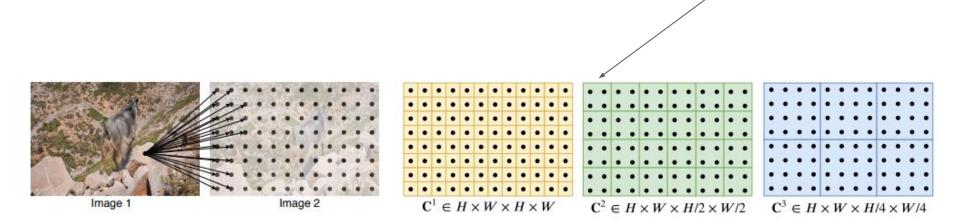
Optical flow architectures: PWC-Net



Top-down flow refinement through feature layers

PWC-Net: Jupyter Notebook





Optical flow architectures: RAFT

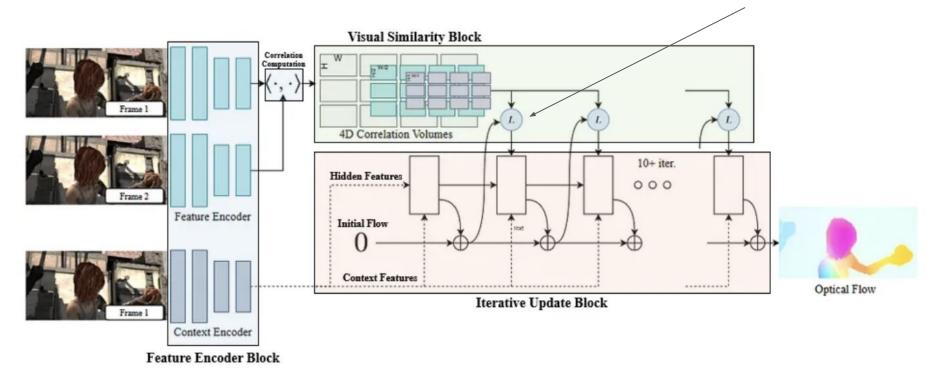
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. Teed and Deng. ECCV 2020

Correlation volumes pooled at

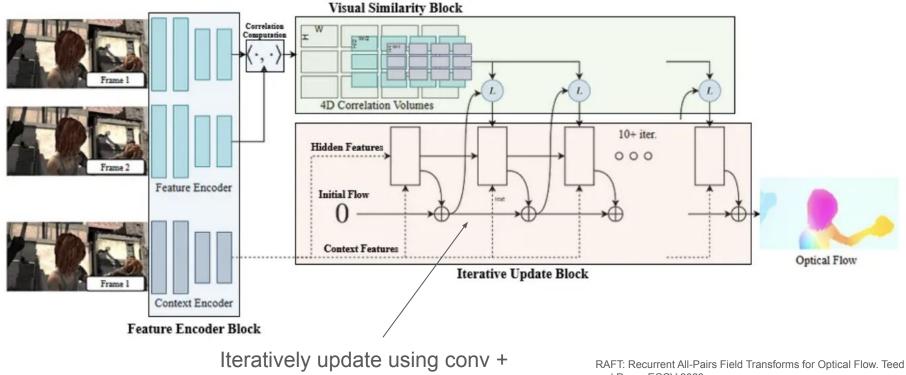
different resolutions

Optical flow architectures: RAFT

Use current flow prediction index into correlation volume



Optical flow architectures: RAFT



GRU block

and Deng. ECCV 2020

Recent advances: long-range flow estimation

Predict dense + long-range motion

Model is optimized at inference time for an entire video

Quasi-3D volume representation + bijections to map volume to local frames

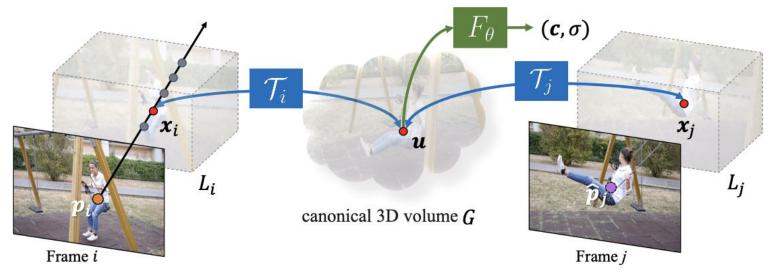
Supervised learning on flow estimates from RAFT

Tracking Everything Everywhere All at Once. Wang et al. ICCV 2023

OmniMotion visualizations

https://omnimotion.github.io/

OmniMotion: Method



(a) OmniMotion representation

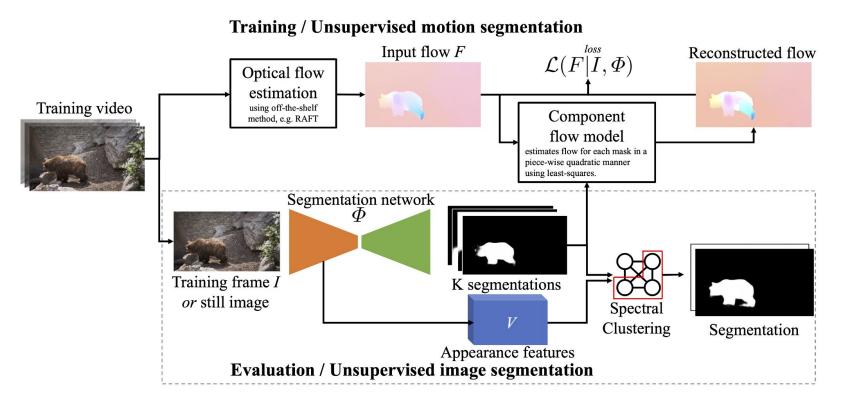
Recent advances: object segmentation with flow

Use optical flow as a cue for objects in images and videos

Have prior notion that we can model the motion of objects with simple parametrics

Learn segmentation network using constrained flow reconstruction as the supervising signal

Recent advances: object segmentation with flow



Guess What Moves: Unsupervised Video and Image Segmentation by Anticipating Motion. Choudhury et al. BMVC 2022

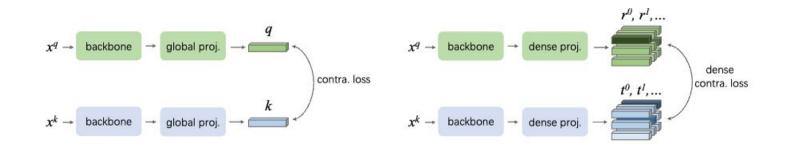
Global versus dense self-supervised learning

Global versus dense self-supervised learning

Joint-embedding SSL: push together embeddings of "positive pairs"

Global SSL: embeddings are single global vectors of images

Dense SSL: embeddings are dense (h x w) local vectors of images



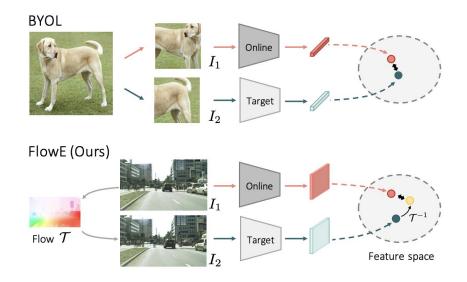
Dense Contrastive Learning for Self-Supervised Visual Pre-Training. Wang et al., 2021.

Flow for dense self-supervised learning

SSL (e.g., BYOL): minimize *global* features between different views of an image

1. *In-the-wild* data may contain cluttered scenes with *many objects*

Dense SSL: compare *dense* feature maps between different views of an image

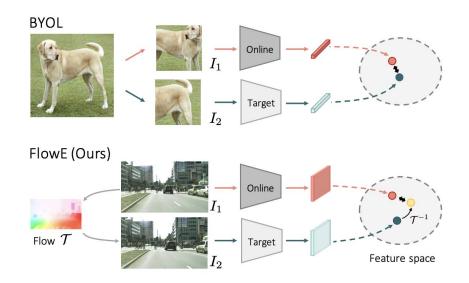


Flow Equivariance (FlowE)

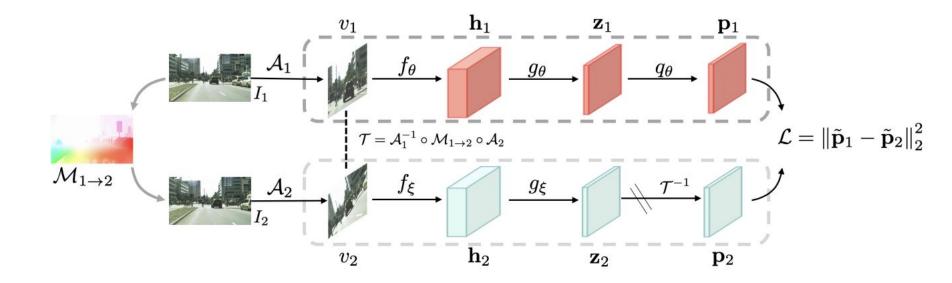
SSL (e.g., BYOL): minimize *global* features between different views of an image

Dense SSL: compare *dense* feature maps between different views of an image

FlowE: use *flow* to align dense feature maps between frames of a video

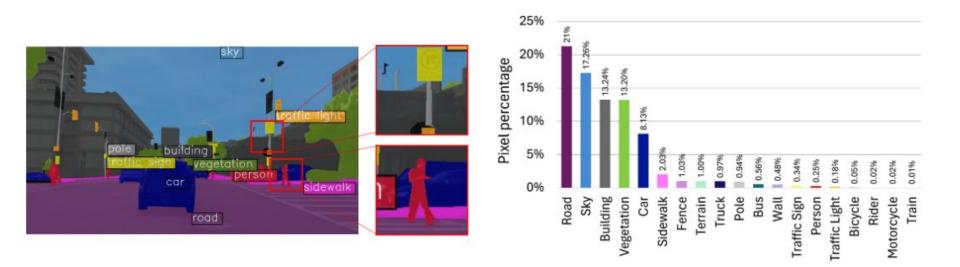


FlowE Method



Self-Supervised Representation Learning from Flow Equivariance. Xiong, Ren et al. ICCV 2021

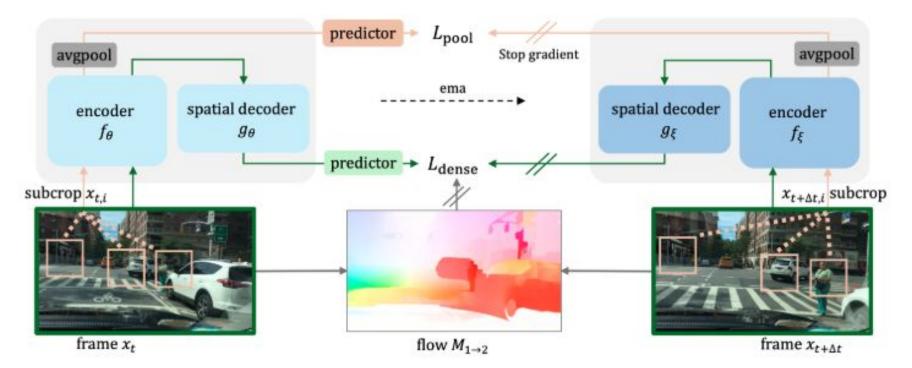
Dense SSL's spatial region imbalance problem



Semantic segmentation map for multi-object scene from BDD100K

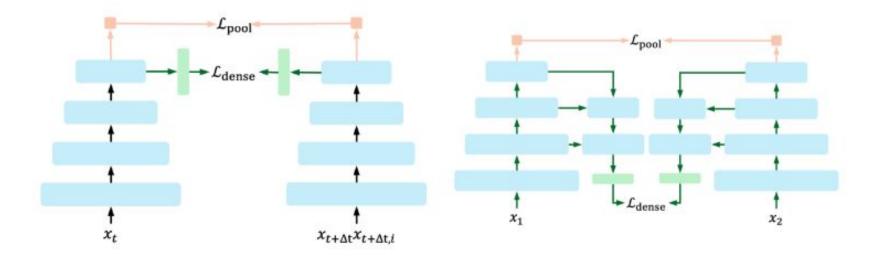
Crucial foreground objects only represent a small proportion of pixels

Pooled and Dense Learning (PooDLe)



PooDLe: Pooled and dense self-supervised learning from naturalistic videos. Wang*, Hoang* et al., ICLR 2025

PooDLe: encoder-decoder design



Naive: place both objectives at last encoder layer PooDLe: pooled objective on last encoder layer; dense objective on high-resolution output from spatial decoder

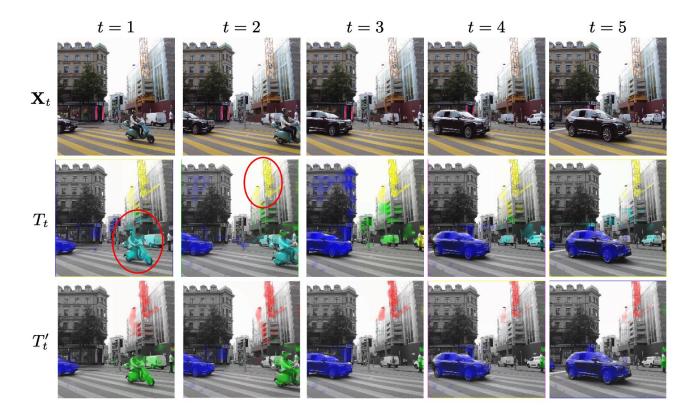
Using subcrops as pseudo-iconic views of objects

Semantic segmentation results

https://agenticlearning.ai/poodle

Discover and tRack Objects (DoRA)

Discover and tRack Objects (DoRA)



Discover and tRack Objects (DoRA)

